首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When co-translationally inserted into endoplasmic reticulum (ER) membranes, newly synthesized proteins encounter the lumenal environment of the ER, which contains chaperone proteins that facilitate the folding reactions necessary for protein oligomerization, maturation and export from the ER. Here we show, using a temperature-sensitive variant of vesicular stomatitis virus G protein tagged with green fluorescent protein (VSVG-GFP), and fluorescence recovery after photobleaching (FRAP), the dynamics of association of folded and misfolded VSVG complexes with ER chaperones. We also investigate the potential mechanisms underlying protein retention in the ER. Misfolded VSVG-GFP complexes at 40 degrees C are highly mobile in ER membranes and do not reside in post-ER compartments, indicating that they are not retained in the ER by immobilization or retrieval mechanisms. These complexes are immobilized in ATP-depleted or tunicamycin-treated cells, in which VSVG-chaperone interactions are no longer dynamic. These results provide insight into the mechanisms of protein retention in the ER and the dynamics of protein-folding complexes in native ER membranes.  相似文献   

2.
Efficient protein folding and quality control in the endoplasmic reticulum (ER) require that disulphide bonds are formed in nascent proteins, isomerised during assisted folding and reduced in terminally misfolded molecules. Recent findings in yeast and mammalian cells indicate that specific protein-protein interactions underlie redox control in the ER, allowing these competing reactions to occur simultaneously during protein quality control.  相似文献   

3.
The endoplasmic reticulum (ER) is the major site for folding and sorting of newly synthesized secretory cargo proteins. One central regulator of this process is the quality control machinery, which retains and ultimately disposes of misfolded secretory proteins before they can exit the ER. The ER quality control process is highly effective and mutations in cargo molecules are linked to a variety of diseases. In mammalian cells, a large number of secretory proteins, whether membrane bound or soluble, are asparagine (N)-glycosylated. Recent attention has focused on a sugar transferase, UDP-Glucose: glycoprotein glucosyl transferase (UGGT), which is now recognized as a constituent of the ER quality control machinery. UGGT is capable of sensing the folding state of glycoproteins and attaches a single glucose residue to the Man9GlcNAc2 glycan of incompletely folded or misfolded glycoproteins. This enables misfolded glycoproteins to rebind calnexin and reenter productive folding cycles. Prolonging the time of glucose addition on misfolded glycoproteins ultimately results in either the proper folding of the glycoprotein or its presentation to an ER associated degradation machinery.  相似文献   

4.
Short-lived protein translation products have been proposed to be the principal substrates that enter the class I MHC processing and presentation pathway. However, the biochemical nature of these substrates is poorly defined. Whether the major processing substrates are misfolded full-length proteins, or alternatively, aberrantly initiated or truncated polypeptides still remains to be addressed. To examine this, we used melanoma in which one-third of wild-type tyrosinase molecules were correctly folded and localized beyond the Golgi, while the remainder were present in the endoplasmic reticulum in an unfolded/misfolded state. Increasing the efficiency of tyrosinase folding using chemical chaperones led to a reduction in the level of substrate available to the proteasome and decreased the expression of a tyrosinase-derived epitope. Conversely, in transfectants expressing tyrosinase mutants that are completely misfolded, both proteasome substrate and epitope presentation were significantly enhanced. Proteasome substrate availability was a consequence of misfolding and not simply due to retention in the endoplasmic reticulum. Thus, the extent of folding/misfolding of a full-length protein is an important determinant of the level of epitope presentation.  相似文献   

5.
As a part of our studies on the folding of glycoproteins in the ER, we analyzed the fate of viral glycoproteins that have misfolded either spontaneously or through inhibition of N-linked glycosylation. Newly synthesized Semliki Forest virus spike glycoproteins E1 and p62 and influenza hemagglutinin were studied in infected and transfected tissue culture cells. Misfolded proteins aggregated in less than 1 min after release from polysomes and aberrant interchain disulfide bonds were formed immediately. When more than one protein was misfolded, mixed aggregates were generated. This indicated that the formation of complexes was nonspecific, random, and not restricted to products from single polysomes. The size of the aggregates varied from small oligomers to complexes of several million daltons. BiP was associated noncovalently with the aggregates and with some of the nonaggregated products. We conclude that aggregation reflects the poor solubility of incompletely folded polypeptide chains.  相似文献   

6.
Retrograde Transport of Golgi-localized Proteins to the ER   总被引:17,自引:1,他引:16       下载免费PDF全文
The ER is uniquely enriched in chaperones and folding enzymes that facilitate folding and unfolding reactions and ensure that only correctly folded and assembled proteins leave this compartment. Here we address the extent to which proteins that leave the ER and localize to distal sites in the secretory pathway are able to return to the ER folding environment during their lifetime. Retrieval of proteins back to the ER was studied using an assay based on the capacity of the ER to retain misfolded proteins. The lumenal domain of the temperature-sensitive viral glycoprotein VSVGtsO45 was fused to Golgi or plasma membrane targeting domains. At the nonpermissive temperature, newly synthesized fusion proteins misfolded and were retained in the ER, indicating the VSVGtsO45 ectodomain was sufficient for their retention within the ER. At the permissive temperature, the fusion proteins were correctly delivered to the Golgi complex or plasma membrane, indicating the lumenal epitope of VSVGtsO45 also did not interfere with proper targeting of these molecules. Strikingly, Golgi-localized fusion proteins, but not VSVGtsO45 itself, were found to redistribute back to the ER upon a shift to the nonpermissive temperature, where they misfolded and were retained. This occurred over a time period of 15 min–2 h depending on the chimera, and did not require new protein synthesis. Significantly, recycling did not appear to be induced by misfolding of the chimeras within the Golgi complex. This suggested these proteins normally cycle between the Golgi and ER, and while passing through the ER at 40°C become misfolded and retained. The attachment of the thermosensitive VSVGtsO45 lumenal domain to proteins promises to be a useful tool for studying the molecular mechanisms and specificity of retrograde traffic to the ER.  相似文献   

7.
Recombinant expression of native or modified eukaryotic proteins is pivotal for structural and functional studies and for industrial and pharmaceutical production of proteins. However, it is often impeded by the lack of proper folding. Here, we present a stringent and broadly applicable eukaryotic in vivo selection system for folded proteins. It is based on genetic complementation of the Schizosaccharomyces pombe growth marker gene invertase fused C‐terminally to a protein library. The fusion proteins are directed to the secretion system, utilizing the ability of the eukaryotic protein quality‐control systems to retain misfolded proteins in the ER and redirect them for cytosolic degradation, thereby only allowing folded proteins to reach the cell surface. Accordingly, the folding potential of the tested protein determines the ability of autotrophic colony growth. This system was successfully demonstrated using a complex insertion mutant library of TNF‐α, from which different folding competent mutant proteins were uncovered.  相似文献   

8.
SS Cao  RJ Kaufman 《Current biology : CB》2012,22(16):R622-R626
In eukaryotic cells, the endoplasmic reticulum (ER) is a membrane-enclosed interconnected organelle responsible for the synthesis, folding, modification, and quality control of numerous secretory and membrane proteins. The processes of protein folding and maturation are highly assisted and scrutinized but are also sensitive to changes in ER homeostasis, such as Ca(2+) depletion, oxidative stress, hypoxia, energy deprivation, metabolic stimulation, altered glycosylation, activation of inflammation, as well as increases in protein synthesis or the expression of misfolded proteins or unassembled protein subunits. Only properly folded proteins can traffic to the Golgi apparatus, whereas those that misfold are directed to ER-associated degradation (ERAD) or to autophagy. The accumulation of unfolded/misfolded proteins in the ER activates signaling events to orchestrate adaptive cellular responses. This unfolded protein response (UPR) increases the ER protein-folding capacity, reduces global protein synthesis, and enhances ERAD of misfolded proteins.  相似文献   

9.
The endoplasmic reticulum (ER) contains a stringent quality control system that ensures the correct folding of newly synthesized proteins to be exported via the secretory pathway. In this system UDP-Glc:glycoprotein glucosyltransferase (GT) serves as a glycoprotein specific folding sensor by specifically glucosylating N-linked glycans in misfolded glycoproteins thus retaining them in the calnexin/calreticulin chaperone cycle. To investigate how GT senses the folding status of glycoproteins, we generated RNase B heterodimers consisting of a folded and a misfolded domain. Only glycans linked to the misfolded domain were found to be glucosylated, indicating that the enzyme recognizes folding defects at the level of individual domains and only reglucosylates glycans directly attached to a misfolded domain. The result was confirmed with complexes of soybean agglutinin and misfolded thyroglobulin.  相似文献   

10.
Tyrosinase is a glycoprotein responsible for the synthesis of melanin in melanocytes. A large number of mutations have been identified in tyrosinase, with many leading to its misfolding, endoplasmic reticulum (ER) retention, and degradation. Here we describe the folding and maturation of human tyrosinase (TYR) using an in vitro translation system coupled with ER-derived microsomes or with semipermeabilized cells, as an intact ER source. TYR remained misfolded as determined by its sensitivity to trypsin digestion and its persistent interaction with the ER resident lectin chaperones calnexin and calreticulin when produced in ER-derived microsomes or nonmelanocytic semipermeabilized cells. However, when TYR was translocated into semipermeabilized melanocytes, chaperone interactions were transient, maturation progressed to a trypsin-resistant state, and a TYR homodimer was formed. The use of semipermeabilized mouse melanocytes defective for tyrosinase or other melanocyte-specific proteins as the ER source indicated that proper TYR maturation and oligomerization were greatly aided by the presence of wild type tyrosinase and tyrosinase-related protein 1. These findings suggested that oligomerization is a step in proper TYR maturation within the ER that requires melanocyte-specific factors.  相似文献   

11.
The endoplasmic reticulum (ER) is the primary site for synthesis and folding of secreted and membrane-bound proteins. Proteins are translocated into ER lumen in an unfolded state and require protein chaperones and catalysts of protein folding to assist in proper folding. Properly folded proteins traffic from the ER to the Golgi apparatus; misfolded proteins are targeted to degradation. Unfolded protein response (UPR) is a highly regulated intracellular signaling pathway that prevents accumulation of misfolded proteins in the ER lumen. UPR provides an adaptive mechanism by which cells can augment protein folding and processing capacities of the ER. If protein misfolding is not resolved, the UPR triggers apoptotic cascades. Although the molecular mechanisms underlying ER stress-induced apoptosis are not completely understood, increasing evidence suggests that ER and mitochondria cooperate to signal cell death. Mitochondria and ER form structural and functional networks (mitochondria-associated ER membranes [MAMs]) essential to maintain cellular homeostasis and determine cell fate under various pathophysiological conditions. Regulated Ca(2+) transfer from the ER to the mitochondria is important in maintaining control of prosurvival/prodeath pathways. We discuss the signaling/communication between the ER and mitochondria and focus on the role of the mitochondrial permeability transition pore in these complex processes.  相似文献   

12.
Proteins synthesized in the ER are generally transported to the Golgi complex and beyond only when they have reached a fully folded and assembled conformation. To analyze how the selective retention of misfolded proteins works, we monitored the long-term fate of a membrane glycoprotein with a temperature-dependent folding defect, the G protein of tsO45 vesicular stomatitis virus. We used indirect immunofluorescence, immunoelectron microscopy, and a novel Nycodenz gradient centrifugation procedure for separating the ER, the intermediate compartment, and the Golgi complex. We also employed the folding and recycling inhibitors dithiothreitol and AIF4-, and coimmunoprecipitation with calnexin antibodies. The results showed that the misfolded G protein is not retained in the ER alone; it can move to the intermediate compartment and to the cis-Golgi network but is then recycled back to the ER. In the ER it is associated with calnexin and BiP/GRP78. Of these two chaperones, only BiP/GRP78 seems to accompany it through the recycling circuit. Thus, the retention of this misfolded glycoprotein is the result of multiple mechanisms including calnexin binding in the ER and selective retrieval from the intermediate compartment and the cis-Golgi network.  相似文献   

13.
Swanton E  High S  Woodman P 《The EMBO journal》2003,22(12):2948-2958
The endoplasmic (ER) quality control apparatus ensures that misfolded or unassembled proteins are not deployed within the cell, but are retained in the ER and degraded. A glycoprotein-specific system involving the ER lectins calnexin and calreticulin is well documented, but very little is known about mechanisms that may operate for non-glycosylated proteins. We have used a folding mutant of a non- glycosylated membrane protein, proteolipid protein (PLP), to examine the quality control of this class of polypeptide. We find that calnexin associates with newly synthesized PLP molecules, binding stably to misfolded PLP. Calnexin also binds stably to an isolated transmembrane domain of PLP, suggesting that this chaperone is able to monitor the folding and assembly of domains within the ER membrane. Notably, this glycan-independent interaction with calnexin significantly retards the degradation of misfolded PLP. We propose that calnexin contributes to the quality control of non-glycosylated polytopic membrane proteins by binding to misfolded or unassembled transmembrane domains, and discuss our findings in relation to the role of calnexin in the degradation of misfolded proteins.  相似文献   

14.
The protein folding and lipid moiety status of glycosylphosphatidylinositol-anchored proteins (GPI-APs) are monitored in the endoplasmic reticulum (ER), with calnexin playing dual roles in the maturation of GPI-APs. In the present study, we investigated the functions of calnexin in the quality control and lipid remodeling of GPI-APs in the ER. By directly binding the N-glycan on proteins, calnexin was observed to efficiently retain GPI-APs in the ER until they were correctly folded. In addition, sufficient ER retention time was crucial for GPI-inositol deacylation, which is mediated by post-GPI attachment protein 1 (PGAP1). Once the calnexin/calreticulin cycle was disrupted, misfolded and inositol-acylated GPI-APs could not be retained in the ER and were exposed on the plasma membrane. In calnexin/calreticulin-deficient cells, endogenous GPI-anchored alkaline phosphatase was expressed on the cell surface, but its activity was significantly decreased. ER stress induced surface expression of misfolded GPI-APs, but proper GPI-inositol deacylation occurred due to the extended time that they were retained in the ER. Our results indicate that calnexin-mediated ER quality control systems for GPI-APs are necessary for both protein folding and GPI-inositol deacylation.  相似文献   

15.
Endoplasmic reticulum (ER) stress responses comprising the unfolded protein response (UPR) are activated by conditions that disrupt folding and assembly of proteins inside the ER lumenal compartment. Conditions known to be proximal triggers of the UPR include saturation of chaperones with misfolded protein, redox imbalance, disruption of Ca2+ levels, interference with N-linked glycosylation, and failure to dispose of terminally misfolded proteins. Potentially, ER stress responses can reprogram cells to correct all of these problems and thereby restore ER function to normal. This article will review literature on stimulation of N-linked glycosylation by ER stress responses, focusing on metazoan systems. The mechanisms involved will be contrasted with those mediating stimulation of N-linked glycosylation by cytoplasmic stress responses. This information will interest readers who study the biological roles of stress responses, the functions of N-linked glycans, and potential strategies for treatment of genetic disorders of N-linked glycosylation.  相似文献   

16.
17.
A multitude of transmembrane proteins enters the endoplasmic reticulum (ER) as unfolded polypeptide chains. During their folding process, they interact repetitively with the ER's quality control machinery. Here, we have used fluorescence correlation spectroscopy to probe these interactions for a prototypical transmembrane protein, VSVG ts045, in vivo. While both folded and unfolded VSVG ts045 showed anomalous diffusion, the unfolded protein had a significantly stronger anomaly. This difference subsided when unfolded VSVG ts045 was in a complex with its chaperone calnexin, or when a mutant form of VSVG ts045 with only one glycan was used. Our experimental data and accompanying simulations suggest that the folding sensor of the quality control (UGT1) oligomerizes unfolded VSVG ts045, leading to a more anomalous/obstructed diffusion. In contrast, calnexin dissolves the oligomers, rendering unfolded VSVG ts045 more mobile, and hence prevents poisoning of the ER.  相似文献   

18.
Protein disulfide isomerase (PDI) interacts with secretory proteins, irrespective of their thiol content, late during translocation into the ER; thus, PDI may be part of the quality control machinery in the ER. We used yeast pdi1 mutants with deletions in the putative peptide binding region of the molecule to investigate its role in the recognition of misfolded secretory proteins in the ER and their export to the cytosol for degradation. Our pdi1 deletion mutants are deficient in the export of a misfolded cysteine-free secretory protein across the ER membrane to the cytosol for degradation, but ER-to-Golgi complex transport of properly folded secretory proteins is only marginally affected. We demonstrate by chemical cross-linking that PDI specifically interacts with the misfolded secretory protein and that mutant forms of PDI have a lower affinity for this protein. In the ER of the pdi1 mutants, a higher proportion of the misfolded secretory protein remains associated with BiP, and in export-deficient sec61 mutants, the misfolded secretory protein remain bounds to PDI. We conclude that the chaperone PDI is part of the quality control machinery in the ER that recognizes terminally misfolded secretory proteins and targets them to the export channel in the ER membrane.  相似文献   

19.
Protein folding and quality control in the endoplasmic reticulum   总被引:17,自引:0,他引:17  
The endoplasmic reticulum (ER) is a highly versatile protein factory that is equipped with chaperones and folding enzymes essential for protein folding. ER quality control guided by these chaperones is essential for life. Whereas correctly folded proteins are exported from the ER, misfolded proteins are retained and selectively degraded. At least two main chaperone classes, BiP and calnexin/calreticulin, are active in ER quality control. Folding factors usually are found in complexes. Recent work emphasises more than ever that chaperones act in concert with co-factors and with each other.  相似文献   

20.
Mammalian selenocysteine-containing proteins characterized with respect to function are involved in redox processes and exhibit distinct expression patterns and cellular locations. A recently identified 15-kDa selenoprotein (Sep15) has no homology to previously characterized proteins, and its function is not known. Here we report the intracellular localization and identification of a binding partner for this selenoprotein which implicate Sep15 in the regulation of protein folding. The native Sep15 isolated from rat prostate and mouse liver occurred in a complex with a 150-kDa protein. The latter protein was identified as UDP-glucose:glycoprotein glucosyltransferase (UGTR), the endoplasmic reticulum (ER)-resident protein, which was previously shown to be involved in the quality control of protein folding. UGTR functions by glucosylating misfolded proteins, retaining them in the ER until they are correctly folded or transferring them to degradation pathways. To determine the intracellular localization of Sep15, we expressed a green fluorescent protein-Sep15 fusion protein in CV-1 cells, and this protein was localized to the ER and possibly other perinuclear compartments. We determined that Sep15 contained the N-terminal signal peptide that was essential for translocation and that it was cleaved in the mature protein. However, C-terminal sequences of Sep15 were not involved in trafficking and retention of Sep15. The data suggest that the association between Sep15 and UGTR is responsible for maintaining the selenoprotein in the ER. This report provides the first example of the ER-resident selenoprotein and suggests a possible role of the trace element selenium in the quality control of protein folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号