首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An improved method for the enzymatic synthesis of purine nucleosides is described. Pyrimidine nucleosides were used as pentosyl donors and two phosphorylases were used as catalysts. One of the enzymes, either uridine phosphorylase (Urd Pase) or thymidine phosphorylase (dThd Pase), catalyzed the phosphorolysis of the pentosyl donor. The other enzyme, purine nucleoside phosphorylase (PN Pase), catalyzed the synthesis of the product nucleoside by utilizing the pentose 1-phosphate ester generated from the phosphorolysis of the pyrimidine nucleoside. Urd Pase, dThd Pase, and PN Pase were separated from each other in extracts of Escherichia coli by titration with calcium phosphate gel. Each enzyme was further purified by ion-exchange chromatography. Factors that affect the stability of these catalysts were studied. The pH optima for the stability of Urd Pase, dThd Pase, and PN Pase were 7.6, 6.5, and 7.4, respectively. The order of relative heat stability was Urd Pase greater than PN Pase greater than dThd Pase. The stability of each enzyme increased with increasing enzyme concentration. This dependence was strongest with dThd Pase and weakest with Urd Pase. Of the substrates tested, the most potent stabilizers of Urd Pase, dThd Pase, and PN Pase were uridine, 2'-deoxyribose 1-phosphate, and ribose 1-phosphate, respectively. Some general guidelines for optimization of yields are given. In a model reaction, optimal product formation was obtained at low phosphate concentrations. As examples of the efficiency of the method, the 2'-deoxyribonucleoside of 6-(dimethylamino)purine and the ribonucleoside of 2-amino-6-chloropurine were prepared in yields of 81 and 76%, respectively.  相似文献   

2.
Uridine phosphorylase is the only pyrimidine nucleoside cleaving activity that can be detected in extracts of Schistosoma mansoni. The enzyme is distinct from the two purine nucleoside phosphorylases contained in this parasite. Although Urd is the preferred substrate, uridine phosphorylase can also catalyze the reversible phosphorolysis of dUrd and dThd, but not Cyd, dCyd, or orotidine. The enzyme was purified 170-fold to a specific activity of 2.76 nmol/min/mg of protein with a 16% yield. It has a Mr of 56,000 as determined by molecular sieving on Sephadex G-100. The mechanism of uridine phosphorylase is sequential. When Urd was the substrate, the KUrd = 13 microM and the KPi = 533 +/- 78 microM. When dThd was used as a substrate, the KdThd = 54 microM and the KPi = 762 +/- 297 microM. The Vmax with dThd was 53 +/- 9.8% that of Urd. dThd was a competitive inhibitor when Urd was used as a substrate. The enzyme showed substrate inhibition by Urd, dThd (greater than 0.125 mM) and phosphate (greater than 10 mM). 5-(Benzyloxybenzyloxybenzyl)acyclouridine was identified as a potent and specific inhibitor of parasite (Ki = 0.98 microM) but not host uridine phosphorylase. Structure-activity relationship studies suggest that uridine phosphorylase from S. mansoni has a hydrophobic pocket adjacent to the 5-position of the pyrimidine ring and indicate differences between the binding sites of the mammalian and parasite enzymes. These differences may be useful in designing specific inhibitors for schistosomal uridine phosphorylase which will interfere selectively with nucleic acids synthesis in this parasite.  相似文献   

3.
To elucidate the molecular details of how high density lipoprotein (HDL) microstructure affects the conformation of apolipoprotein (apo) A-I in various classes of HDL particles, apoA-I structure in homogeneous recombinant HDL (rHDL) complexes containing palmitoyl-oleoyl phosphatidylcholine (POPC) and cholesteryl oleate has been investigated by NMR spectroscopy of [13C]lysine-labeled apoA-I. All Lys residues in rHDL apoA-I were labeled with 13C by reductive methylation, and then their ionization behavior was characterized by 13C NMR spectroscopy. Four discoidal particles were prepared to contain from 64 to 256 molecules of POPC and 2 molecules of apoA-I; their major diameters ranged from 9.3 to 12.1 nm. (13CH3)2-Lys resonances from apoA-I in discoidal complexes exhibit six distinct chemical shifts at pH 10. The various Lys have pKa values ranging from 8.3 to 10.5, indicating that they exist in different microenvironments. More than 80% of the Lys residues in small (9.3 nm) discoidal particles titrate at a significantly lower pH than in the large (12.1 nm) discoidal particles. This indicates that apoA-I has a different conformation on the differently size discs. Two spherical particles were prepared with POPC:cholesteryl oleate:apoA-I molar stoichiometries of 56:16:2 and 232:84:4 and diameters of 7.4 and 12.6 nm, respectively. On spherical rHDL, apoA-I (13CH3)2-Lys resonances exhibit five distinct chemical shifts at pH 10. The titration behavior of apoA-I Lys residues is the same in small and large spherical particles, indicating that apoA-I conformation is similar on the two particles. The Lys microenvironments indicate that the conformation of apoA-I in discoidal complexes is dependent on particle size and that these conformations are substantially different from that of apoA-I on spherical complexes. Lys microenvironments in discoidal complexes differ from that of spherical complexes by 4 to 5 ysines which titrate with relatively low pKa values on discs. This reflects apparent differences in conformation in the NH2-terminal one-third of apoA-I on discs and spheres.  相似文献   

4.
The uptake of Urd into the yeast Saccharomyces cerevisiae is mediated by Fui1p, a Urd-specific nucleoside transporter encoded by the FUI1 gene and a member of the yeast Fur permease family, which also includes the uracil, allantoin, and thiamine permeases. When Fui1p was produced in a double-permease knock-out strain (fur4Deltafui1Delta) of yeast, Urd uptake was stimulated at acidic pH and sensitive to the protonophore carbonyl cyanide m-chlorophenylhydrazone. Electrophysiological analysis of recombinant Fui1p produced in Xenopus oocytes demonstrated that Fui1p-mediated Urd uptake was dependent on proton cotransport with a 1:1 stoichiometry. Mutagenesis analysis of three charged amino acids (Glu(259), Lys(288), and Asp(474) in putative transmembrane segments 3, 4, and 7, respectively) revealed that only Lys(288) was required for maintaining high Urd transport efficiency. Analysis of binding energies between Fui1p and different Urd analogs indicated that Fuip1 interacted with C(3')-OH, C(2')-OH, C(5)-H, and N(3)-H of Urd. Fui1p-mediated transport of Urd was inhibited by analogs with modifications at C-5', but was not inhibited significantly by analogs with modifications at C-3', C-5, and N-3 or inversions of configuration at C-2' and C-3'. This characterization of Fui1p contributes to the emerging knowledge of the structure and function of the Fur family of permeases, including the Fui1p orthologs of pathogenic fungi.  相似文献   

5.
To elucidate the domains on the extrinsic 23 kDa protein involved in electrostatic interaction with the extrinsic 33 kDa protein in spinach photosystem II, we modified amino or carboxyl groups of the 23 kDa protein to uncharged methyl ester groups with N-succinimidyl propionate or glycine methyl ester in the presence of a water-soluble carbodiimide, respectively. The N-succinimidyl propionate-modified 23 kDa protein did not bind to the 33 kDa protein associated with PSII membranes, whereas the glycine methyl ester-modified 23 kDa protein completely bound. This indicates that positive charges on the 23 kDa protein are important for electrostatic interaction with the 33 kDa protein associated with the PSII membranes. Mapping of the N-succinimidyl propionate-modified sites of the 23 kDa protein was performed using Staphylococcus V8 protease digestion of the modified protein followed by determination of the mass of the resultant peptide fragments with MALDI-TOF MS. The results showed that six domains (Lys11-Lys14, Lys27-Lys38, Lys40, Lys90-Lys96, Lys143-Lys152, Lys166-Lys174) were modified with N-succinimidyl propionate. In these domains, Lys11, Lys13, Lys33, Lys38, Lys143, Lys166, Lys170 and Lys174 were wholly conserved in the 23 kDa protein from 12 species of higher plants. These positively charged lysyl residues on the 23 kDa protein may be involved in electrostatic interactions with the negatively charged carboxyl groups on the 33 kDa protein, the latter has been suggested to be important for the 23 kDa binding [Bricker, T.M. & Frankel, L.K. (2003) Biochemistry42, 2056-2061].  相似文献   

6.
Pyrazofurin, a pyrimidine nucleoside analogue with antineoplastic activity, inhibits cell proliferation and DNA synthesis in cells by inhibiting uridine 5'-phosphate (UMP) synthase. It has been previously shown in concanavalin A (con A)-stimulated guinea pig lymphocytes (23) that pyrazofurin-inhibited DNA synthesis could be selectively reversed by exogenous uridine (Urd). In this report, we have examined possible mechanisms for the Urd reversal with experiments that determine the ability of exogenous Urd to (a) interfere with either the intracellular transport of pyrazofurin, or the conversion of pyrazofurin to its intracellularly active form, pyrazofurin-5'-phosphate; (b) reverse the pyrazofurin block of [14C]orotic acid incorporation into DNA; and (c) alter the pattern of exogenous [3H]Urd incorporation into DNA-thymine (DNA-Thy) and DNA-cytosine (DNA-Cyt) during pyrazofurin inhibition of pyrimidine de novo biosynthesis. The results of these experiments showed that Urd reversal does not occur through altered pyrazofurin transport or intracellular conversion to pyrazofurin-5'-phosphate, nor does it alter the distribution of [3H]Urd in DNA-Thy and DNA-Cyt. Instead, these findings indicate that the primary mechanism for exogenous Urd reversal of pyrazofurin inhibition of DNA synthesis involves the reversal of pyrazofurin inhibition of UMP synthase, thus restoring orotic acid incorporation into lymphocyte DNA through the pyrimidine de novo pathway.  相似文献   

7.
Thymidine phosphorylase (TP) and uridine phosphorylase (UP) catalyze the (in)activation of several fluoropyrimidines, depending on their catalytic activity and substrate specificity. Blood cells are the first compartment exposed to most anticancer agents. The role of white blood cells in causing toxic side effects and catalyzing drug metabolism is generally underestimated. Therefore we determined the contribution of the white blood cell compartment to drug metabolism, and we investigated the activity and substrate specificity of TP and UP for the (fluoro)pyrimidines thymidine (dThd), uridine (Urd), 5'-deoxy-5-fluorouridine (5' dFUrd) and 5-fluorouracil (5FU) in peripheral blood mononuclear cells (PBMC) and undifferentiated monocytes and differentiated monocytes: macrophages and dendritic cells. PBMC had an IC50 of 742 microM exposed to 5'dFUrd, increasing to > 2000 microM when both TP and UP activities were inhibited. Total phosphorolytic activity was higher with dThd than with Urd, 5'dFUrd or 5FU. Using a specific TP inhibitor (TPI) and UP inhibitor (BAU) we concluded that dThd and Urd were preferentially converted by TP and UP, respectively, while 5'dFUrd and 5FU were mainly converted by TP (about 80%) into 5FU and FUrd, respectively. 5FU was effectively incorporated into RNA. dThd conversion into thymine was highest in dendritic cells (52.6 nmol thymine/h/10(6) cells), followed by macrophages (two-fold) and undifferentiated monocytes (eight-fold). TPI prevented dThd conversion almost completely. In conclusion, PBMC were relatively insensitive to 5'dFUrd, and the natural substrates dThd and Urd were preferentially converted by TP and UP, respectively. TP and UP were both responsible for converting 5'dFUrd/5FU into 5FU/FUrd, respectively.  相似文献   

8.
The crystal structure of flap endonuclease-1 from Pyrococcus horikoshii (phFEN-1) was determined to a resolution of 3.1 A. The active cleft of the phFEN-1 molecule is formed with one large loop and four small loops. We examined the function of the conserved residues and positively charged clusters on these loops by kinetic analysis with 45 different mutants. Arg(40) and Arg(42) on small loop 1, a cluster Lys(193)-Lys(195) on small loop 2, and two sites, Arg(94) and Arg(118)-Lys(119), on the large loop were identified as binding sites. Lys(87) on the large loop may play significant roles in catalytic reaction. Furthermore, we successfully elucidated the function of the four DNA binding sites that form productive ES complexes specific for each endo- or exo-type hydrolysis, probably by bending the substrates. For the endo-activity, Arg(94) and Lys(193)-Lys(195) located at the top and bottom of the molecule were key determinants. For the exo-activity, all four sites were needed, but Arg(118)-Lys(119) was dominant. The major binding sites for both the nick substrate and double-stranded DNA might be the same.  相似文献   

9.
Several amino groups of recombinant human erythropoietin are selectively cross-linked by specific cross-linkers including disuccinimidyl suberate or dithiobis(succinimidyl propionate). Intramolecular cross-linkings are obtained without significant change of the protein conformation using appropriate concentrations (0.2 mM) of the cross-linkers, which possess an 11-12-A length of a spacer between two reacting groups. Intramolecularly cross-linked peptides obtained suggest that several amino groups in erythropoietin (EPO) are positioned at a distance of near 12 A in the solution state. These interfacing amino groups include Lys 20-Lys 154, Lys 45-Lys 140, Lys 52-Lys 154, Lys 52-Lys 140, and Ala 1-Lys 116. A comparison of the cross-linking results between nonglycosylated EPO and glycosylated EPO suggests that both proteins retain high similarity regarding protein conformation. These results fit a structural model similar to that of human growth hormone, in which four alpha-helical bundles and a long stretch of beta-sheet structure are involved in the active protein.  相似文献   

10.
Molecular complexes of the types (Urd)H(x)(PA) and (UMP)H(x)(PA) are formed in the uridine (Urd) or uridine 5'-monophosphate (UMP) plus spermidine or spermine systems, as shown by the results of equilibrium and spectral studies. Overall stability constants of the adducts and equilibrium constants of their formation have been determined. An increase in the efficiency of the reaction between the bioligands is observed with increasing length of the polyamine. The pH range of adduct formation is found to coincide with that in which the polyamine is protonated while uridine or its monophosphate is deprotonated. The -NH(x)(+) groups from PA and the N(3) atom of the purine base as well as phosphate groups from the nucleotides have been identified as the significant centres of non-covalent interactions. Compared to cytidine, the pH range of Urd adduct formation is shifted significantly higher due to differences in the protonation constants of the endocyclic N(3) donor atoms of particular nucleosides. Overall stability constants of the Cu(II) complexes with uridine and uridine 5'-monophosphate in ternary systems with spermidine or spermine have been determined. It has been found from spectral data that in the Cu(II) ternary complexes with nucleosides and polyamines the reaction of metallation involves mainly N(3) atoms from the pyrimidine bases, as well as the amine groups of PA. This unexpected type of interaction has been evidenced in the coordination mode of the complexes forming in the Cu-UMP systems including spermidine or spermine. Results of spectral and equilibrium studies indicate that the phosphate groups taking part in metallation are at the same time involved in non-covalent interaction with the protonated polyamine.  相似文献   

11.
tRNA(Phe) of E. coli, modified at its 4-thiouridine ((4)Srd) and 3-(3-amino-3-carboxypropyl)uridine (nbt(3)Urd) residues, was tested for its ability to induce (p)ppGpp synthesis. The (4)Srd residue was derivatized with the p-azido-phenacyl group, cross-linked to Cyd(13), and the borohydride reduction product of the cross-link was prepared. The nbt(3)Urd residue was derivatized with the N-(4-azido-2-nitrophenyl)glycyl group. None of these derivatives had more than a minor effect on the affinity of the tRNA for the stringent factor-ribosome complex, and no effect at all on the maximum velocity of (p)ppGpp synthesis, either at 2 or 82 mM NH(4)Cl. These two regions of the tRNA which are on opposite faces of the tRNA molecule do not appear to be structurally important for recognition by the stringent factor-ribosome complex. They may provide useful sites, therefore, for the introduction of photoaffinity or fluorescent probes with which to study tRNA-stringent factor recognition.  相似文献   

12.
Factor XIIIa-catalyzed ε-(γ-glutamyl)-lysyl bonds between glutamine and lysine residues on fibrin α and γ chains stabilize the fibrin clot and protect it from mechanical and proteolytic damage. The cross-linking of γ chains is known to involve the reciprocal linkages between Gln(398) and Lys(406). In α chains, however, the respective lysine and glutamine partners remain largely unknown. Traditional biochemical approaches have only identified the possible lysine donor and glutamine acceptor sites but have failed to define the respective relationships between them. Here, a differential mass spectrometry method was implemented to characterize cross-linked α chain peptides originating from native fibrin. Tryptic digests of fibrin that underwent differential cross-linking conditions were analyzed by high resolution Fourier transform mass spectrometry. Differential intensities associated with monoisotopic masses of cross-linked peptides were selected for further characterization. A fit-for-purpose algorithm was developed to assign cross-linked peptide pairs of fibrin α chains to the monoisotopic masses relying on accurate mass measurement as the primary criterion for identification. Equipped with hypothesized sequences, tandem mass spectrometry was then used to confirm the identities of the cross-linked peptides. In addition to the reciprocal cross-links between Gln(398) and Lys(406) on the γ chains of fibrin (the positive control of the study), nine specific cross-links (Gln(223)-Lys(508), Gln(223)-Lys(539), Gln(237)-Lys(418), Gln(237)-Lys(508), Gln(237)-Lys(539), Gln(237)-Lys(556), Gln(366)-Lys(539), Gln(563)-Lys(539), and Gln(563)-Lys(601)) on the α chains of fibrin were newly identified. These findings provide novel structural details with respect to the α chain cross-linking compared with earlier efforts.  相似文献   

13.
Abstract

Chemoattractant receptors represent a major subset of the G-protein coupled receptor (GPCR) family. One of the best characterized, the N-formyl peptide receptor (FPR), participates in host defense responses of neutrophils. The features of the ligand which regulate its interaction with the FPR are well-known. By manipulating these features we have developed new ligands to probe structural and mechanistic aspects of the peptide-receptor interaction. Three ligand groups have been developed: 1) ligands containing a Lys residue located in positions 2 through 7 that can be conjugated to FITC (N-formyl-Met1-Lys2-Phe3-Phe4, N-formyl-Met1-Leu2-Lys3-Phe4, N-formyl-Met1-Leu2-Phe3-Lys4, N-formyl-Met1-Leu2-Phe3-Phe4-Lys5, N-formyl-nLeu1-Leu2-Phe3-nLeu4-Tyr5-Lys6 and N-formyl-Met1-Leu2-Phe3-Phe4-Gly5-Gly6-Lys7; 2) fluorescent pentapeptide ligands (N-formyl-Met-X-Phe-Phe-Lys(FITC) where X = Leu, Ala, Val or Gly); and 3) small crosslinking ligands where the photoaffinity crosslinker 4-azidosalicylic acid (ASA) was conjugated to Lys in positions 3 and 4 and p-benzoyl-phenylalanine (Bpa) was located in position 2 in N-formyl-Met1-Bpa2-Phe3-Tyr4. The peptides were characterized according to activity and affinity in human neutrophils and cell lines transfected with FPR. All of the peptides were agonists, with parallel affinity and activity. In the first group, the peptide activity decreases as Lys is placed closer to the N-formyl group and the activity is improved by 1–3 orders of magnitude by conjugation with FITC. In the second group, the dissociation rate of the peptide from the receptor increases as position 2 is replaced by aliphatic amino acids with smaller alkyl groups. In the third group, crosslinking ligands remain biologically active, display nM affinity and covalently label the FPR.  相似文献   

14.
Series of mutant genes of prokaryotic uridine phosphorylases (Shewanella oneidensis MR-1, Escherichia coli) were constructed, and the resulting strains-producers of the corresponding proteins were obtained. Proteins were purified, and their physicochemical and fermentative properties were studied. On the basis of the obtained data, the role of individual amino acid residues of the polypeptide chain of uridine phosphorylases in the formation and functioning of the phosphate-binding site in these proteins was shown. The assumption of independent binding of two substrates, ion of inorganic phosphate (Pi) and uridine (Urd), by nucleoside phosphorylases, was made.  相似文献   

15.
Some pathogenic mutations associated with Alzheimer's disease are thought to affect structural-dynamic properties and the lateral dimerization of amyloid precursor protein (APP) in neuron membrane. Dimeric structure of APP transmembrane fragment Gln(686)-Lys(726) was determined in membrane-mimicking dodecylphosphocholine micelles using high-resolution NMR spectroscopy. The APP membrane-spanning α-helix Lys(699)-Lys(724) self-associates in a left-handed parallel dimer through extended heptad repeat motif I(702)X(3)M(706)X(2)G(709)X(3)A(713)X(2)I(716)X(3)I(720)X(2)I(723), whereas the juxtamembrane region Gln(686)-Val(695) constitutes the nascent helix, also sensing the dimerization. The dimerization mechanism of APP transmembrane domain has been described at atomic resolution for the first time and is important for understanding molecular events of APP sequential proteolytical cleavage resulting in amyloid-β peptide.  相似文献   

16.
W Uhl  J Reiner    H G Gassen 《Nucleic acids research》1983,11(4):1167-1180
The proton magnetic resonance (pmr) spectra of 10 basemodified uridine derivatives x5Urd have been measured at 3 degrees, 30 degrees, and 60 degrees C in order to correlate the electronic effects of different substituents with the molecular conformation of the respective nucleosides. The results presented demonstrate the close relation between conformational parameters and the electron-affinity of the substituents as reflected by their Hammett constants. Going from electron-donating to electron-accepting groups, the portion of N-conformer in the ribose N in equilibrium S equilibrium increases from 44% to about 90%. In addition the percentage of gauche-gauche rotamer as measured for the exocyclic groups changes from about 30% in nh52Urd to more than 80% in no52Urd.  相似文献   

17.
Biologically active peptide hormones are synthesized from larger precursor proteins by a variety of post-translational processing reactions. To characterize these processing reactions further we have expressed preprogastrin in two endocrine cell lines and examined the molecular determinants involved in endoproteolysis at dibasic cleavage sites. The Gly93-Arg94-Arg95 carboxyl-terminal processing site of progastrin must be processed sequentially by an endoprotease, a carboxypeptidase, and an amidating enzyme to produce bioactive gastrin. For these studies the dibasic Arg94-Arg95 residues that serve as signals for the initiation of this processing cascade were mutated to Lys94-Arg95, Arg94-Lys95, and Lys94-Lys95. In the GH3 cells the Lys94-Arg95 mutation slightly diminished synthesis of carboxyl-terminally amidated gastrin, whereas in the MTC 6-23 cells this mutation had no effect on amidated gastrin synthesis. In contrast, both Arg94-Lys95 and Lys94-Lys95 mutations resulted in significantly diminished production of amidated gastrin in both cell lines. A specific hierarchy of preferred cleavage signals at this progastrin processing site was demonstrated in both cell lines, indicating that cellular dibasic endoproteases have stringent substrate specificities. Progastrins with the Lys94-Arg95 mutation in GH3 cells also demonstrated diminished processing at the Lys74-Lys75 dibasic site, thus single amino acid changes at one processing site may alter cleavage at distant sites. These studies provide insight into the post-translational processing and biological activation of not only gastrin but other peptide hormones as well.  相似文献   

18.
Reactions of metallation and non-covalent interactions have been studied in ternary systems of Cu(II) ions with uridine, uridine 5'-monophosphate and diamines or triamines. It has been found that in metal-free systems the reaction centres of the nucleoside with the polyamine are the donor nitrogen atoms N(3) and protonated -NH(x) groups of the amines. In comparison to systems with adenosine or cytidine, the pH range of complex formation is shifted towards higher values. It is a consequence of significantly higher basicity of uridine and in agreement with the ion-ion, ion-dipole interaction model assumed. Formation of molecular complexes of uridine 5'-monophosphate with polyamines at a low pH is the result of activity of the phosphate group which plays the role of a negatively charged reaction site. Non-covalent interactions interfere in processes of bioligand metallation. Centres of weak interactions are simultaneously binding sites of metal ions. In protonated Cu(Urd)(PA)H(x) complexes, coordination has been found to involve the N(3) atom from the nucleoside and two donor nitrogen atoms from the polyamine (PA). In the heteroligand species Cu(Urd)(PA), despite deprotonation of all amine groups, one of these groups is located outside the inner coordination sphere. In complexes with uridine-5'-monophosphate, the phosphate group is active in metallation. Moreover, in certain coordination compounds this group is engaged in non-covalent interactions with PA molecules, despite binding Cu ions, as has been shown on the basis of equilibrium and spectral studies.  相似文献   

19.
Complexation reactions in the quaternary system Cu/ATP/3,3,3-tet/Urd have been studied. The stability constants of the complexes of the Cu(ATP)(3,3,3-tet)H(x)(Urd) type have been determined by computer analysis of the potentiometric titration. On the basis of the results of spectroscopic as well as equilibrium studies, the mode of interactions has been proposed. Metal ions coordinate phosphate groups of ATP and nitrogen atoms of polyamine. It has been established that in the conditions of the complex Cu(ATP)(3,3,3-tet) formation, uridine introduced into the Cu(II)/ATP/3,3,3-tet ternary system is involved in hydrogen bonding with the endocyclic nitrogen atoms N(1) and N(7) of the ATP purine ring and formation of the adduct Cu(ATP)(3,3,3-tet)H(Urd) is observed. Introduction of metal ions into the system changes substantially the mode of interactions between complementary base pairs relative to that proposed in the Watson and Crick model.  相似文献   

20.
The HIV-1 integrase protein catalyzes integration of the viral genome into host cell DNA. Whereas the structures of the three domains of integrase have been solved separately, both the structural organization of the full-length protein and its interaction with DNA remain unresolved. A protein footprinting approach was employed to investigate the accessibility of residues in the full-length soluble integrase mutant, INF(185K,C280S), to proteolytic attack in the absence and presence of DNA. The N-terminal and C-terminal domains were relatively more accessible to proteolytic attack than the core domain. The susceptibility to proteolytic attack was specifically affected by DNA at residues Lys34, in the N-terminal domain, Lys111, Lys136, Glu138, Lys156-Lys160, Lys185-Lys188, in the core domain, and Asp207, Lys 215, Glu246, Lys258 and Lys273 in the linker and C-terminal domain, suggesting that these regions are involved in, or shielded by, DNA binding. Lys34 is positioned in a putative dimerization domain, consistent with the notion that DNA stabilizes the dimeric state of integrase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号