首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complement regulatory protein CD46 is a human cell receptor for measles virus (MV). In this study, we investigated why mouse macrophages expressing human CD46 restricted MV replication and produced higher levels of nitric oxide (NO) in response to MV and gamma interferon (IFN-gamma). Treatment of MV-infected CD46-expressing mouse macrophages with antibodies against IFN-alpha/beta blocked NO production. Antibodies against IFN-alpha/beta also inhibited the augmenting effect of MV on IFN-gamma-induced NO production in CD46-expressing mouse macrophages. These antibodies did not affect NO production induced by IFN-gamma alone. These data suggest that MV enhances NO production in CD46-expressing mouse macrophages through action of IFN-alpha/beta. Mouse macrophages expressing a human CD46 mutant lacking the cytoplasmic domains were highly susceptible to MV. These cells produced much lower levels of NO and IFN-alpha/beta upon infection by MV, suggesting the CD46 cytoplasmic domains enhanced IFN-alpha/beta production. When mouse macrophages expressing tailless human CD46 were exposed to culture medium from MV-infected mouse macrophages expressing intact human CD46, viral protein synthesis and development of cytopathic effects were suppressed. Pretreating the added culture medium with antibodies against IFN-alpha/beta abrogated these antiviral effects. Taken together, these findings suggest that expression of human CD46 in mouse macrophages enhances production of IFN-alpha/beta in response to MV infection, and IFN-alpha/beta synergizes with IFN-gamma to enhance NO production and restrict viral protein synthesis and virus replication. This novel function of human CD46 in mouse macrophages requires the CD46 cytoplasmic domains.  相似文献   

2.
Use of the progesterone (Pg) birth control depot medroxyprogesterone acetate (DMPA) increases a woman's risk for sexually transmitted infection with HIV or HSV-2 via unknown mechanisms. Plasmacytoid dendritic cells (pDCs) are circulating and tissue-resident sentinels capable of making large quantities of IFN-alpha upon recognizing viruses through TLRs 7 and 9. In this study, we show that Pg inhibits TLR9-induced IFN-alpha production by human and mouse pDCs and that DMPA impairs TLR9- and virus-induced IFN-alpha production by pDCs in mice, providing a potential explanation for how DMPA impairs innate antiviral immunity in women. Pg failed to inhibit the Mda-5 pathway of IFN-alpha induction in dendritic cells, suggesting that Pg regulates select antiviral DC programs. This may occur through selective blockade of IFN regulatory factor-7 activation, a novel steroid action. Thus, through inhibition of TLR-mediated IFN-alpha production by pDCs, Pg may regulate antiviral immunity.  相似文献   

3.
We investigated the role of the constitutive nitric oxide (NO) in the expression of interferon (IFN) genes in mouse peritoneal macrophages (PM). The treatment of PM with L-arginine-N(G)-amine (AA), a potent inhibitor of NO-producing enzymes, resulted in a marked accumulation of IFN-alpha4 mRNA and, to a minor extent, of IFN-beta mRNA. In contrast, the expression of IFN-gamma mRNA, as well as tumor necrosis factor alpha and interleukin-6 mRNA, was not affected. Furthermore, a remarkable increase in the expression of the IFN regulating factor 1 (IRF-1), but not of IRF-2, mRNA was detected in AA-treated PM. To investigate whether the AA-induced activation of the IFN system correlates with the production and antiviral activity of IFN, the extent of encephalomyocarditis virus (EMCV) replication was monitored in AA-treated PM with respect to control cultures. AA treatment strongly inhibited, in a dose-dependent manner, EMCV yields in PM. Likewise, similar results were obtained by the addition of the NO-scavenger carboxyphenyl-tetramethylimidazoline-oxyl-oxide. In addition, inhibition of NO synthesis by N(G)-mono-methyl-L-arginine in PM strongly decreased virus replication in coculture of PM and EMCV-infected L929 cells, whereas no antiviral effect was observed in L929 cells alone. Moreover, the AA-mediated antiviral activity was abrogated in the presence of antibody to IFN-alpha/beta, whereas antibody to IFN-gamma was completely ineffective. Taken together, these results indicate that low levels of NO, constitutively released by resting PM, negatively regulate the expression and activity of IFN-alpha/beta in PM. We suggest that NO acts as a homeostatic agent in the regulation of IFN pathway expression in macrophages.  相似文献   

4.
5.
Hantaviruses, causing hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS), are known to be sensitive to nitric oxide (NO) and to pretreatment with type I and II interferons (alpha interferon [IFN-alpha]/IFN-beta and IFN-gamma, respectively). Elevated serum levels of NO and IFN-gamma have been observed in HFRS patients, but little is known regarding the systemic levels of other IFNs and the possible effects of hantaviruses on innate antiviral immune responses. In Puumala virus-infected HFRS patients (n = 18), we report that the levels of IFN-alpha and IFN-beta are similar, whereas the level of IFN-lambda (type III IFN) is significantly decreased, during acute (day of hospitalization) compared to the convalescent phase. The possible antiviral effects of IFN-lambda on the prototypic hantavirus Hantaan virus (HTNV) replication was then investigated. Pretreatment of A549 cells with IFN-lambda alone inhibited HTNV replication, and IFN-lambda combined with IFN-gamma induced additive antiviral effects. We then studied the effect of postinfection treatment with IFNs. Interestingly, an already-established HTNV infection was insensitive to subsequent IFN-alpha, -beta, -gamma, and -lambda stimulation, and HTNV-infected cells produced less NO compared to noninfected cells when stimulated with IFN-gamma and IL-1beta. Furthermore, less phosphorylated STAT1 after IFN treatment was observed in the nuclei of infected cells than in those of noninfected cells. The results suggest that hantavirus can interfere with the activation of antiviral innate immune responses in patients and inhibit the antiviral effects of all IFNs. We believe that future studies addressing the mechanisms by which hantaviruses interfere with the activation and shaping of immune responses may bring more knowledge regarding HFRS and HCPS pathogenesis.  相似文献   

6.
Enriched human B lymphocytes cocultivated with mouse L cells produced human leukocyte interferon (IFN-alpha) and shortly thereafter transferred antiviral activity to the recipient cells (99% inhibition of expected virus yield). In contrast, cocultivation of enriched T-cell populations with mouse L cells resulted in no IFN production or transfer of antiviral activity. In addition, both T and B lymphocytes pretreated with exogenous IFN or stimulated in vitro by mitogens could transfer antiviral activity to human WISH cells. The transfer of antiviral activity was not blocked by antibodies to IFN. The data indicate that both T and B cells can be recruited by IFN to transfer antiviral activity. Thus, once cells are recruited by IFN they can transfer antiviral activity in the absence of IFN and protect cells locally or distally from the site of infection.  相似文献   

7.
Site-specific in vitro mutagenesis was used to direct various amino acid substitutions at conserved positions within the sequence of human interferon-alpha 1 (IFN-alpha 1). The antiviral specific activity of IFN-alpha 1, expressed in M13 as a fusion protein [IFN-alpha 1 (phi WT)], could be altered by single amino acid substitutions. The substitution of glycine for tyrosine at position 123 results in a loss of more than 99% of the antiviral specific activity on human cells, but causes no significant change in the antiviral specific activity on primary bovine cells. The tyrosine at position 123 is thus implicated in determining human cell specificity. Based on analysis of IFN-alpha 2, IFN-alpha 1 contains two dulsulphide bridges between cysteine residues 29 and 139 and cysteine residues 1 and 99. IFN-alpha 1 also contains a fifth cysteine residue at position 86. IFN-alpha 1 (phi WT) carrying three serine for cysteine substitutions at positions 1, 86 and 99 retains 23% of the antiviral specific activity of IFN-alpha 1 (phi WT) on human cells. However, the antiviral activity on bovine cells is not significantly affected by this modification. The presence of the disulphide bridge between residues 1 and 99 thus appears to be required for full antiviral activity on human but not bovine cells. A single serine for cysteine substitution at position 29 reduces the antiviral specific activity on both human and bovine cells by some 95%. This data shows that the disulphide bridge between residues 29 and 139 is critical for the antiviral activity of IFN-alpha's.  相似文献   

8.
The N-terminus of the type 1 interferon receptor subunit, IFNAR1, has high amino acid sequence similarity to the receptor binding B subunit of the Escherichia coli-derived verotoxin 1, VT1. The glycolipid, globotriaosyl ceramide (Gb(3): Gal alpha(1) --> 4 Gal beta 1 --> 4 Glu beta 1 --> 1 Cer) is the specific cell receptor for VT1. Gb(3)-deficient variant cells selected for VT resistance are cross-resistant to interferon-alpha (IFN-alpha)-mediated antiproliferative activity. The association of eIFNAR1 with Gal alpha 1 --> 4 Gal containing glycolipids has been previously shown to be important for the receptor-mediated IFN-alpha signal transduction for growth inhibition. The crucial role of Gb(3) for the signal transduction of IFN-alpha-mediated antiviral activity is now reported. IFN-alpha-mediated antiviral activity, nuclear translocation of activated Stat1, and increased expression of PKR were defective in Gb(3)-deficient vero mutant cells, although the surface expression of IFNAR1 was unaltered. The VT1B subunit was found to inhibit IFN-alpha-mediated antiviral activity, Stat1 nuclear translocation and PKR upregulation. Unlike VT1 cytotoxicity, IFN-alpha-induced Stat1 nuclear translocation was not inhibited when RME was prevented, suggesting that the accessory function of Gb(3) occurs at the plasma membrane. IFN-alpha antiviral activity was also studied in Gb(3)-positive MRC-5 cells, which are resistant to IFN-alpha growth inhibition, partially resistant to VT1 but still remain fully sensitive to IFN-alpha antiviral activity, and two astrocytoma cell lines expressing different Gb(3) fatty acid isoforms. In both systems, long chain fatty acid-containing Gb(3) isoforms, which are less effective to mediate VT1 cytotoxicity, were found to correlate with higher IFN-alpha-mediated antiviral activity. Inhibition of Gb(3) synthesis in toto prevented IFN-alpha antiviral activity in all cells. We propose that the long chain Gb(3) fatty isoforms preferentially remain in the plasma membrane, and by associating with IFNAR1, mediate IFN-alpha antiviral signaling, whereas short chain Gb(3) fatty acid isoforms are preferentially internalized to mediate VT1 cytotoxicity and IFNAR1-dependent IFN-alpha growth inhibition.  相似文献   

9.
Human natural killer cytotoxic factor (NKCF): role of IFN-alpha   总被引:1,自引:0,他引:1  
The relationship between production of NKCF and IFN-alpha by human lymphocytes was studied. NKCF activity was generated in response to K562-inducer cells. The presence of NKCF in supernatants was always accompanied by antiviral activity, but in several experiments IFN was detected without concomitant NKCF. In no instance was NKCF activity detected in the absence of IFN. Cell lines which were good inducers of IFN-alpha were found to be good inducers of NKCF. NKCF activity of supernatants was completely adsorbed after incubation with MOLT-4 cells, whereas there was only minimal depletion of IFN-alpha activity. Most of the antiviral activity and all of the NKCF activity of preformed supernatants was neutralized by anti-IFN-alpha serum, whereas anti-IFN-gamma serum and pH2 inactivation had minimal effect on either activity. Addition of IFN-alpha to neutralized supernatants restored NKCF activity. These experiments support the hypothesis that IFN-alpha is involved in the modulation of NKCF-lytic activity. Both antiviral and NKCF activities were abrogated when anti-IFN-alpha serum was added to cultures of lymphocytes plus inducer cells (induction phase). The addition of purified IFN-alpha to such cultures was effective in allowing resumption of NKCF activity; however, addition of IFN-gamma to these cultures did not overcome this block. The addition of purified IFN-alpha directly to supernatants generated in the presence of anti-IFN-alpha serum could not restore their NKCF activity, thereby suggesting an additional requirement for IFN-alpha in the production of NKCF. The possible role of IFN-alpha in the generation of NKCF and expression of its lytic activity is discussed.  相似文献   

10.
11.
There are several interferon-alpha (IFN-alpha) subtypes. Mechanism of disparity in biological effects among members of IFN-alpha subtypes remains unexplained. Biological activity of IFN-alpha is mediated in part by induction of intracellular antiviral proteins. We studied whether differences in biologic effects of IFN-alpha subtypes may rely on their antiviral protein inducing effect. Intracellular induction of MxA protein and anti-virus-induced cytopathic effect (CPE) activity of 11 IFN-alpha subtypes in human amnion WISH cells have been studied. MxA protein quantitation in cell lysates was performed by immunochemiluminescence assay and anti-virus-induced CPE activity was assessed by protection against vesicular stomatitis virus (VSV)-induced CPE. Range of MxA values was high when cells were treated with 10 and 100 IU/ml of each IFN-alpha subtype. Levels of MxA correlated with anti-VSV-induced CPE obtained with 10 IU/ml IFN-alpha subtype. Together our data show a disparity in MxA-inducing activity of IFN-alpha subtypes and suggest that differences in anti-VSV-induced CPE of IFN-alpha subtypes in WISH cells can be related to their different ability to induce MxA.  相似文献   

12.
13.
The finding that interferon-gamma (IFN-gamma) may require two rounds of protein synthesis to induce the antiviral state raises the possibility that this IFN may not be directly antiviral. We, therefore, examined the possibility that IFN-gamma induces one or both of the other IFNs (alpha and/or beta) which in turn induce the antiviral state. Evidence is presented showing that under certain conditions a large portion of IFN-gamma's antiviral activity in mouse L-929 cells is mediated by its induction of IFN-alpha based on the findings that: 1) the antiviral activity of IFN-gamma in cells at low densities can be blocked by poly and monoclonal antibody to IFN-alpha and, 2) IFN-alpha can be demonstrated in the supernatant fluids of IFN-gamma treated cells. This report raises the possibility that a major antiviral mechanism of IFN-gamma is via induction of IFN-alpha in the mouse system. If the majority of the antiviral activity of IFN-gamma is via induction of other IFNs, then the role and mechanism of IFN-gamma might have to be reevaluated.  相似文献   

14.
IFN-alpha production by plasmacytoid dendritic cells (PDCs) is critical in antiviral immunity. In the present study, we evaluated the IFN-alpha-producing capacity of PDCs of patients with chronic hepatitis C virus (HCV) infection in treatment-naive, sustained responder, and nonresponder patients. IFN-alpha production was tested in PBMCs or isolated PDCs after TLR9 stimulation. Treatment-naive patients with chronic HCV infection had reduced frequency of circulating PDCs due to increased apoptosis and showed diminished IFN-alpha production after stimulation with TLR9 ligands. These PDC defects correlated with the presence of HCV and were in contrast with normal PDC functions of sustained responders. HCV core protein, which was detectable in the plasma of infected patients, reduced TLR9-triggered IFN-alpha and increased TNF-alpha and IL-10 production in PBMCs but not in isolated PDCs, suggesting HCV core induced PDC defects. Indeed, addition of rTNF-alpha and IL-10 induced apoptosis and inhibited IFN-alpha production in PDCs. Neutralization of TNF-alpha and/or IL-10 prevented HCV core-induced inhibition of IFN-alpha production. We identified CD14+ monocytes as the source of TNF-alpha and IL-10 in the HCV core-induced inhibition of PDC IFN-alpha production. Anti-TLR2-, not anti-TLR4-, blocking Ab prevented the HCV core-induced inhibition of IFN-alpha production. In conclusion, our results suggest that HCV interferes with antiviral immunity through TLR2-mediated monocyte activation triggered by the HCV core protein to induce cytokines that in turn lead to PDC apoptosis and inhibit IFN-alpha production. These mechanisms are likely to contribute to HCV viral escape from immune responses.  相似文献   

15.
Both Hu IFN-alpha A and Hu IFN-alpha D, produced by two independent recombinant bacterial clones, are mixtures of monomers, dimers and trimers. These forms, when assayed individually in heterologous MDBK cells, induced different degree of antiviral and 2'5' oligoadenylate synthetase (2'5' A synthetase) activities: the antiviral activity of the monomer is greater than that of the dimer and the trimer, whereas the activity of 2'5' A synthetase induction is lower with the monomer than with the dimer or the trimer. Similar differences are also observed on human cells. Compared to the mononeric form, the dimeric and the trimeric forms of Hu IFN-alpha A show higher antiviral inducing activity on heterologous MDBK cells than on homologous WISH cells, whereas the 2'5' A synthetase inducing activity in these two cell lines is about the same. Thus for the same antiviral activity, the trimer or the dimer compared to the monomer are much better inducers of the 2'5' A synthetase on human than on MDBK cells.  相似文献   

16.
The induction of type I (alphabeta) IFN following virus infection is necessary for the stimulation of effective antiviral host defense. In fibroblasts, a subset of primary genes (including those encoding IFN-beta and IFN-alpha4) are induced directly by intracellular dsRNA generated by the virus during its replication. These primary type I IFNs induce expression of IFN regulatory factor (IRF)-7, required for production of a second cascade of IFN-alpha subtypes and the further establishment of a complete antiviral state. Previously, we had reported on a role for Fas-associated death domain-containing protein (FADD) in the control of TLR-independent innate immune responses to virus infection. Our data in this study demonstrate that FADD is not only required for efficient primary gene induction, but is also essential for induction of Irf7 and effective expression of secondary IFN-alphas and other antiviral genes. Ectopic overexpression of IRF-7 partially rescued dsRNA responsiveness and IFN-alpha production, and a constitutively active variant of IRF-7 displayed normal activity in Fadd(-/-) murine embryonic fibroblasts. MC159, a FADD-interacting viral protein encoded by the molluscum contagiosum poxvirus was found to inhibit dsRNA-activated signaling events upstream of IRF-7. These data indicate that FADD's antiviral activity involves regulation of IRF-7-dependent production of IFN-alpha subtypes and consequent induction of secondary antiviral genes.  相似文献   

17.
The production of nitric oxide (NO) was measured in cultures of spleen cells stimulated by lipopolysaccharide (LPS), IL-2 or LPS + IL-2. We observed that NO synthesis is increased by IFN-gamma but inhibited by IFN-alpha/beta. This is not the case when IL-2 is present in the cultures, since interferons play a minor role in the regulation of the NO production. When IL-2 and LPS were associated in the cultures, the IFN-alpha/beta role seems more important than that of IFN-gamma. PGE(2) inhibits NO production in LPS supplemented cultures but has a slight effect in the presence of IL-2 and no effect with IL-2 + LPS. 3-isoButyl-1-methylxanthine (IBMX), an inhibitor of phosphodiesterases, induces a decrease of IFN production. In the presence of H-7, an inhibitor of protein kinase C (PKC), NO production is reduced when the cultures are supplemented by LPS or IL-2 but not when IL-2 and LPS are both added. H-7 also reduced IFN production. In the presence of N(G)-monomethyl-L-arginine (N-MMA), an inhibitor of NO synthesis, IFN production was increased, with no change in the cytotoxic activity. Hence, interferons regulate NO production by mouse spleen cells and, in return, NO modulates the generation of IFN.  相似文献   

18.
19.
20.
Type III interferons (IFNs) (interleukin-28/29 or lambda interferon [IFN-lambda]) are cytokines with IFN-like activities. Here we show that several classes of viruses induce expression of IFN-lambda1 and -lambda2/3 in similar patterns. The IFN-lambdas were-unlike alpha/beta interferon (IFN-alpha/beta)-induced directly by stimulation with IFN-alpha or -lambda, thus identifying type III IFNs as IFN-stimulated genes. In vitro assays revealed that IFN-lambdas have appreciable antiviral activity against encephalomyocarditis virus (EMCV) but limited activity against herpes simplex virus type 2 (HSV-2), whereas IFN-alpha potently restricted both viruses. Using three murine models for generalized virus infections, we found that while recombinant IFN-alpha reduced the viral load after infection with EMCV, lymphocytic choriomeningitis virus (LCMV), and HSV-2, treatment with recombinant IFN-lambda in vivo did not affect viral load after infection with EMCV or LCMV but did reduce the hepatic viral titer of HSV-2. In a model for a localized HSV-2 infection, we further found that IFN-lambda completely blocked virus replication in the vaginal mucosa and totally prevented development of disease, in contrast to IFN-alpha, which had a more modest antiviral activity. Finally, pretreatment with IFN-lambda enhanced the levels of IFN-gamma in serum after HSV-2 infection. Thus, type III IFNs are expressed in response to most viruses and display potent antiviral activity in vivo against select viruses. The discrepancy between the observed antiviral activity in vitro and in vivo may suggest that IFN-lambda exerts a significant portion of its antiviral activity in vivo via stimulation of the immune system rather than through induction of the antiviral state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号