首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitroxyl (NO/HNO), has been proposed to be one of the NO-derived cytotoxic species. Although the biological effect of nitroxyl is largely unknown, it has been reported to cause DNA breakage and cytotoxicity. We have therefore investigated whether NO/HNO-induced DNA single-strand breakage activates the nuclear nick sensor enzyme poly(ADP-ribose) polymerase (PARP) and whether PARP activation affects the mode of NO/HNO- induced cell death. NO/HNO generated from Angeli’s salt (AS, sodium trioxodinitrate) (0–300 μM) induced DNA single-strand breakage, PARP activation, and a concentration-dependent cytotoxicity in murine thymocytes. AS-induced cell death was also accompanied by decreased mitochondrial membrane potential and increased secondary superoxide production. The cytotoxicity of AS, as measured by propidium iodide uptake, was abolished by electron acceptors potassium ferricyanide, TEMPOL, the intracellular calcium chelator BAPTA-AM, and by PARP inhibitors 3-aminobenzamide (3-AB) and PJ-34. The cytoprotective effect of 3-AB was paralleled by increased output of AS-induced apoptotic parameters such as phosphatidylserine exposure, caspase activation, and DNA fragmentation. No significant increase in tyrosine nitration could be observed in AS-treated thymocytes as opposed to peroxynitrite-treated cells, indicating that tyrosine nitration is not likely to contribute to NO/HNO-induced cytotoxicity. Our results demonstrate that NO/HNO-induced PARP activation shifts the default apoptotic cell death toward necrosis in thymocytes. However, as total PARP inhibition resulted only in 30% cytoprotection, PARP-independent mechanisms dominate NO/HNO-induced cytotoxicity in thymocytes.  相似文献   

2.
The internucleosomal cleavage of genomic DNA is the biochemical hallmark of apoptosis. DNase gamma, a Ca(2+)/Mg(2+)-dependent endonuclease, has been suggested to be one of the apoptotic endonucleases. We identified here 4-(4,6-dichloro-[1,3,5]-triazin-2-ylamino)-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)-benzoic acid (DR396) as a novel and potent DNase gamma inhibitor using stable HeLa S3 transfectants of DNase gamma (HeLa-gamma cells). DR396 inhibited apoptotic DNA fragmentation in HeLa-gamma cells induced by staurosporine (STS) and in rat splenocytes exposed to gamma-ray irradiation in a dose-dependent manner. This compound potently and selectively inhibited DNase gamma activity with an IC(50) value of 3.2 microM. DR396 did not delay the apoptotic processes as judged by the morphological changes and the cleavage of a death substrate, poly(ADP-ribose) polymerase (PARP). Furthermore, the compound did not prevent apoptotic DNA fragmentation in Jurkat cells induced by anti-Fas antibody (Ab), which is catalyzed by caspase-activated DNase (CAD). These findings clearly indicate that DR396 exerts chemical knockdown effect of DNase gamma on cells, suggesting that the compound could be an attractive tool for understanding of the physiological significance of DNase gamma.  相似文献   

3.
Nitric Oxide in Arthritis   总被引:8,自引:0,他引:8  
Nitric oxide’s (NO) involvement in arthritis was first demonstrated when levels of nitrite, a stable endproduct of NO metabolism, were shown to be elevated in serum and synovial fluid samples of rheumatoid and osteoarthritis patients. NO production by chondrocytes, its involvement in various biochemical events of cartilage metabolism, and the in vivo suppression of experimental arthritis by NO synthase inhibitors further implicated NO in arthritis. However, a conclusive role for NO in the pathogenesis of arthritis remains to be defined, in contrast to the NO-cGMP signal transduction pathway of endothelium-mediated vasodilation. It appears that NO has limited modulating effects in cartilage metabolism, with evidence for both protective and deleterious effects. Recent developments that contribute to our understanding of NO’s role in arthritis are discussed.  相似文献   

4.
Poly(ADP-ribose) polymerase-1 (PARP-1) is involved in DNA repair, but its overactivation can induce cell death. Our aim was to investigate the role of PARP-1 in activation of programmed cell death processes in the brain during systemic inflammation.

Our data indicated that lipopolysaccharide (1 mg/kg b.w., i.p.)-evoked systemic inflammation enhanced PARP-1 activity in the mouse brain, leading to the lowering of β-NAD+ concentration, to translocation of apoptosis inducing factor from mitochondria to the nucleus, and to enhanced lipid peroxidation. Inhibitor of PARP-1, 3-aminobenzamide (30 mg/kg b.w., i.p.), protected the brain against prooxidative and cell death processes, suggesting involvement of PARP-1 in systemic inflammation-related processes in the brain.  相似文献   


5.
In this study we calculate the half-life of ·NO in its reactions with superoxide and with oxygen under various conditions using the known rate constants for these reactions. The measured half-life of ·NO in biological systems is 3–5 s, which agrees well with the calculated value for intracellular ·NO, but not for extracellular ·NO under normal physiological conditions. The autoxidation of ·NO to yield NO2 as a final product cannot be responsible for such a short measured half-life under normal as well as pathologic conditions. Therefore, if there is direct evidence for the occurrence of the reaction of ·NO with O2 in the medium, one has to assume that the steady state concentrations of free ·NO are much lower than those measured. The very low concentrations of free ·NO in biological systems may result from its reversible strong binding to biological molecules. Simulation of the mechanism of the autoxidation of ·NO indicates that the binding constants of ·NO to O2 or to another ·NO are too small to account for the very low concentration of free ·NO in biological systems. Nevertheless, the reaction of ·NO with oxygen cannot be neglected in biological systems if the intermediate ONOO· reacts rapidly with a biological target. The biological damage caused by ONOO′ is expected to be due to the radical itself and to peroxynitrite, which is most probably formed via the reaction of ONOO· with the biological molecule.  相似文献   

6.
Histochemical localization of superoxide anion (O2·−) scavenging activity in rat brain was visualized by the tissue-blotting technique. The activity was thought to mainly depend on Cu/Zn-SOD, because the localization of the activity was identical with the immunohistochemistry of Cu/Zn-SOD and the localization of its mRNA in the brain. Moreover, the activity was dramatically decreased after treatment of Cu (I) chelater. The activity was detected in pyramidal cells of the cortex, granular, and mitral cells of the olfactory bulbs, pyramidal cell layer CA1 to CA3, and dentate gyrus of hippocampus formation and granular cells of the cerebellum. Moreover, the activity was detected in the pontine nuclei of brain stem. Olfactory bulbs, hippocampus, and cerebellum were believed to be bestowed high brain functions, i.e., long-term potentiation and long-term depression. A part of the function was regulated by a retrograde neurotransmitter, nitric oxide (·NO). Our findings suggest that the SOD is colocalized with NO synthase in olfactory bulbs, hippocampus, and cerebellum, where ·NO plays the important roles. In contrast, low SOD activity was observed in the axonal neurofiber bundles, although the regions contain a lot of membrane lipids, which was thought to be peroxidized by O2·− and related radicals such as ·OH in the regions. From these findings, it was suggested that the SOD did not only play a role in protecting the neurons from endogenously formed O2·−, but also play a role in preservation of beneficial natures of ·NO in the brain.  相似文献   

7.
Cytotoxic effects of nitric oxide (NO) derived from inducible nitric oxide synthase (iNOS) are considered to be one of the major causes of inflammatory diseases. On the other hand, protective effects of NO on toxic insults-induced cellular damage/apoptosis have been demonstrated recently. Ultraviolet B (UVB)-induced apoptosis of epidermal keratinocytes leads to skin inflammation and photoageing. However, it has not been elucidated what kind of effects NO has on UVB-induced keratinocyte apoptosis. Thus, in the present study, we investigated the problem and demonstrated that NO from NO donor suppressed UVB-induced apoptosis of murine keratinocytes. In addition, NO significantly suppressed activities of caspase 3, caspase 8 and caspase 9 that had been upregulated by UVB radiation. NO also suppressed p53 expression that had been upregulated by UVB radiation and upregulated Bcl-2 expression that had been downregulated by UVB radiation. These findings suggested that NO might suppress UVB-induced keratinocyte apoptosis by regulating apoptotic signaling cascades in p53, Bcl-2, caspase3, caspase 8 and caspase 9.  相似文献   

8.
Much of the damaging action of nitric oxide in heart may be due to its diffusion-limited reaction with superoxide to form peroxynitrite. Direct infusion of peroxynitrite into isolated perfused hearts fails to model the effects of in situ formation because the bulk of peroxynitrite decomposes before reaching the myocytes. To examine the direct effects of peroxynitrite on the contractile apparatus of the heart, we exposed intact and skinned rat papillary muscles to a steady state concentration of 4-microM peroxynitrite for 5 min, followed by a 30-min recovery period to monitor irreversible effects. In intact muscles developed force fell immediately to 26% of initial force, recovering to 43% by 30 min. Resting tension increased by 600% immediately, and was still elevated 500% by 30 min. Nitrotyrosine immunochemistry showed that peroxynitrite can induce tyrosine nitration at low concentrations and is capable of penetrating 200-380 microm into the papillary muscle after a 5-min infusion. Decomposed peroxynitrite had no effect on either intact or skinned muscle developed force or resting tension. Our results show that peroxynitrite directly damages both developed force and resting tension of isolated heart muscle, which can be extrapolated to systolic and diastolic injury in intact hearts.  相似文献   

9.
Abstract: Nitric oxide (NO) has been shown to be an important mediator in several forms of neurotoxicity. We previously reported that NO alters intracellular Ca2+ concentration ([Ca2+]i) homeostasis in cultured hippocampal neurons during 20-min exposures. In this study, we examine the relationship between late alterations of [Ca2+]i homeostasis and the delayed toxicity produced by NO. The NO-releasing agent S -nitrosocysteine (SNOC; 300 µ M ) reduced survival by about one half 1 day after 20-min exposures, as did other NO-releasing agents. SNOC also was found to produce prolonged elevations of [Ca2+]i, persisting at 2 and 6 h. Hemoglobin, a scavenger of NO, blocked both the late [Ca2+]i elevation and the delayed toxicity of SNOC. Removal of extracellular Ca2+ during the 20-min SNOC treatment failed to prevent the late [Ca2+]i elevations and did not prevent the delayed toxicity, but removal of extracellular Ca2+ for the 6 h after exposure as well blocked most of the toxicity. Western blots showed that SNOC exposure resulted in an increased proteolytic breakdown of the structural protein spectrin, generating a fragment with immunoreactivity suggesting activity of the Ca2+-activated protease calpain. The spectrin breakdown and the toxicity of SNOC were inhibited by treatment with calpain antagonists. We conclude that exposures to toxic levels of NO cause prolonged disruption of [Ca2+]i homeostatic mechanisms, and that the resulting persistent [Ca2+]i elevations contribute to the delayed neurotoxicity of NO.  相似文献   

10.
Abstract: The reaction of superoxide and nitric oxide results in the formation of peroxynitrite, a long lived and highly reactive oxidant species. It has been suggested that the formation of peroxynitrite in vivo may contribute to cell death in some neurological conditions. We have examined the effect of peroxynitrite on cell death in the NSC34 spinal cord cell line. A brief (30 min) exposure to either peroxynitrite or hydrogen peroxide caused delayed cell death with an EC50 for both of ∼1 m M . Cell death was prevented by the RNA synthesis inhibitor actinomycin D and included DNA damage as an early event. We sought to clarify the potential role of the DNA binding enzyme poly(ADP-ribose) polymerase (PARP) in cell death in these cells. Several PARP inhibitors [benzamide, 3-aminobenzamide, nicotinamide, and 6(5 H )-phenanthridinone] prevented cell death, but the inactive analogue benzoic acid did not. However, there was no evidence of cleavage of PARP, which occurs in apoptosis via the activation of the caspase CPP32. Therefore, we suggest that PARP contributes to neuronal injury as an early event, probably by lethal NAD depletion, without any requirement for proteolytic cleavage.  相似文献   

11.
Endonuclease-induced DNA fragmentation is a hallmark of apoptosis. DNase gamma (DNase ) was recently identified as one of the endonucleases responsible for apoptotic DNA fragmentation. In this study, immunohistochemistry for DNase was performed on paraffin sections of rodent liver in well-defined models of hepatocyte apoptosis induced by Fas antibody (Fas) or cycloheximide (CHX), and necrosis induced by lipopolysaccharide (LPS) or carbon tetrachloride (CCl4). DNase immunoreactivity was compared with TdT-mediated dUTP nick-end labeling (TUNEL) reactivity. Our results showed TUNEL reactivity in both apoptotic and necrotic hepatocytes. DNase immunoreactivity was not detected during LPS-induced or CCl4-induced hepatocyte necrosis. In contrast, it was evident during CHX-induced, but not Fas-induced, apoptotic DNA fragmentation. These findings suggest that DNase plays an important role in Fas-independent apoptotic DNA fragmentation in hepatocytes.  相似文献   

12.
Phenolic phytochemicals such as tannins, which are natural constituents of green tea, red wine, and other plant products, are considered to have cancer-preventive properties. An important endogenous mediator of tumorigenesis is the nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP-1). PARP-1 synthesizes polymers of ADP-ribose (PAR), which, in turn, are degraded by the catabolic enzyme poly(ADP-ribose) glycohydrolase (PARG). In the present study, we investigated the effects of tannins on the level of PAR in HeLa nuclear extracts. The addition of tannins to nuclear extracts led to a 40-fold elevation of PAR-levels. The observed increased PAR-levels resulted from inhibition of the catalytic activity of PARG. Additionally, the human PARG cDNA was cloned and the recombinant enzyme was overexpressed and isolated. Recombinant PARG was immobilized using an affinity column composed of tannins covalently linked to Sepharose beads. Finally, an interaction between immobilized PARG and endogenous PARP-1 from HeLa cell extracts is demonstrated.  相似文献   

13.
Many of the cytopathic effects of nitric oxide (NO·) are mediated by peroxynitrite (PN), a product of the reaction between NO· and superoxide radical (O·?2). In the present study, we investigated the role of PN, O·?2 and hydroxyl radical (OH·) as mediators of epithelial hyperpermeability induced by the NO· donor, S-nitroso-N-acetylpenicillamine (SNAP), and the PN generator, 3-morpholinosydnonimine (SIN-1). Caco-2BBe enterocytic monolayers were grown on permeable supports in bicameral chambers. Epithelial permeability, measured as the apical-to-basolateral flux of fluorescein disulfonic acid, increased after 24 h of incubation with 5.0 mM SNAP or SIN-1. Addition of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, an NO· scavenger, or Tiron, an O·?2 scavenger, reduced the increase in permeability induced by both donor compounds. The SNAP-induced increase in permeability was prevented by allopurinol, an inhibitor of xanthine oxidase (a source of endogenous O·?2). Diethyldithiocarbamate, a superoxide dismutase inhibitor, and pyrogallol, an O·?2 generator, potentiated the increase in permeability induced by SNAP. Addition of the PN scavengers deferoxamine, urate, or glutathione, or the OH· scavenger mannitol, attenuated the increase in permeability induced by both SNAP and SIN-1. Both donor compounds decreased intracellular levels of glutathione and protein-bound sulfhydryl groups, suggesting the generation of a potent oxidant. These results support a role for PN, and possibly OH·, in the pathogenesis of NO· donor-induced intestinal epithelial hyperpermeability.  相似文献   

14.
Antioxidant and pro-oxidant activities of flavonoids have been reported. We have studied the effects of 18 flavonoids and related phenolic compounds on DNA damage induced by nitric oxide (NO), peroxynitrite, and nitroxyl anion (NO). Similarly to our previous findings with catecholamines and catechol-estrogens, DNA single-strand breakage was induced synergistically when pBR322 plasmid was incubated in the presence of an NO-releasing compound (diethylamine NONOate) and a flavonoid having an ortho-trihydroxyl group in either the B ring (e.g., epigallocatechin gallate) or the A ring (e.g., quercetagetin). Either NO or any of the above flavonoids alone did not induce strand breakage significantly. However, most of the tested flavonoids inhibited the peroxynitrite-mediated formation of 8-nitroguanine in calf-thymus DNA, measured by a new HPLC-electrochemical detection method, as well as the peroxynitrite-induced strand breakage. NO generated from Angeli’s salt caused DNA strand breakage, which was also inhibited by flavonoids but at only high concentrations. On the basis of these findings, we propose that NO and/or peroxynitrite could be responsible for DNA strand breakage induced by NO and a flavonoid having an ortho-trihydroxyl group. Our results indicate that flavonoids have antioxidant properties, but some act as pro-oxidants in the presence of NO.  相似文献   

15.
It is unclear what mechanisms lead to the degeneration of basal forebrain cholinergic neurons in Alzheimer's or other human brain diseases. Some brain cholinergic neurons express neuronal nitric oxide (NO) synthase (nNOS), which produces a free radical that has been implicated in some forms of neurodegeneration. We investigated nNOS expression and NO toxicity in SN56 cells, a clonal cholinergic model derived from the medial septum of the mouse basal forebrain. We show here that, in addition to expressing choline acetyltransferase (ChAT), SN56 cells express nNOS. Treatment of SN56 cells with retinoic acid (RA; 1 microM) for 48 h increased ChAT mRNA (+126%), protein (+88%), and activity (+215%) and increased nNOS mRNA (+98%), protein (+400%), and activity (+15%). After RA treatment, SN56 cells became vulnerable to NO excess generated with S-nitro-N-acetyl-DL-penicillamine (SNAP) and exhibited increased nuclear DNA fragmentation that was blocked with a caspase-3 inhibitor. Treatment with dexamethasone, which largely blocked the RA-mediated increase in nNOS expression, or inhibition of nNOS activity with methylthiocitrulline strongly potentiated the apoptotic response to SNAP in RA-treated SN56 cells. Caspase-3 activity was reduced when SNAP was incubated with cells or cell lysates, suggesting that NO can directly inhibit the protease. Thus, whereas RA treatment converts SN56 cells to a proapoptotic state sensitive to NO excess, endogenously produced NO appears to be anti-apoptotic, possibly by tonically inhibiting caspase-3.  相似文献   

16.
Genotoxic stress activates nuclear poly(ADP-ribose) (PAR) metabolism leading to PAR synthesis catalyzed by DNA damage activated poly(ADP-ribose) polymerases (PARPs) and rapid PAR turnover by action of nuclear poly(ADP-ribose) glycohydrolase (PARG). The involvement of PARP-1 and PARP-2 in responses to DNA damage has been well studied but the involvement of nuclear PARG is less well understood. To gain insights into the function of nuclear PARG in DNA damage responses, we have quantitatively studied PAR metabolism in cells derived from a hypomorphic mutant mouse model in which exons 2 and 3 of the PARG gene have been deleted (PARG-Delta2,3 cells), resulting in a nuclear PARG containing a catalytic domain but lacking the N-terminal region (A domain) of the protein. Following DNA damage induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), we found that the activity of both PARG and PARPs in intact cells is increased in PARG-Delta2,3 cells. The increased PARG activity leads to decreased PARP-1 automodification with resulting increased PARP activity. The degree of PARG activation is greater than PARP, resulting in decreased PAR accumulation. Following MNNG treatment, PARG-Delta2,3 cells show reduced formation of XRCC1 foci, delayed H2AX phosphorylation, decreased DNA break intermediates during repair, and increased cell death. Our results show that a precise coordination of PARPs and PARG activities is important for normal cellular responses to DNA damage and that this coordination is defective in the absence of the PARG A domain.  相似文献   

17.
The role of H2O2 as a mediator of UVB-induced apoptosis in keratinocytes   总被引:5,自引:0,他引:5  
Apoptosis is an active form of cell death that is initiated by a variety of stimuli, including reactive oxygen species (ROS) and ultraviolet (UV) radiation. Previously, it has been reported that UVB-irradiation of keratinocytes leads to intracellular generation of hydrogen peroxide (H2O2) and that antioxidants can inhibit ROS-induced apoptosis. Although both UVB-irradiation and H2O2-incubation led to increased intracellular H2O2 levels, the antioxidants catalase and glutathione monoester (GME), inhibited apoptosis only when induced by H2O2, not by UVB. Furthermore, extracellular signal-regulated kinase (ERK), a prominent member of the mitogen-activated protein kinase (MAPK) family, was found to be activated by treatment with both UVB and H2O2. Inhibition of ERK phosphorylation by pre-treatment with PD98059 resulted in enhanced apoptosis after H2O2-exposure. However, no significant difference of apoptosis was observed between cells with and without inhibitor pre-treatment upon UVB-irradiation. DNA damage in the form of cyclobutane pyrimidine dimers was observed after exposure to UVB, but no photoproducts were found in H2O2-treated cells. These results suggest a ROS-independent pathway of UVB-induced apoptosis. Although UVB-irradiation causes moderate increase in H2O2, the generation of H2O2 does not contribute to the induction of apoptosis. Moreover, activation of ERK only blocks H2O2-dependent apoptosis but has no impact on UVB-induced apoptosis.  相似文献   

18.
Cisplatin is a commonly used chemotherapeutic drug, the clinical use of which is limited by the development of dose-dependent nephrotoxicity. Enhanced inflammatory response, oxidative stress, and cell death have been implicated in the development of cisplatin-induced nephropathy; however, the precise mechanisms are elusive. Overactivation of the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) by oxidative DNA damage under various pathological conditions promotes cell death and up-regulation of key proinflammatory pathways. In this study, using a well-established model of nephropathy, we have explored the role of PARP-1 in cisplatin-induced kidney injury. Genetic deletion or pharmacological inhibition of PARP-1 markedly attenuated the cisplatin-induced histopathological damage, impaired renal function (elevated serum BUN and creatinine levels), and enhanced inflammatory response (leukocyte infiltration; TNF-α, IL-1β, F4/80, adhesion molecules ICAM-1/VCAM-1 expression) and consequent oxidative/nitrative stress (4-HNE, 8-OHdG, and nitrotyrosine content; NOX2/NOX4 expression). PARP inhibition also facilitated the cisplatin-induced death of cancer cells. Thus, PARP activation plays an important role in cisplatin-induced kidney injury, and its pharmacological inhibition may represent a promising approach to preventing the cisplatin-induced nephropathy. This is particularly exciting because several PARP inhibitors alone or in combination with DNA-damaging anticancer agents show considerable promise in clinical trials for treatment of various malignancies (e.g., triple-negative breast cancer).  相似文献   

19.
The involvement and the role of nitric oxide (NO) as a signaling molecule in the course of neuronal apoptosis, whether unique or modulated during the progression of the apoptotic program, has been investigated in a cellular system consisting of cerebellar granule cells (CGCs) where apoptosis can be induced by lowering extracellular potassium. Several parameters involved in NO signaling pathway, such as NO production, neuronal nitric oxide synthase (nNOS) expression, and cyclic GMP (cGMP) production were examined in the presence or absence of different inhibitors. We provide evidence that nitric oxide has dual and opposite effects depending on time after induction of apoptosis. In an early phase, up to 3 h of apoptosis, nitric oxide supports survival of CGCs through a cGMP-dependent mechanism. After 3 h, nNOS expression and activity decreased resulting in shut down of NO and cGMP production. Residual NO then contributes to the apoptotic process by reacting with rising superoxide anions leading to peroxynitrite production and protein inactivation. We conclude that whilst NO over-production protects neurons from death in the early phase of neuronal damage, its subsequent reduction may contribute to neuronal degeneration and ultimate cell death.  相似文献   

20.
A new shotgun proteomics approach was employed to identify degraded proteins. Jurkat T-cells were induced to undergo apoptosis by Fas (CD95/Apo-1) stimulation. The proteins were separated by large (30 cm) sodium dodecyl sulphate-polyacrylamide gel electrophoresis and identified by liquid chromatography-tandem mass spectrometry after digestion of 100 gel slices with trypsin. The molecular masses of the individual gel slices were calculated through the known theoretical masses of the identified proteins. Proteins were defined as degradation candidates if either the empirical determined molecular mass was at most 80% of the theoretical value, or if proteins were identified in clearly different gel slices. In this manner, the degradation of 11 already identified apoptosis-modified proteins was confirmed and nine until now unknown degradation candidate proteins identified. Degradation during apoptosis must be verified by additional techniques such as in vitro caspase assays as shown for nucleolin and Rho GDI 2. The results presented confirm the suitability of a shotgun approach for the identification of putative protease targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号