首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Chondromodulin-I (ChM-I) is a cartilage-specific glycoprotein that stimulates the growth of chondrocytes and inhibits the tube formation of endothelial cells. In the present study, we identified a novel ChM-I like molecule, designated ChM1L. Cloning of full length cDNAs of human, mouse, and rat ChM1L revealed that ChM1L encodes 317 amino acids novel type II transmembrane protein. ChM1L protein was expressed on the cell surface as N-glycosylated and non-N-glycosylated protein with molecular mass of 45 and 40 kDa, respectively. In adult mouse tissues, ChM1L mRNA was highly expressed in eye, skeletal muscle, and whole rib. The temporal pattern of ChM1L mRNA was examined using whole embryo at day 10 to 19 of gestation. After day 11, ChM1L mRNA was detected and its level was progressively elevated in association with development of mouse embryo. These data suggest that ChM1L is a novel membrane molecule which is similar to ChM-I that plays a regulatory role in eye, skeletal muscle, and development of embryo.  相似文献   

3.
We report the isolation of a full-length rat cDNA for a new activin receptor. The deduced amino acid sequence of this receptor shows 67 percent overall identity with that of a previously identified mouse activin receptor. As predicted for the mouse activin receptor, the amino acid sequence of the rat receptor is consistent with a polypeptide containing an extracellular ligand binding domain, a hydrophobic transmembrane domain, and a serine/threonine kinase intracellular domain. In an expression assay, this new receptor was found to bind I125 radiolabeled activin.  相似文献   

4.
5.
The metagenomic library approach has been used successfully to isolate novel biocatalyst genes from uncultured microorganisms. We report the cloning of a novel decarboxylase gene by sequence-based screening of a plasmid metagenomic library constructed with DNA from alkaline polluted soils. The gene was named undec1 A and had an open reading frame of 1077 base pairs. It encoded a 359 amino acid polypeptide with a molecular mass of 38 kDa. The predicted protein had 58% similarity to a decarboxylase from Chlorobium phaeobacteroides BS1. The putative decarboxylase gene was subcloned into pETBlue-2 vector and overexpressed in Escherichia coli Tuner (DE3) pLac. The recombinant protein was purified to homogeneity. Functional characterization with liquid chromatography-mass spectrometry confirmed that the recombinant Undec1 A protein catalyzed the decarboxylation of L-cysteine to form cysteamine.  相似文献   

6.
7.
Although 11-ketotestosterone is a potent androgen and induces male secondary sex characteristics in many teleosts, androgen receptors with high binding affinity for 11-ketotestosterone or preferential activation by 11-ketotestosterone have not been identified. So, the mechanism by which 11-ketotestosterone exhibits such high potency remains unclear. Recently we cloned the cDNA of an 11-ketotestosterone regulated protein, spiggin, from three-spined stickleback renal tissue. As spiggin is the only identified gene product regulated by 11-ketotestosterone, the stickleback kidney is ideal for determination of the mechanism of 11-ketotestosterone gene regulation. A single androgen receptor gene with two splicing variants, belonging to the androgen receptor-β subfamily was cloned from stickleback kidney. A high affinity, saturable, single class of androgen specific binding sites, with the characteristics of an androgen receptor, was identified in renal cytosolic and nuclear fractions. Measurement of ligand binding moieties in the cytosolic and nuclear fractions as well as to the recombinant receptor revealed lower affinity for 11-ketotestosterone than for dihydrotestosterone. Treatment with different androgens did not up-regulate androgen receptor mRNA level or increase receptor abundance, suggesting that auto-regulation is not involved in differential ligand activation. However, comparison of the trans-activation potential of the stickleback androgen receptor with the human androgen receptor, in both human HepG2 cells and zebrafish ZFL cells, revealed preferential activation by 11-ketotestosterone of the stickleback receptor, but not of the human receptor. These findings demonstrate the presence of a receptor preferentially activated by 11-ketotestosterone in the three-spined stickleback, so far the only one known in any animal.  相似文献   

8.
Ceramide-1-phosphate is a sphingolipid metabolite that has been implicated in membrane fusion of brain synaptic vesicles and neutrophil phagolysosome formation. Ceramide-1-phosphate can be produced by ATP-dependent ceramide kinase activity, although little is known of this enzyme because it has not yet been highly purified or cloned. Based on sequence homology to sphingosine kinase type 1, we have now cloned a related lipid kinase, human ceramide kinase (hCERK). hCERK encodes a protein of 537 amino acids that has a catalytic region with a high degree of similarity to the diacylglycerol kinase catalytic domain. hCERK also has a putative N-myristoylation site on its NH(2) terminus followed by a pleckstrin homology domain. Membrane but not cytosolic fractions from HEK293 cells transiently transfected with a hCERK expression vector readily phosphorylated ceramide but not sphingosine or other sphingoid bases, diacylglycerol or phosphatidylinositol. This activity was clearly distinguished from those of bacterial or human diacylglycerol kinases. With natural ceramide as a substrate, the enzyme had a pH optimum of 6.0-7.5 and showed Michaelis-Menten kinetics, with K(m) values of 187 and 32 microm for ceramide and ATP, respectively. Northern blot analysis revealed that hCERK mRNA expression was high in the brain, heart, skeletal muscle, kidney, and liver. A BLAST search analysis using the hCERK sequence revealed that putative ceramide kinases (CERKs) exist widely in diverse multicellular organisms including plants, nematodes, insects, and vertebrates. Phylogenetic analysis revealed that CERKs are a new class of lipid kinases that are clearly distinct from sphingosine and diacylglycerol kinases. Cloning of CERK should provide new molecular tools to investigate the physiological functions of ceramide-1-phosphate.  相似文献   

9.
T K Vu  D T Hung  V I Wheaton  S R Coughlin 《Cell》1991,64(6):1057-1068
We isolated a cDNA encoding a functional human thrombin receptor by direct expression cloning in Xenopus oocytes. mRNA encoding this receptor was detected in human platelets and vascular endothelial cells. The deduced amino acid sequence revealed a new member of the seven transmembrane domain receptor family with a large amino-terminal extracellular extension containing a remarkable feature. A putative thrombin cleavage site (LDPR/S) resembling the activation cleavage site in the zymogen protein C (LDPR/I) was noted 41 amino acids carboxyl to the receptor's start methionine. A peptide mimicking the new amino terminus created by cleavage at R41 was a potent agonist for both thrombin receptor activation and platelet activation. "Uncleavable" mutant thrombin receptors failed to respond to thrombin but were responsive to the new amino-terminal peptide. These data reveal a novel signaling mechanism in which thrombin cleaves its receptor's amino-terminal extension to create a new receptor amino terminus that functions as a tethered ligand and activates the receptor.  相似文献   

10.
Sphingosine-1-phosphate (SPP) has diverse biological functions acting inside cells as a second messenger to regulate proliferation and survival, and extracellularly, as a ligand for G protein-coupled receptors of the endothelial differentiation gene-1 subfamily. Based on sequence homology to murine and human sphingosine kinase-1 (SPHK1), which we recently cloned (Kohama, T., Oliver, A., Edsall, L. , Nagiec, M. M., Dickson, R., and Spiegel, S. (1998) J. Biol. Chem. 273, 23722-23728), we have now cloned a second type of mouse and human sphingosine kinase (mSPHK2 and hSPHK2). mSPHK2 and hSPHK2 encode proteins of 617 and 618 amino acids, respectively, both much larger than SPHK1, and though diverging considerably, both contain the conserved domains found in all SPHK1s. Northern blot analysis revealed that SPHK2 mRNA expression had a strikingly different tissue distribution from that of SPHK1 and appeared later in embryonic development. Expression of SPHK2 in HEK 293 cells resulted in elevated SPP levels. d-erythro-dihydrosphingosine was a better substrate than d-erythro-sphingosine for SPHK2. Surprisingly, d, l-threo-dihydrosphingosine was also phosphorylated by SPHK2. In contrast to the inhibitory effects on SPHK1, high salt concentrations markedly stimulated SPHK2. Triton X-100 inhibited SPHK2 and stimulated SPHK1, whereas phosphatidylserine stimulated both type 1 and type 2 SPHK. Thus, SPHK2 is another member of a growing class of sphingolipid kinases that may have novel functions.  相似文献   

11.
By searching the zebrafish expressed sequence tag (EST) database, we have identified a cDNA clone encoding a putative zebrafish cytosolic sulfotransferase (ST). This cDNA was isolated and subjected to nucleotide sequencing. Analysis of the sequence data revealed that this novel zebrafish ST displays 32-35% amino acid sequence identity to members of all major cytosolic ST gene families. Therefore, this zebrafish ST, while belonging to the cytosolic ST gene superfamily, appears to be independent from all known constituent ST gene families. Recombinant zebrafish ST, expressed using the pET23c prokaryotic expression vector and purified from transformed Escherichia coli cells, migrated as a 34-kDa protein upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Purified zebrafish ST displayed sulfating activities toward dopamine and thyroid hormones (T(3) and T(4)), with a pH optimum spanning 7-9. The enzyme also exhibited activities toward a number of xenobiotics including some flavonoids, isoflavonoids, and other phenolic compounds. A thermostability experiment revealed the enzyme to be relatively stable over a temperature range between 20 and 48 degrees C. Among 10 divalent metal cations tested, Fe(++), Hg(++), Co(++), Zn(++), Cu(++), and Cd(++) exhibited dramatic inhibitory effects on the activity of the enzyme. These results constitute a first study on the cloning, expression, and characterization of a zebrafish cytosolic ST.  相似文献   

12.
13.
Using a human placenta cDNA library, we cloned a novel member belonging to the scavenger receptor family. Complementary DNA of this clone encodes a type II transmembranous glycoprotein containing a collagen-like domain, which are typical structural characteristics of scavenger receptor class A. This protein also contains a C-type lectin/carbohydrate recognition domain (C-type CRD) located at the C-terminus. We designated this as Scavenger Receptor with C-type Lectin (SRCL) type I. We also isolated human SRCL type II, which lacks the C-type CRD. Northern blot analysis revealed that hSRCL type I and type II mRNAs are abundantly expressed in adult human tissues. When hSRCL type I and type II were expressed in CHO-K1 cells, they were localized in the plasma membrane forming clusters on the surface. Ligand-binding studies of CHO-K1 cells expressing hSRCL type I and type II demonstrated their specific binding capacity in Escherichia coli and Staphylococcus aureus. These results indicate that hSRCL is a novel bacteria-binding receptor containing a C-type CRD and this receptor may play an important role in host defense.  相似文献   

14.
Three receptors for VIP and pituitary adenylate cyclase-activating peptide (PACAP) have been cloned and characterized: PAC(1), with high affinity for PACAP, and VPAC(1) and VPAC(2) with equally high affinity for VIP and PACAP. The existence of a VIP-specific receptor (VIP(s)) in guinea pig (GP) teniae coli smooth muscle was previously surmised on the basis of functional studies, and its existence was confirmed by cloning of a partial NH(2)-terminal sequence. Here we report the cloning of the full-length cDNAs of two receptors, a VPAC(2) receptor from GP gastric smooth muscle and VIP(s) from GP teniae coli smooth muscle. The cDNA sequence of the VIP(s) encodes a 437-amino acid protein (M(r) 49,560) that possesses 87% similarity to VPAC(2) receptors in rat and mouse and differs from the VPAC(2) receptor in GP gastric smooth muscle by only two amino-acid residues, F(40)F(41) in lieu of L(40)L(41). In COS-1 cells transfected with the GP teniae coli smooth muscle receptor, only VIP bound with high affinity (IC(50) 1.4 nM) and stimulated cAMP formation with high potency (EC(50) 1 nM). In contrast, in COS-1 cells transfected with the GP gastric smooth muscle receptor, both VIP and PACAP bound with equally high affinity (IC(50) 2.3 nM) and stimulated cAMP with equally high potency (EC(50) 1.5 nM). We conclude that the receptor cloned from GP teniae coli smooth muscle is a VIP(s) distinct from VPAC(1) and VPAC(2) receptors. The ligand specificity in this species is determined by a pair of adjacent phenylalanine residues (L(40)L(41)) in the NH(2)-terminal ligand-binding domain.  相似文献   

15.
Recently cDNA encoding the histamine H3 receptor was isolated after 15 years of considerable research. However, several studies have proposed heterogeneity of the H3 receptor. We report here the molecular cloning and characterization of a novel type of histamine receptor. A novel orphan G-protein-coupled receptor named GPRv53 was obtained through a search of the human genomic DNA data base and analyzed by rapid amplification of cDNA ends (RACE). GPRv53 possessed the features of biologic amine receptors and had the highest homology with H3 receptor among known G-protein-coupled receptors. Mammalian cells expressing GPRv53 were demonstrated to bind and respond to histamine in a concentration-dependent manner. In functional assays, not only an H3 receptor agonist, R-(alpha)-methylhistamine, but also a H3 receptor antagonist, clobenpropit, and a neuroleptic, clozapine, activated GPRv53-expressing cells. Tissue distribution analysis revealed that expression of GPRv53 is localized in the peripheral blood leukocytes, spleen, thymus, and colon, which was totally different from the H3 receptor, whose expression was restricted to the brain. The discovery of the GPRv53 receptor will open a new phase of research on the physiological role of histamine.  相似文献   

16.
We have cloned a novel cell-surface protein designated SPAP1a for SH2 domain-containing phosphatase anchor protein 1a. SPAP1a belongs to the group of type I transmembrane proteins. Its extracellular domain contains a single immunoglobulin-like domain, and its intracellular segment has two immunoreceptor tyrosine-based inhibition motifs (ITIMs). We also identified two alternatively spliced products that were named SPAP1b and SPAP1c. SPAP1b contains a short intracellular part without ITIMs, while SPAP1c lacks the transmembrane segment and represents a potential soluble protein. Sequence alignment with the genomic database revealed that the SPAP1 gene contains seven exons and is localized at chromosome 1q21. PCR analyses demonstrated that SPAP1a mRNA is specifically expressed in human hematopoietic tissues including spleen, peripheral blood, and bone marrow, and it may be restricted to expression in B cells. Recombinant SPAP1a is tyrosine phosphorylated in cells upon pervanadate stimulation and tyrosine-phosphorylated SPAP1a recruits the SH2 domain containing phosphatase SHP-1, but not SHP-2. As a specific anchor protein of SHP-1, SPAP1a may have an important role in hematopoietic cell signaling.  相似文献   

17.
Here we report a novel method for selecting human antibody fragments from nonimmunized variable domain libraries. The antibody fragments are selected on the basis of stabilization of the variable domain fragment (F(v)) in the presence of target antigens ("open sandwich selection"). One variable domain is displayed on phages and another is prepared as soluble molecules. These two reagents are mixed with the biotinylated target molecule and ternary complexes are captured by using streptavidin-conjugated magnet beads. After extensive washing, enriched clones are eluted by using target antigen. Some of the clones selected after 3 rounds are prepared as soluble domains, which then undergo another selection process. We obtained several human antibody fragments specific for human soluble erythropoietin receptor by using this method. Our method minimizes several of the disadvantages associated with human antibody selection through a phage-display system, such as construction of a large-scale library, deletion of genes during selection, and nonspecific binding.  相似文献   

18.
Ataxia-telangiectasia mutated (ATM) is the gene product mutated in ataxia-telangiectasia (A-T), which is an autosomal recessive disorder with symptoms including neurodegeneration, cancer predisposition and premature aging. ATM is thought to play a pivotal role in signal transduction in response to genotoxic DNA damage. To study the physiological and developmental functions of ATM using the zebrafish model system, we cloned the zebrafish homolog cDNA of human ATM (hATM), zebrafish ATM (zATM), analyzed the expression pattern of zATM during early development, and further developed the system to study loss of zATM function in zebrafish embryos. Employing information available from the zebrafish genomic database, we utilized a PCR-based approach to isolate zATM cDNA clones. Sequence analysis of zATM showed a high level homology in the functional domains of hATM. The putative FAT, phosphoinositide 3-kinase-like, and FATC domains of zATM, which regulate ATM kinase activity and functions, were the most highly conserved regions, exhibiting 64-94% amino acid identity to the corresponding domains in hATM, while exhibiting approximately 50% amino acid identity outside these domains. The zATM gene is expected to consist of 62 coding exons, and we have identified at least 55 exons encompassing more than 100kb of nucleotide sequence, which encodes about 9 kb of cDNA. By in situ hybridization, zATM mRNA was detected ubiquitously with a dramatic increase at the 18-somite stage, then more specifically in the eye, brain, trunk, and tail at later stages. To inhibit zATM expression and function, we designed and synthesized splice-blocking antisense-morpholino oligonucleotides targeting the phosphoinositide 3-kinase-like domain. We demonstrated that this knockdown of zATM caused abnormal development upon ionizing radiation-induced DNA damage. Our data suggest that the ATM gene is structurally and functionally conserved in vertebrates from zebrafish to human.  相似文献   

19.
Zheng T  Rabach M  Chen NY  Rabach L  Hu X  Elias JA  Zhu Z 《Gene》2005,357(1):37-46
Mammalian chitinase and chitinase-like proteins are members of a recently discovered gene family. Thus far, neither chitin nor chitin synthase has been found in mammals. The existence of chitinase genes in mammals is intriguing and the physiologic functions of chitinases are not clear. Human chitotriosidase, also called chitinase 1 (chit1), has been cloned. It has been found that high levels of serum chitotriosidase are associated with several diseases, but the physiologic functions of this enzyme are still unclear. To facilitate the studies in animal models we cloned and characterized a cDNA that encodes the mouse chitotriosidase. The open reading frame of this cDNA predicts a protein of 464 amino acids with a typical chitinase structure, including a signal peptide, a highly conserved catalytic domain and a chitin-binding domain. The predicted amino acid sequence is highly homologous to that of human chitotriosidase and to that of mouse acidic mammalian chitinase. Sequence analysis indicates that the mouse chitotriosidase gene has 12 exons, spanning a 40-kb region in mouse chromosome 1. The constitutive expression of mouse chitotriosidase is restricted to brain, skin, bone marrow, kidney, tongue, stomach and testis. Recombinant expression of the cloned cDNA demonstrated that the encoded protein is secreted and has chitinolytic activity that is sensitive to the specific chitinase inhibitor allosamidin and has the ability to bind to chitin particles. Substitution mutations at the conserved catalytic site completely abolished the enzymatic activity of the recombinant protein. These studies illustrate that mouse chitotriosidase is a typical chitinase that belongs to the mammalian chitinase gene family.  相似文献   

20.
BetaPix, a Pak-interacting guanine nucleotide exchange factor is known to be involved in the regulation of Cdc42/Rac GTPases and Pak kinase activity. Currently, three 1Pix isoforms, betaPix-a, -b, and -c have been reported. In this study, the cDNA of a novel Pix splice variant was isolated from a mouse brain cDNA library. The cloned betaPix isoform, named betaPix-d, lacks leucine zipper domain that is present in other Pix isoforms, and has a 11 amino acid addition at carboxyl terminus and distinct 3'-UTR Analysis of the tissue distribution of betaPix-d using RT-PCR revealed that its message was present mainly in brain and testis but in lower levels in heart, spleen, lung, liver, skeletal muscle and kidney. In situ hybridization studies with the 13Pix-d specific probes in the rat embryo show that betaPix-d isoform is expressed mainly in the central nervous system. Moreover, temporal expression pattern of the isoform is correlated with the active neurogenesis period in the cerebral cortex and cerebellum during rat brain development. These findings suggest that betaPix-d isoform may be developmentally regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号