首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Translocated from their native range in the Americas in 1935, cane toads (Rhinella marina, Bufonidae) have now spread through much of tropical and subtropical Australia. The toad's invasion and impact have attracted detailed study. In this paper, I review information on ecological interactions between cane toads and Australian anurans. The phylogenetic relatedness and ecological similarity between frogs and toads creates opportunities for diverse interactions, ranging from predation to competition to parasite transfer, plus a host of indirect effects mediated via impacts of toads on other species, and by people's attempts to control toads. The most clear‐cut effect of toads on frogs is a positive one: reducing predator pressure by fatally poisoning anuran‐eating varanid lizards. However, toads also have a wide range of other effects on frogs, some positive (e.g. taking up parasites that would otherwise infect native frogs) and others negative (e.g. eating frogs, poisoning frogs, competing with tadpoles). Although information on such mechanisms predicts intense interactions between toads and frogs, field surveys show that cane toad invasion has negligible overall impacts on frog abundance. That counter‐intuitive result is because of a broad balancing of negative and positive impacts, coupled with stochastic (weather‐induced) fluctuations in anuran abundance that overwhelm any impacts of toads. Also, the impacts of toads on frogs differ among frog species and life‐history stages, and depend upon local environmental conditions. The impacts of native frogs on cane toads have attracted much less study, but may well be important: frogs may impose biotic resistance to cane toad colonization, especially via competition in the larval phase. Overall, the interactions between native frogs and invasive toads illustrate the diverse ways in which an invader's arrival can perturb the native fauna by both direct and indirect mechanisms, and by which the native species can curtail an invader's success. These studies also offer a cautionary tale about the difficulty of predicting the impact of an invasive species, even with a clear understanding of mechanisms of direct interaction.  相似文献   

2.
Biological invasion is increasingly recognized as one of the greatest threats to biodiversity. Using ensemble forecasts from species distribution models to project future suitable areas of the 100 of the world's worst invasive species defined by the International Union for the Conservation of Nature, we show that both climate and land use changes will likely cause drastic species range shifts. Looking at potential spatial aggregation of invasive species, we identify three future hotspots of invasion in Europe, northeastern North America, and Oceania. We also emphasize that some regions could lose a significant number of invasive alien species, creating opportunities for ecosystem restoration. From the list of 100, scenarios of potential range distributions show a consistent shrinking for invasive amphibians and birds, while for aquatic and terrestrial invertebrates distributions are projected to substantially increase in most cases. Given the harmful impacts these invasive species currently have on ecosystems, these species will likely dramatically influence the future of biodiversity.  相似文献   

3.
There exist few empirical rules for the effects of introduced species, reflecting the context‐dependent nature of biological invasions. A promising approach toward developing generalizations is to explore hypotheses that incorporate characteristics of both the invader and the recipient system. We present the first general test of the hypothesis that an invader's impact is determined by the system's evolutionary experience with similar species. Through a meta‐analysis, we compared the taxonomic distinctiveness of high‐ and low‐impact invaders in several aquatic systems. We find that high‐impact invaders (i.e. those that displace native species) are more likely to belong to genera not already present in the system.  相似文献   

4.
Although ecologists commonly talk about the impacts of nonindigenous species, little formal attention has been given to defining what we mean by impact, or connecting ecological theory with particular measures of impact. The resulting lack of generalizations regarding invasion impacts is more than an academic problem; we need to be able to distinguish invaders with minor effects from those with large effects in order to prioritize management efforts. This paper focuses on defining, evaluating, and comparing a variety of measures of impact drawn from empirical examples and theoretical reasoning. We begin by arguing that the total impact of an invader includes three fundamental dimensions: range, abundance, and the per-capita or per-biomass effect of the invader. Then we summarize previous approaches to measuring impact at different organizational levels, and suggest some new approaches. Reviewing mathematical models of impact, we argue that theoretical studies using community assembly models could act as a basis for better empirical studies and monitoring programs, as well as provide a clearer understanding of the relationship among different types of impact. We then discuss some of the particular challenges that come from the need to prioritize invasive species in a management or policy context. We end with recommendations about how the field of invasion biology might proceed in order to build a general framework for understanding and predicting impacts. In particular, we advocate studies designed to explore the correlations among different measures: Are the results of complex multivariate methods adequately captured by simple composite metrics such as species richness? How well are impacts on native populations correlated with impacts on ecosystem functions? Are there useful bioindicators for invasion impacts? To what extent does the impact of an invasive species depend on the system in which it is measured? Three approaches would provide new insights in this line of inquiry: (1) studies that measure impacts at multiple scales and multiple levels of organization, (2) studies that synthesize currently available data on different response variables, and (3) models designed to guide empirical work and explore generalities.  相似文献   

5.
The theoretical underpinnings of the assessment of invasive alien species impacts need to be improved. At present most approaches are unreliable to quantify impact at regional scales and do not allow for comparison of different invasive species. There are four basic problems that need to be addressed: (1) Some impacted ecosystem traits are spatially not additive; (2) invader effects may increase non-linearly with abundance or there may be effect thresholds impairing estimates of linear impact models; (3) the abundance and impact of alien species will often co-vary with environmental variation; and (4) the total invaded range is an inappropriate measure for quantifying regional impact because the habitat area available for invasion can vary markedly among invasive species. Mathematical models and empirical data using an invasive alien plant species (Heracleum mantegazzianum) indicate that ignoring these issues leads to impact estimates almost an order of magnitude from the real values. Thus, we propose a habitat-sensitive formula for regional impact assessment that is unaffected by non-linearity. Furthermore, we make some statistical suggestions on how to assess invader effects properly and we discuss the quantification of the invaded range. These improvements are crucial for impact assessment with the overall aim of prioritizing management of invasive species.  相似文献   

6.
AimAvailability of uniformly collected presence, absence, and abundance data remains a key challenge in species distribution modeling (SDM). For invasive species, abundance and impacts are highly variable across landscapes, and quality occurrence and abundance data are critical for predicting locations at high risk for invasion and impacts, respectively. We leverage a large aquatic vegetation dataset comprising point‐level survey data that includes information on the invasive plant Myriophyllum spicatum (Eurasian watermilfoil) to: (a) develop SDMs to predict invasion and impact from environmental variables based on presence–absence, presence‐only, and abundance data, and (b) compare evaluation metrics based on functional and discrimination accuracy for presence–absence and presence‐only SDMs.LocationMinnesota, USA.MethodsEurasian watermilfoil presence–absence and abundance information were gathered from 468 surveyed lakes, and 801 unsurveyed lakes were leveraged as pseudoabsences for presence‐only models. A Random Forest algorithm was used to model the distribution and abundance of Eurasian watermilfoil as a function of lake‐specific predictors, both with and without a spatial autocovariate. Occurrence‐based SDMs were evaluated using conventional discrimination accuracy metrics and functional accuracy metrics assessing correlation between predicted suitability and observed abundance.ResultsWater temperature degree days and maximum lake depth were two leading predictors influencing both invasion risk and abundance, but they were relatively less important for predicting abundance than other water quality measures. Road density was a strong predictor of Eurasian watermilfoil invasion risk but not abundance. Model evaluations highlighted significant differences: Presence–absence models had high functional accuracy despite low discrimination accuracy, whereas presence‐only models showed the opposite pattern.Main conclusionComplementing presence–absence data with abundance information offers a richer understanding of invasive Eurasian watermilfoil''s ecological niche and enables evaluation of the model''s functional accuracy. Conventional discrimination accuracy measures were misleading when models were developed using pseudoabsences. We thus caution against the overuse of presence‐only models and suggest directing more effort toward systematic monitoring programs that yield high‐quality data.  相似文献   

7.
Biological plant invasions pose a serious threat to native biodiversity and have received much attention, especially in terrestrial habitats. In freshwater ecosystems impacts of invasive plant species are less studied. We hypothesized an impact on organisms from the water column and from the sediment. We then assessed the impact of three aquatic invasive species on the plants and macroinvertebrates: Hydrocotyle ranunculoides, Ludwigia grandiflora and Myriophyllum aquaticum. Our research on 32 ponds in Belgium indicated that the reduction in the native plant species richness was a common pattern to invasion. However, the magnitude of impacts were species specific. A strong negative relationship to invasive species cover was found, with submerged vegetation the most vulnerable to the invasion. Invertebrate richness, diversity and abundance were measured in sediments of invaded and uninvaded ponds along a gradient of H. ranunculoides, L. grandiflora, and M. aquaticum species cover. We found a strong negative relationship between invasive species cover and invertebrate abundance, probably due to unsuitable conditions of the detritus for invertebrate colonization. Taxonomic compositions of aquatic invertebrate assemblages in invaded ponds differed from uninvaded ponds. Sensitive benthos, such as mayflies were completely absent in invaded ponds. The introduction of H. ranunculoides, L. grandiflora, and M. aquaticum in Belgian ponds has caused significant ecological alterations in the aquatic vegetation and the detritus community of ponds.  相似文献   

8.
  1. While invasions of large rivers by exotic fish species are well documented, assessing actual or potential impacts on native species is a challenge. Rapid assessments may be possible through the application of a combination of bioenergetic and population dynamic models.
  2. Paddlefish (Polyodon spathula) is a native species in the central USA with a history of population decline due to waterway development and overharvesting for roe. It is not known whether paddlefish are impacted by resource competition from invasive bigheaded carp populations, including silver (Hypophthalmichthys molitrix) and bighead carp (Hypophthalmichthys nobilis), which have expanded dramatically in the Mississippi River.
  3. We used bioenergetic models to project the potential impact of invasive silver and bighead carp on zooplankton density and paddlefish somatic growth in backwater habitat. Bioenergetic outputs were translated to impacts on fecundity, becoming inputs for 50-year metapopulation simulations of backwater habitat connected to the main-stem Mississippi River by episodic flood events.
  4. Competition with carp reduced growth and increased the risk of population decline for paddlefish. Impacts increased disproportionately with increased carp abundance and were further exacerbated in scenarios with increased diet overlap or decreased zooplankton abundance.
  5. We also analysed paddlefish condition data collected at sites near the lower Mississippi River with varying histories of carp invasion. These data give credence to the bioenergetic model output; paddlefish had reduced body condition at sites with long-established, high-density carp populations.
  6. We conclude that invasive bigheaded carps have great potential to reduce paddlefish growth, fecundity, and abundance. The pairing of bioenergetics and population models is likely to be broadly useful in assessing the risks posed by other invasive species.
  相似文献   

9.
One important impact of invasive species may be to modify the behaviour of native taxa. For example, the invasion of highly toxic cane toads (Bufo marinus) kills many anurophagous native predators, but other predators learn to recognize and avoid the toxic invader. We exposed native fish (northern trout gudgeons, Mogurnda mogurnda) and Dahl's aquatic frogs (Litoria dahlii) to cane toad tadpoles, then monitored the predator's responses during subsequent trials. Both the frogs and fish initially attacked toad tadpoles, but rapidly learned not to do so. Fish and adult frogs retained their aversion for at least a week, whereas recently metamorphosed frogs did not. Clearly, the spread of cane toads through tropical Australia can modify feeding responses of native aquatic predators. For predators capable of rapid avoidance learning, the primary impact of cane toads may be on foraging behaviour rather than mortality.  相似文献   

10.
  1. Biological invasions can greatly alter ecological communities, affecting not only the diversity and abundance but also composition of invaded assemblages. This is because invaders’ impacts are mediated by characteristics of resident species: some may be highly sensitive to invader impacts while others are unaffected or even facilitated. In some cases, this can result in invasive species promoting further invasions; in particular, herbivory by introduced animals has been shown to disproportionately harm native plants, which can indirectly benefit non-native plants. Here, we investigated whether such patterns emerged through the effects of an invasive fish species on lake plant communities.
  2. Specifically, we tested whether invasion of Minnesota (U.S.A.) lakes by Cyprinus carpio (common carp), an omnivorous, benthivorous fish known to reduce abundance and richness of aquatic plants, differentially affected native versus non-native plant species. We applied statistical models to a large, long-term monitoring dataset (206 macrophyte taxa recorded in 913 lakes over a 20-year time period) to test whether carp altered community composition, to identify which macrophyte species were most sensitive to carp and determine whether species characteristics predicted carp sensitivity, and to characterise consequences of carp invasion on lake-level vegetation attributes.
  3. We found that carp exerted strong selective pressure on community composition. Native macrophytes, those with a more aquatic growth form, and those considered less tolerant of disturbance (i.e. higher coefficients of conservatism) were more sensitive to carp. Conversely, no introduced macrophytes exhibited sensitivity to carp and all had higher probabilities of occurrence as carp abundance increased. The net effect of carp invasion was a shift toward less species-rich plant communities characterised by more non-native and disturbance-tolerant species.
  4. These results have several implications for conservation and management. First, they reinforce the need to prevent further spread of carp outside of their native range. Where carp have already established, their control should be incorporated into efforts to restore aquatic vegetation; this may be an essential step for recovering particular plant species of high conservation importance. Furthermore, reducing carp abundance could have ancillary benefits of reducing dominance by invasive plant species. Lastly, where carp cannot be eliminated, managers should target native macrophytes that are relatively tolerant of carp in shoreline plantings and other revegetation efforts.
  相似文献   

11.
With the growing body of literature assessing the impact of invasive alien plants on resident species and ecosystems, a comprehensive assessment of the relationship between invasive species traits and environmental settings of invasion on the characteristics of impacts is needed. Based on 287 publications with 1551 individual cases that addressed the impact of 167 invasive plant species belonging to 49 families, we present the first global overview of frequencies of significant and non‐significant ecological impacts and their directions on 15 outcomes related to the responses of resident populations, species, communities and ecosystems. Species and community outcomes tend to decline following invasions, especially those for plants, but the abundance and richness of the soil biota, as well as concentrations of soil nutrients and water, more often increase than decrease following invasion. Data mining tools revealed that invasive plants exert consistent significant impacts on some outcomes (survival of resident biota, activity of resident animals, resident community productivity, mineral and nutrient content in plant tissues, and fire frequency and intensity), whereas for outcomes at the community level, such as species richness, diversity and soil resources, the significance of impacts is determined by interactions between species traits and the biome invaded. The latter outcomes are most likely to be impacted by annual grasses, and by wind pollinated trees invading mediterranean or tropical biomes. One of the clearest signals in this analysis is that invasive plants are far more likely to cause significant impacts on resident plant and animal richness on islands rather than mainland. This study shows that there is no universal measure of impact and the pattern observed depends on the ecological measure examined. Although impact is strongly context dependent, some species traits, especially life form, stature and pollination syndrome, may provide a means to predict impact, regardless of the particular habitat and geographical region invaded.  相似文献   

12.
13.
Despite knowledge on invasive species’ predatory effects, we know little of their influence as prey. Non‐native prey should have a neutral to positive effect on native predators by supplementing the prey base. However, if non‐native prey displace native prey, then an invader's net influence should depend on both its abundance and value relative to native prey. We conducted a meta‐analysis to quantify the effect of non‐native prey on native predator populations. Relative to native prey, non‐native prey similarly or negatively affect native predators, but only when studies employed a substitutive design that examined the effects of each prey species in isolation from other prey. When native predators had access to non‐native and native prey simultaneously, predator abundance increased significantly relative to pre‐invasion abundance. Although non‐native prey may have a lower per capita value than native prey, they seem to benefit native predators by serving as a supplemental prey resource.  相似文献   

14.
Although widespread declines in anuran populations have attracted considerable concern, the stochastic demographics of these animals make it difficult to detect consistent trends against a background of spatial and temporal variation. To identify long‐term trends, we need datasets gathered over long time periods, especially from tropical areas where anuran biodiversity is highest. We conducted road surveys of four anurans in the Australian wet–dry tropics on 4637 nights over a 16‐year period. Our surveys spanned the arrival of invasive cane toads (Rhinella marina), allowing us to assess the invader's impact on native anuran populations. Our counts demonstrate abrupt and asynchronous shifts in abundance and species composition from one year to the next, not clearly linked to rainfall patterns. Typically, periods of decline in numbers of a species were limited to 1–2 years and were followed by 1‐ to 2‐year periods of increase. No taxa showed consistent declines over time, although trajectories for some species showed significant perturbations coincident with the arrival of toads. None of the four focal frog species was less common at the end of the study than at the beginning, and three of the species reached peak abundances after toad arrival. Survey counts of cane toads increased rapidly during the initial stage of invasion but have subsequently declined and fluctuated. Distinguishing consistent declines versus stochastic fluctuations in anuran populations requires extensive time‐series analysis, coupled with an understanding of the shifts expected under local climatic conditions. This is especially pertinent when assessing impacts of specific perturbations such as invasive species.  相似文献   

15.
Aquatic and riparian ecosystems are known to be highly vulnerable to invasive alien species (IAS), especially when subjected to human-induced disturbances. In the last three decades, we have witnessed a growing increase in plant invasions in Portugal and Spain (Iberian Peninsula, south-western Europe), with very detrimental economic, social and ecological effects. Some of these species, such as the giant reed (Arundo donax L.) and the water hyacinth (Eichhornia crassipes (Mart.) Solms-Laub.), number among the world's worst weeds. We present an appraisal of this invasive alien river flora and the most problematic aquatic weeds. We review various aspects of invasion ecology, including spatial and temporal patterns of invasion, species invasiveness, species traits of invasive weeds, and relationships between human disturbance in rivers and surrounding areas and invasibility, and contextualize them in overall state-of-the-art terms. We also acknowledge the use of IAS as bioindicators of the ecological quality of rivers, wetlands and riparian zones. Remote-sensing tools and Geographic Information Systems for detecting and monitoring IAS in Iberian rivers are presented.  相似文献   

16.
Aim Niche conservatism is key to understanding species responses to environmental stress such as climate change or arriving in new geographical space such as biological invasion. Halotydeus destructor is an important agricultural pest in Australia and has been the focus of extensive surveys that suggest this species has undergone a niche shift to expand its invasive range inland to hotter and drier environments. We employ modern correlative modelling methods to examine niche conservatism in H. destructor and highlight ecological differences between historical and current distributions. Location Australia and South Africa. Methods We compile comprehensive distribution data sets for H. destructor, representing the native range in South Africa, its invasive range in Australia in the 1960s (40 yr post‐introduction) and its current range in Australia. Using MAXENT, we build correlative models and reciprocally project them between South Africa and Australia and investigate range expansion with models constructed for historical and current data sets. We use several recently developed model exploration tools to examine the climate similarity between native and invasive ranges and subsequently examine climatic variables that limit distributions. Results The invasive niche of H. destructor in Australia transgresses the native niche in South Africa, and the species has expanded in Australia beyond what is predicted from the native distribution. Our models support the notion that H. destructor has undergone a more recent range shift into hotter and drier inland areas of Australia since establishing a stable distribution in the 1960s. Main conclusions Our use of historical and current data highlights that invasion is an ongoing dynamic process and demonstrates that once a species has reached an established range, it may still expand at a later stage. We also show that model exploration tools help understand factors influencing the range of invasive species. The models generate hypotheses about adaptive shifts in H. destructor.  相似文献   

17.
Forecasting the spatial spread of invasive species is important to inform management planning. Niche-based species distribution models offer a well-developed framework for assessing the potential range of species. However, these models assume equilibrium between the species’ distribution and its ecological requirements. During range expansion, invasive species are not in such equilibrium due to both dispersal limitation and frequent casual occurrence in sites unsuitable to persistent populations. In this article we use the example of the invasive annual plant Ambrosia artemisiifolia in Austria to evaluate if model accuracy can be enhanced in such non-equilibrium situations by taking account of propagule pressure and by restricting model calibration to naturalized populations. Moreover, we test if model accuracy increases during invasion history using distribution data from 1984 to 2005. The results suggest that models calibrated with naturalized populations are much more accurate than those based on the total set of records. Proxies of propagule pressure slightly but significantly improve goodness of fit, accuracy, and Type I and II error rates of models calibrated with all available records but have less consistent effects on models of naturalized populations. Model accuracy did not increase during the recent invasion history, probably because the species is still far from an equilibrium distribution. We conclude that even a coarse assessment of population status with records of invasive species delivers important information for predictive modelling and that proxies of propagule pressure should be included into such models at least during early to intermediate stages of the invasion history.  相似文献   

18.
Biological invasions of aquatic plants (i.e., macrophytes) are a worldwide phenomenon, and within the last 15 years researchers have started to focus on the influence of these species on aquatic communities and ecosystem dynamics. We reviewed current literature to identify how invasive macrophyte species impact fishes and macroinvertebrates, explore how these mechanisms deviate (or not) from the accepted model of plant–fish interactions, and assess how traits that enable macrophytes to invade are linked to effects on fish and macroinvertebrate communities. We found that in certain instances, invasive macrophytes increased habitat complexity, hypoxia, allelopathic chemicals, facilitation of other exotic species, and inferior food quality leading to a decrease in abundance of native fish and macroinvertebrate species. However, mechanisms underlying invasive macrophyte impacts on fish and macroinvertebrate communities (i.e., biomass production, photosynthesis, decomposition, and substrate stabilization) were not fundamentally different than those of native macrophytes. We identified three invasive traits largely responsible for negative effects on fish and macroinvertebrate communities: increased growth rate, allelopathic chemical production, and phenotypic plasticity allowing for greater adaptation to environmental conditions than native species. We suggest that information on invasive macrophytes (including invasive traits) along with environmental data could be used to create models to better predict impacts of macrophyte invasion. However, effects of invasive macrophytes on trophic dynamics are less well-known and more research is essential to define system level processes.  相似文献   

19.
Many introduced species become invasive despite genetic bottlenecks that should, in theory, decrease the chances of invasion success. By contrast, population genetic bottlenecks have been hypothesized to increase the invasion success of unicolonial ants by increasing the genetic similarity between descendent populations, thus promoting co‐operation. We investigated these alternate hypotheses in the unicolonial yellow crazy ant, Anoplolepis gracilipes, which has invaded Arnhem Land in Australia's Northern Territory. We used momentary abundance as a surrogate measure of invasion success, and investigated the relationship between A. gracilipes genetic diversity and its abundance, and the effect of its abundance on species diversity and community structure. We also investigated whether selected habitat characteristics contributed to differences in A. gracilipes abundance, for which we found no evidence. Our results revealed a significant positive association between A. gracilipes genetic diversity and abundance. Invaded communities were less diverse and differed in structure from uninvaded communities, and these effects were stronger as A. gracilipes abundance increased. These results contradict the hypothesis that genetic bottlenecks may promote unicoloniality. However, our A. gracilipes study population has diverged since its introduction, which may have obscured evidence of the bottleneck that would likely have occurred on arrival. The relative importance of genetic diversity to invasion success may be context dependent, and the role of genetic diversity may be more obvious in the absence of highly favorable novel ecological conditions.  相似文献   

20.
1. The global spread of non‐native species is a major concern for ecologists, particularly in regards to aquatic systems. Predicting the characteristics of successful invaders has been a goal of invasion biology for decades. Quantitative analysis of species characteristics may allow invasive species profiling and assist the development of risk assessment strategies. 2. In the current analysis we developed a data base on fish invasions in catchments throughout California that distinguishes among the establishment, spread and integration stages of the invasion process, and separates social and biological factors related to invasion success. 3. Using Akaike's information criteria (AIC), logistic and multiple regression models, we show suites of biological variables, which are important in predicting establishment (parental care and physiological tolerance), spread (life span, distance from nearest native source and trophic status) and abundance (maximum size, physiological tolerance and distance from nearest native source). Two variables indicating human interest in a species (propagule pressure and prior invasion success) are predictors of successful establishment and prior invasion success is a predictor of spread and integration. 4. Despite the idiosyncratic nature of the invasion process, our results suggest some assistance in the search for characteristics of fish species that successfully transition between invasion stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号