首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid and sensitive detection of Mycobacterium tuberculosis from patient samples is vital for clinical diagnosis and treatment. The emergence of M. tuberculosis strains with either no copies or only a single copy of IS6110 in Asian countries makes the standard PCR based diagnosis of M. tuberculosis using IS6110 not reliable. We studied the diagnostic efficacy of the in-house PCR amplification of the candidate gene mtp40 as an alternative to IS6110 element based diagnosis. Clinical samples included pulmonary and extra-pulmonary specimens from TB suspected patients residing in Puducherry, South India and were analyzed using in-house PCR procedures targeting IS6110 element and mtp40 genes. Out of 317 clinical specimens analyzed, 132 (41.6 %) and 114 (36 %) were found positive for mtp40 PCR and IS6110 PCR, respectively. However, 18 specimens that were found to negative for IS6110 PCR were found positive for mtp40 PCR, which was further confirmed by DNA sequencing method. PCR amplification of mtp40 gene for the diagnosis of M. tuberculosis in clinical samples is fast, sensitive, and further identified clinical strains that lack IS6110 element in this region. It is clearly demonstrated that there is a significant difference between the two PCR procedures and the sensitivity and specificity levels of mtp40 PCR were found to be higher when compared with DNA sequencing method. Thus, mtp40 based PCR technique will be beneficial in diagnosis of TB where M. tuberculosis strains lack of IS6110 element is predominant.  相似文献   

2.
The main objectives of this study were to assess a dual molecular beacon approach for fast detection of Mycobacterium tuberculosis (MT). MT beacon (Tb-B) was designed to target the unique IS6110 (114 bp) and rpoB (215 bp) fragment of the MT (H37Ra) genome, and the two fragments were inserted into the PMD-19T vector after purification, by PCR and sequencing, to construct plasmids. Different dilutions of positive plasmid standards were used for dual molecular beacon RT-PCR of rpoB and IS6110, and standard curves were established.The results show that the dual molecular beacon of rpoB and IS6110 detecting MT was stable (CV is 1.91–2.68 %) with a high amplification efficiency (95.6 %). In addition, the strains of non MT did not generate fluorescence signals, while strains of MT did, indicating that the primers and molecular beacons were specific, and only MT complex was amplified. The linear range was wide (103–1011 copies/mL), and clinical specimens presenting different bacterial counts can be detected.  相似文献   

3.
In recent years, various polymorphic loci and multicopy insertion elements have been discovered in the Mycobacterium tuberculosis genome, such as the direct repeat (DR) locus, the major polymorphic tandem repeats, the polymorphic GC-rich repetitive sequence, IS6110, and IS1081. These, especially IS6110 and the DR locus, have been widely used as genetic markers to differentiate M. tuberculosis isolates and will continue to be so used, due to the conserved nature of the genome of M. tuberculosis. However, little is known about the processes involved in generating these or of their relative rates of change. Without an understanding of the biological characteristics of these genetic markers, it is difficult to use them to their full extent for understanding the population genetics and epidemiology of M. tuberculosis. To address these points, we identified a cluster of 7 isolates in a collection of 101 clinical isolates and investigated them with various polymorphic genetic markers, which indicated that they were highly related to each other. This cluster provided a model system for the study of IS6110 transposition, evolution at the DR locus, and the effects of these on the determination of evolutionary relationships among M. tuberculosis strains. Our results suggest that IS6110 restriction fragment length polymorphism patterns are useful in grouping closely related isolates together; however, they can be misleading if used for making inferences about the evolutionary relationships between closely related isolates. DNA sequence analysis of the DR loci of these isolates revealed an evolutionary scenario, which, complemented with the information from IS6110, allowed a reconstruction of the evolutionary steps and relationships among these closely related isolates. Loss of the IS6110 copy in the DR locus was noted, and the mechanisms of this loss are discussed.  相似文献   

4.
Determining the genetic diversity of M. tuberculosis strains allows identification of the distinct Mycobacterium tuberculosis genotypes responsible for tuberculosis in different regions. Several studies have reported the genetic diversity of M. tuberculosis strains in Mexico, but little information is available from the state of Jalisco. Therefore, the aim of this study was to determine the genetic diversity of Mycobacterium tuberculosis clinical isolates from Western Mexico. Sixty-eight M. tuberculosis isolates were tested for susceptibility to first-line drugs using manual Mycobacteria Growth Indicator Tube method and genotyped using spoligotyping and IS6110-restriction fragment length polymorphism (RFLP) pattern analyses. Forty-seven (69.1%) isolates were grouped into 10 clusters and 21 isolates displayed single patterns by spoligotyping. Three of the 21 single patterns corresponded to orphan patterns in the SITVITWEB database, and 1 new type that contained 2 isolates was created. The most prevalent lineages were T (38.2%), Haarlem (17.7%), LAM (17.7%), X (7.4%), S (5.9%), EAI (1.5%) and Beijing (1.5%). Six (12.8%) of the clustered isolates were MDR, and type 406 of the Beijing family was among the MDR isolates. Seventeen (26.2%) isolates were grouped into 8 clusters and 48 isolates displayed single patterns by IS6110-RFLP. Combination of IS6110-RFLP and spoligotyping reduced the clustering rate to 20.0%. The results show that T, Haarlem, and LAM are predominant lineages among clinical isolates of M. tuberculosis in Guadalajara, Mexico. Clustering rates indicated low transmission of MDR strains. We detected a rare Beijing genotype, SIT406, which was a highly resistant strain. This is the first report of this Beijing genotype in Latin America.  相似文献   

5.
Rapid and accurate identification of mycobacteria to the species level is important to provide epidemiological information and to guide the appropriate treatment, especially identification of the Mycobacterium tuberculosis (MTB) which is the leading pathogen causing tuberculosis. The genetic marker named as Mycobacterium tuberculosis specific sequence 90 (mtss90) was screened by a bioinformatics software and verified by a series of experiments. To test its specificity, 266 strains of microorganisms and human cells were used for the mtss90 conventional PCR method. Moreover, the efficiency of mtss90 was evaluated by comparing 16S rDNA (Mycobacterium genus-specific), IS6110 (specific identification of MTB complex), mtp40 (MTB-specific) and PNB/TCH method (traditional bacteriology testing) in Mycobacterium strains. All MTB isolates were mtss90 positive. No amplification was observed from any other tested strains with M. microti as an exception. Compared with the traditional PNB/TCH method, the coincidence rate was 99.1 % (233/235). All of the mtss90 positive strains were IS6110 and 16S rDNA positive, indicating a 100 % coincidence rate (216/216) between mtss90 and these two genetic markers. Additionally, mtss90 had a better specificity than mtp40 in the identification of MTB. Lastly, a real-time PCR diagnostic assay was developed for the rapid identification of MTB. In conclusion, mtss90 may be an efficient alternative marker for species-specific identification of MTB and could be used for the diagnosis of tuberculosis combined with other genetic markers.  相似文献   

6.
The ipl locus is a site for the preferential insertion of IS6110 and has been identified as an insertion sequence, IS1547, in its own right. Various deletions around the ipl locus of clinical isolates of Mycobacterium tuberculosis were identified, and these deletions ranged in length from several hundred base pairs up to several kilobase pairs. The most obvious feature shared by these deletions was the presence of an IS6110 copy at the deletion sites, which suggested two possible mechanisms for their occurrence, IS6110 transposition and homologous recombination. To clarify the mechanism, an investigation was conducted; the results suggest that although deletion transpositionally mediated by IS6110 was a possibility, homologous recombination was a more likely one. The implications of such chromosomal rearrangements for the evolution of M. tuberculosis, for IS6110-mediated mutagenesis, and for the development of genetic tools are discussed. The deletion of genomic DNA in isolates of M. tuberculosis has previously been noted at only a few sites. This study examined the deletional loss of genetic material at a new site and suggests that such losses may occur elsewhere too and may be more prevalent than was previously thought. Distinct from the study of laboratory-induced mutations, the detailed analysis of clinical isolates, in combination with knowledge of their evolutionary relationships to each other, gives us the opportunity to study mutational diversity in isolates that have survived in the human host and therefore offers a different perspective on the importance of particular genetic markers in pathogenesis.  相似文献   

7.
Strain differentiation by DNA restriction fragment length polymorphism (RFLP) has been used mainly for the epidemiological purpose of Mycobacterium tuberculosis infection. In this study, we tried to connect the molecular and phenotypic characteristics of M. tuberculosis patient isolates by comparing the DNA fingerprints obtained by RFLP using IS6110 and lipid patterns using two-dimensional thin-layer chromatography (2-D TLC) with silica gel, since M. tuberculosis has a lipid-rich cell envelope which contributes to the virulence and immunomodulatory properties. We found that 66 isolates of M. tuberculosis from tuberculosis patients showed that the occurrence of IS6110 varied from 1 to 24 copies. The IS6110 patterns were highly variable among isolates. Fifty different RFLP patterns were observed, and 12 RFLP patterns were shared by two or more strains. By computerized analysis of the RFLP patterns of M. tuberculosis patient isolates, we found that 95% of the isolates fell into seven clusters, from A to G, with at least two isolates in each (> 30% similarity). Among the cellular lipids, the phospholipid composition did not differ by strain, whereas the glycolipid pattern differed markedly. Especially, the relative concentration of cord factor and sulfolipid, both of which were known as virulent factors, varied by strain. The fingerprints of some strains showed an association between the DNA and glycolipid patterns, even though some of the same DNA fingerprint strains showed differences in lipid patterns. Among the patient isolates, M. tuberculosis strain 249 possessed a specific glycolipid with 2-O-methyl-L -rhamnose and L-rhamnose, which is rarely found in other strains. This glycolipid showed serological activity against the sera of tuberculosis patients, even if the reactivity was not as strong as trehalose dimycolate. It also showed the inhibition of phagosome-lysosome fusion in macrophages, suggesting involvement with virulence. These results suggest that RFLP analysis using IS6110 is useful for clustering the human isolates of M. tuberculosis, however, for further strain differentiation on virulence, a lipid analysis provides more information.  相似文献   

8.

Background

The IS6110 insertion sequence, a member of the IS3 family of insertion sequences, was found to be specific to the Mycobacterium tuberculosis complex (MTBC). Although IS6110 has been extensively characterized as a transposable genetic marker, the evolutionary history of its own transposase-encoding sequence has not, to the best of our knowledge, been investigated.

Methodology/Principal Findings

Here we explored the evolution of the IS6110 sequence by analysing the genetic variability and the selective forces acting on its transposase-encoding open reading frames (ORFs) A and B (orfA and orfB). For this purpose, we used a strain collection consisting of smooth tubercle bacilli (STB), an early branching lineage of the MTBC, and present-day M. tuberculosis strains representing the full breadth of genetic diversity in Tunisia. In each ORF, we found a major haplotype that dominated over a flat distribution of rare descendent haplotypes, consisting mainly of single- and double-nucleotide variant singletons. The predominant haplotypes consisted of both ancestral and present-day strains, suggesting that IS6110 acquisition predated the emergence of the MTBC. There was no evidence of recombination and both ORFs were subjected to strict purifying selection, as demonstrated by their dN/dS ratios (0.29 and 0.51, respectively), as well as their significantly negative Tajima’s D statistics. Strikingly, the purifying selection acting on orfA proved much more stringent, suggesting its critical role in regulating the transpositional process. Maximum likelihood analyses further excluded any possibility of positive selection acting on single amino acid residues.

Conclusions/Significance

Taken together our data fit with an evolutionary scenario according to which the observed variability pattern of the IS6110 transposase-encoding ORFs is generated mainly through random point mutations that accrued on a functionally optimal IS6110 copy, whose acquisition predated the emergence of the MTBC complex. Background selection acting against deleterious mutations led to an excess of low-frequency variants.  相似文献   

9.
A simplified amplified-fragment length polymorphism (AFLP) method was developed and applied to genotype 52 Mycobacterium tuberculosis isolates. This method can be carried out using only one restriction enzyme (XhoI), one double strand adapter, and one PCR primer. The amounts of DNA and DNA polymerase, and the concentrations of primer and Mg2+ in the PCR step were optimized using the Basic Sequential Simplex method. AFLP analysis of the isolates generated a total of 24 differently sized bands ranging from 1537 to 121 bp, and 52 different band patterns, with a minimum of 2 and a maximum of 13 bands. The results were compared with the well-established IS6110 restriction fragment length polymorphism (IS6110-RFLP) typing method, which rendered a total of 32 differently sized bands from 1 to 12 kbp, and 52 different band patterns, with a minimum of 3 and a maximum of 15 bands. Therefore, both genotyping methods showed a discriminatory power of samples of 100%. Nevertheless, pairwise comparisons of the 1326 similarity indexes calculated for both typing methods showed a total absence of correlation between the similarity indexes of the two methods. The simplified AFLP method is expected to be more useful for genotyping M. tuberculosis isolates compared to the IS6110-RFLP method, since the former evaluates genetic variations throughout the M. tuberculosis genome. Furthermore, the relatively rapid and low-cost simplified AFLP method compares favorably to the IS6110-RFLP or conventional AFLP methods, and shows great promise for genotyping M. tuberculosis isolates, especially in developing countries or for preliminary screening.  相似文献   

10.
Rapid detection of drug-resistant Mycobacterium tuberculosis is critical to the effective early treatment and prevention of the transmission of tuberculosis. However, conventional drug susceptibility tests for M. tuberculosis require up to several weeks. In the present study, the One Label Extension genotyping method was adapted for rapid detection of drug resistance-associated sequence variations in six genes of M. tuberculosis, viz. rpoB, rpsL, rrs, embB, katG, or inhA. The method utilizes polymerase chain reaction amplified fragments of the drug resistant genes as reaction templates, and proceeds with template-directed primer extension incorporating a fluorescence-labeled nucleotide, which is then measured by fluorescence polarization. A total of 121 M. tuberculosis isolates from clinical sputum specimens were examined by this genotyping method and verified by direct sequencing of polymerase chain reaction amplicons harboring previously reported mutational sites associated with M. tuberculosis drug resistance. Based on phenotyping results obtained from microbiology-based drug susceptibility tests, the sensitivity, specificity, and test efficiency estimated for One Label Extension assays were respectively 83.9 %, 95.5 %, and 92.4 % with ropB in rifampin resistance, 67.3 %, 97.1 %, and 84.3 % with rpsL and rrs in streptomycin resistance, 60.0 %, 96.0 %, and 91.4 % with embB in ethambutol resistance, 68.4 %, 94.9 %, and 86.3 % with inhA and katG in isoniazid resistance, and 74.1 %, 98.9 %, and 93.2 % in multiple drug resistance defined as resistance to at least both isoniazid and rifampin. In conclusion, examination of clinical sputum specimens by One Label Extension based genotyping provides a valid method for the rapid molecular detection of drug-resistant M. tuberculosis.  相似文献   

11.

Background

Bacteriological confirmation of tuberculous (TB) meningitis is difficult. Culture is slow and microscopy has insufficient sensitivity. We evaluated real time PCR targeting insertion sequence IS6110 among 230 consecutive adult patients with subacute meningitis in a referral hospital in Indonesia.

Methods

Cerebrospinal fluid (CSF) samples were examined using microscopy, solid and liquid culture, and real time IS6110-PCR with a fluorescence-labeled probe using DNA extracted from CSF. CSF samples from 40 non-infectious neurology patients were used as negative controls. IS6110-PCR results were linked with clinical and CSF characteristics.

Results

Most patients presented with subacute meningitis, after a median of 14 days of symptoms (range 7–30). After exclusion of cryptococcal and bacterial meningitis, 207 patients were classified as definite or probable TB meningitis; 17.9% with HIV infection. Among this group IS6110-PCR gave the highest positivity rate (68%, 95% CI 62–74%) compared with microscopy of ZN-stained slides (11%, 95% CI 7–15%), and mycobacterial culture using solid (36%, 95% CI 29–42%) and liquid (44%, 95% CI 37–51%) media. IS6110-PCR was positive in 92% of patients with culture-positive and 42% of patients with culture-negative probable TB meningitis. Among culture-negative patients, a positive PCR was associated with a history of TB treatment, a longer duration of illness, a higher CSF cell count and protein, and a lower CSF glucose. IS6110-PCR was negative in all CSF samples from non-meningitis control patients.

Conclusions

Real time IS6110-PCR is a quick, sensitive, and specific test for diagnosing of TB meningitis in this setting. Its performance in other (less-developed) settings needs further study.  相似文献   

12.
The mycobacterial insertion sequence IS6110 proved crucial in deciphering tuberculosis (TB) transmission dynamics. This sequence was also shown to play an important role in the pathogenicity (transmission ability and/or virulence) of Mycobacterium tuberculosis, the main causative agent of TB in humans. In this study, we explored the usefulness of IS6110 and its potential as a phylogenetic/typing marker. We also analyzed the genetic polymorphism and evolutionary trends (selective pressure) of its transposase-encoding open reading frames (ORFs), A and B, using the maximum likelihood method. Both ORFs evolved chronologically through random single nucleotide polymorphisms. They were subjected to strict purifying selection more tight on orfA, with no evidence of significant recombination events. OrfA proved to have a crucial role in regulating the transpositional process. Several analyses showed that IS6110 acquisition antedated the emergence of the Mycobacterium tuberculosis complex. This original copy of IS6110 element was functionally optimal. In conclusion, this study not only demonstrated the usefulness of IS6110 in terms of phylogenetic and typing purposes and its transpositional mechanism, but also informed the scientific community on its evolutionary history.  相似文献   

13.
Members of the family Enterobacteriaceae are major pathogens associated with gastrointestinal disorders caused by the consumption of contaminated foods. We have developed a multiplex PCR (mPCR) targeting specific genes for simultaneous detection and differentiation of five major Enterobacteriaceae members, namely, Salmonella sp. (invA), Escherichia coli (uidA), Shigella sp. (ipaH), Klebsiella pneumoniae (khe) and Citrobacter freundii (tpl), from both pure cultures and contaminated food samples, along with an internal amplification control (IAC). Simultaneous amplification of these five genes was optimized using reference strains and further evaluated on large number of isolates recovered from clinical and environmental sources. The mPCR assay showed high sensitivity for detecting 10 CFU/PCR for the above-mentioned pathogens directly from serially diluted overnight cultures. The mPCR assay was also able to detect all five pathogens spiked at an initial count of 10 CFU/g of meat and rice samples following an enrichment of 10 h in Brain Heart Infusion broth. To assess the practical application of this mPCR assay, we evaluated its efficacy for detecting possible contamination on natural samples, such as meat, fish, pastries and water. Based on the results, we suggest that this mPCR assay would be of immense help in detecting low counts of important Enterobacteriaceae pathogens inexpensively and thus can be used for the regular monitoring of food quality.  相似文献   

14.
Mycobacterium tuberculosis, a Gram-positive bacterium of great clinical relevance, is a lethal pathogen owing to its complex physiological characteristics and development of drug resistance. Several molecular genetic tools have been developed in the past few decades to study this microorganism. These tools have been instrumental in understanding how M. tuberculosis became a successful pathogen. Advanced molecular genetic tools have played a significant role in exploring the complex pathways involved in M. tuberculosis pathogenesis. Here, we review various molecular genetic tools used in the study of M. tuberculosis. Further, we discuss the applications of clustered regularly interspaced short palindromic repeat interference (CRISPRi), a novel technology recently applied in M. tuberculosis research to study target gene functions. Finally, prospective outcomes of the applications of molecular techniques in the field of M. tuberculosis genetic research are also discussed.  相似文献   

15.
Graphene oxide (GO) has proven to be a satisfactory DNA-sensor platform for applications in enzyme-free signal amplification, fluorescence-based amplification, and nanoparticle-based platforms because of its excellent electrical, thermal, and optical properties. In this study, we designed a novel platform for the fluorescence detection of biomolecules, using a fluorescent dye-labeled primer and GO. We applied this system for the detection of the IS6110 insertion sequence of the Mycobacterium tuberculosis complex (MTB) and evaluated its feasibility for use in molecular diagnostics. Fifty-four sputum specimens were collected at our institution from October 2010 to March 2012. To detect MTB in the samples, we performed PCR amplification of the IS6110 DNA sequence using FAM-labeled primers, after which the PCR amplicon was incubated with GO and the fluorescence was measured. The results were compared with those obtained by conventional real-time quantitative PCR (RQ-PCR). The fluorescence intensity observed increased in a concentration-dependent manner with the FAM-labeled IS6110 amplicon. The results of the PCR-GO system for detecting IS6110 DNA were in good agreement with those obtained with conventional RQ-PCR (kappa statistic = 0.925). The PCR-GO system detected MTB DNA in 23 of 25 RQ-PCR-positive sputum samples (92.0%; 95% CI, 75.0–98.0%), but not in 29 of 29 RQ-PCR-negative sputum samples (100%; 95% CI, 88.1–100.0%). These results indicate the utility of the PCR-GO system in molecular diagnostics.  相似文献   

16.
A particular genotype of tuberculosis, named Beijing strain, is strongly associated with drug resistance and high virulence. Therefore, rapid prospective identification of Mycobacterium tuberculosis Beijing strains is very important for identifying and controlling tuberculosis of Beijing genotype. In the present study, we found that the co-mutation, A191C in Rv2629 and G243C in Rv0444c, is closely related to Beijing genotype. Gene Rv2629 and Rv0444c of 139 clinical isolates of M. tuberculosis were analyzed by PCR amplification and sequencing. Among 99 Beijing strains, 86 % (n = 85) isolates had the mutation G243C in Rv0444c and 92.93 % (n = 92) isolates had the mutation A191C in Rv2629. Among 40 non-Beijing isolates, only six isolates carried the mutation G243C in Rv0444c and eight isolates carried the mutation A191C in Rv2629. The co-mutation existed in 84.85 % (n = 84) of 99 clinical genome samples of W-Beijing strains and in only 12.5 % (n = 5) of the 40 non-Beijing strains, and the positive predictive value of 94.38 %, obtained in our experiment with a designed ratio of Beijing isolates, is similar to that in China at present. This result suggested that the detection method of the co-mutation, A191C in Rv2629 and G243C in Rv0444c, proposed in this study was a rapid, reliable, and sensitive one for identifying tuberculosis with Beijing genotype.  相似文献   

17.

Background

Investigation of genetic heterogeneity and spoligotype-defined lineages of drug-resistant Mycobacterium tuberculosis clinical isolates collected during a three-year period in two university hospitals and National Tuberculosis Reference and Research Laboratory in Ankara, Turkey.

Methods and Findings

A total of 95 drug-resistant M. tuberculosis isolates collected from three different centers were included in this study. Susceptibility testing of the isolates to four major antituberculous drugs was performed using proportion method on Löwenstein–Jensen medium and BACTEC 460-TB system. All clinical isolates were typed by using spoligotyping and IS6110-restriction fragment length polymorphism (RFLP) methods. Seventy-three of the 95 (76.8%) drug resistant M. tuberculosis isolates were isoniazid-resistant, 45 (47.4%) were rifampicin-resistant, 32 (33.7%) were streptomycin-resistant and 31 (32.6%) were ethambutol-resistant. The proportion of multidrug-resistant isolates (MDR) was 42.1%. By using spoligotyping, 35 distinct patterns were observed; 75 clinical isolates were grouped in 15 clusters (clustering rate of 79%) and 20 isolates displayed unique patterns. Five of these 20 unique patterns corresponded to orphan patterns in the SITVIT2 database, while 4 shared types containing 8 isolates were newly created. The most prevalent M. tuberculosis lineages were: Haarlem (23/95, 24.2%), ill-defined T superfamily (22/95, 23.2%), the Turkey family (19/95, 20%; previously designated as LAM7-TUR), Beijing (6/95, 6.3%), and Latin-America & Mediterranean (LAM, 5/95 or 5.3%), followed by Manu (3/95, 3.2%) and S (1/95, 1%) lineages. Four of the six Beijing family isolates (66.7%) were MDR. A combination of IS6110-RFLP and spoligotyping reduced the clustering rate from 79% to 11.5% among the drug resistant isolates.

Conclusions

The results obtained showed that ill-defined T, Haarlem, the Turkey family (previously designated as LAM7-TUR family with high phylogeographical specifity for Turkey), Beijing and LAM were predominant lineages observed in almost 80% of the drug-Resistant M. tuberculosis complex clinical isolates in Ankara, Turkey.  相似文献   

18.
A new insertion element, IS1549, was identified serendipitously from Mycobacterium smegmatis LR222 during experiments using a vector designed to detect the excision of IS6110 from between the promoter region and open reading frame (ORF) of an aminoglycoside phosphotransferase gene. Six of the kanamycin-resistant isolates had a previously unidentified insertion element upstream of the ORF of the aph gene. The 1,634-bp sequence contained a single ORF of 504 amino acids with 85% G+C content in the third codon position. The putative protein sequence showed a distant relationship to the transposase of IS231, which is a member of the IS4 family of insertion elements. IS1549 contains 11-bp terminal inverted repeats and is characterized by the formation of unusually long and variable-length (71- to 246-bp) direct repeats of the target DNA during transposition. Southern blot analysis revealed that five copies of IS1549 are present in LR222, but not all M. smegmatis strains carry this element. Only strains with a 65-kDa antigen gene with a PCR-restriction fragment length polymorphism type identical to that of M. smegmatis 607 contain IS1549. None of 13 other species of Mycobacterium tested by PCR with two sets of primers specific for IS1549 were positive for the expected amplified product.  相似文献   

19.
To develop multiplex PCRs (mPCRs) that allows simultaneous diagnosis of the infectious agents Chlamydia trachomatis, Toxoplasma gondii, HSV 1/2, and Cytomegalovirus (CMV). The study included patients with clinical suspicion of these agents, and clinical samples were blood, cerebrospinal fluid, urine, vaginal swabs, and amniotic fluid. After the extraction of DNA, this was used as a template in amplification by PCR of selected genes. The following conditions were tested: primer concentration, MgCl2 concentration, and annealing temperature. Three mPCRs were developed: multiplex I (CMV, HSV 1/2), multiplex II (CMV, HSV 1/2, T. gondii), and multiplex III (C. trachomatis, T. gondii, HSV 1/2, and CMV). The primer pairs used were shown to be specific for each infectious agent, and the specificity of mPCR assays was 100 %. Both the reactions of the monoplex PCR and mPCR produced a detection limit of 2 × 10?5 to 6 × 10?7 ng/μl of different DNAs. Upon conclusion, amplified products of expected size were obtained in 3 different reactions, and all the infectious agents were detected simultaneously in each mPCR. The concordant results of the study suggest that mPCR can be a powerful tool to improve the diagnostics of infectious diseases.  相似文献   

20.
This paper deals with phylogenetic relationships among a set of 90 clinical strains representative of the worldwide diversity of the Mycobacterium tuberculosis complex (Kremer et al. 1999) using eight independent genetic markers: IS6110, IS1081, the direct repeat (DR) locus, and five variable number of tandem DNA repeat loci (VNTR). In a preliminary experiment, phylogenetic trees based on single markers were constructed that led to the detection of some similarities between the VNTR-based and the spoligotyping-based phylogenetic trees. In the second step, a more global phenetic approach based on pairwise comparison of strains within each typing system was used, followed by calculations of mean genetic distances based on all the eight loci and the use of the neighbor-joining algorithm for tree reconstruction. This analysis confirmed our preliminary observations and suggested the existence of at least two new phylogeographical clades of M. tuberculosis, one defined as the ``East African–Indian family' (EA-I), which may find its origin on the African or Asian continents, and the other as the ``Latin American and Mediterranean' (LA-M) family. The existence of these two families was also validated by an independent phylogenetic analysis of spoligotyping on a larger set of shared types (n= 252) and further corroborated by VNTR and katG–gyrA results. The potential origin of these families of bacilli is discussed based on cattle domestication and human migration history. In conclusion, the information contained in insertion sequence and repetitive DNAs may serve as a model for the phylogenetic reconstruction of the M. tuberculosis complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号