首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Sericinus montelus overwinters as diapausing pupae. In the present study, the effects of photoperiod and temperature on diapause induction and termination of diapause are investigated. The results obtained demonstrate that high temperature can reverse the effect of short day‐lengths on diapause induction. Under an LD 12 : 12 h photoperiod, all pupae enter diapause at 15, 20 and 25 °C, whereas all pupae develop without diapause at 35 °C. No pupae enter diapause under an LD 14 : 10 h photoperiod when the temperature is above 20 °C. Photoperiodic response curves obtained at 25 and 30 °C indicate that S. montelus is a long‐day species and the critical day‐length is approximately 13 h at 25 °C. At 25 °C, the duration of diapause is shortest when the diapausing pupae are maintained under an LD 16 : 8 h photoperiod and increases under LD 14 : 10 h and LD 12 : 12 h photoperiods. Under an LD 16 : 8 h photoperiod, the duration of diapause is shortest when the diapausing pupae are maintained at 25 °C, followed by 20 and 30 °C, and then at 15 °C. These results suggest that a moderate temperature favours diapause development under a diapause‐averting photoperiod in this species. The duration of diapause induced by an LD 12 : 12 h photoperiod is significantly longer at 25 °C than those at 15, 20 and 30 °C, and is shortest at 15 °C. At 25 °C, the duration of diapause induced by LD 6 : 18, LD 12 : 12 and LD 13 : 11 h photoperiods is similar and longer than 90 days. Thus, the diapause‐inducing conditions may affect diapause intensity and a photoperiod close to the critical day‐length has significant influence on diapause intensity in S. montelus.  相似文献   

2.
Abstract Mummified pistachios containing fully grown diapause larvae of Eurytoma plotnikovi Nikol'skaya (Hym., Eurytomidae) were collected in early August and late September in coastal northern Greece and subjected to various photoperiod and temperature treatments, then maintained at 19 or 26°C and a long-day (LD 16:8 h), a changing, or a short-day (LD 10:14 h) photoperiod until pupation. In larvae of early August (beginning of diapause) subjected for 20 weeks to 19°C under a long, a changing, or a short photophase, followed by 19°C and a long photophase, 50% of the larvae pupated after 24, 18 and 13 weeks respectively. After exposure for 20 or even 12 weeks to a short photophase and low temperatures (10 or 4°C), pupation occurred after only 7–8 weeks and was more synchronous. The ranges of temperature for diapause development and post-diapause morphogenesis overlap. After exposure for 12 weeks to short days and low temperature, larvae of late September pupated much sooner under long days than under short days and sooner at 26° than at 19°C. E.plotnikovi depends on both temperature and photoperiod for diapause development, low temperature having a strong favourable effect on the earlier part and long day on the later part of diapause. In a few larvae of another pistachio seed wasp, Megastigmus pistaciae Walker, after a long enough period of low temperatures, diapause was terminated normally at 26°C and long days, or at 19°C and long or short days.  相似文献   

3.
Abstract The Indian meal moth Plodia interpunctella Hübner (Lepidoptera: Pyralidae) diapauses as a last‐instar (fifth) larva. At 30 °C, no larvae enter diapause under any photoperiodic conditions; at 25 °C, the photoperiodic response curve is a long‐day type with a critical length of approximately 13 h light; at 20 °C, diapause is induced moderately even under long days (> 13 h). Cumulative effects of short days or long days on diapause induction are determined by alternate, stepwise and gradually changing regimes of photoperiod at 25 °C. When the larvae are repeatedly exposed to LD 16 : 8 h and LD 12 : 12 h photoperiods every other day, the incidence of diapause is 37%. When the larvae are placed under an LD 16 : 8 h photoperiod for 2 days and then under an LD 12 : 12 h photoperiod for 1 day, it is 38 %. Exposure to an LD 16 : 8 h photoperiod for 1 day and then to an LD 12 : 12 h photoperiod for 2 days induces only 15% diapause. This may indicate that the photoperiodic information is not accumulated in a simple fashion despite the generally accepted hypothesis (i.e. photoperiodic counter). Larvae exposed to an LD 16 : 8 h photoperiod for 5 days after oviposition express a very high incidence of diapause even under short days between an LD 2 : 22 h and LD 12 : 12 h photoperiod. After 10 days exposure to an LD 16 : 8 h photoperiod, however, the short day does not induce diapause strongly. On the other hand, an LD 12 : 12 h photoperiod in the early larval life is highly effective in the induction of diapause. A gradual increase or decrease of photoperiod (2 min day?1) shows that the direction of photoperiodic change does not affect the diapause determination.  相似文献   

4.
The effect of temperature, photoperiod, artificial diet and water on the termination of diapause by larvae of the stem borer, Chilo partellus (Lepidoptera: Pyralidae), was studied in the laboratory. Termination of diapause as indicated by pupation was affected mainly by a combination of high temperature and a long day photoperiod. Total darkness did not prevent termination of diapause and pupation occurred also in larvae which were never exposed to water. Long days accelerated pupation, but, under 16 h daylength, termination of diapause was faster than under constant illumination. Provision of artificial diet had no effect or slowed down pupation but water decreased the time to pupation. Under 28°C, 16 h daylength and availability of water, C. partellus diapausing larvae terminated diapause and pupated in about 9 days.  相似文献   

5.
Abstract. The intensity of larval diapause in Sesamia nonagrioides Lef (Lepidoptera: Noctuidae) was investigated under laboratory conditions. Newly hatched larvae were exposed to different stationary photoperiods (from LD 7 : 17 h to LD 14 : 10 h), at a constant temperature of 25 °C. Diapause incidence was higher when larvae were exposed to daylengths shorter than the critical value (LD 12 : 12 h), whereas the within‐treatment variation in the larval period appeared to be significantly correlated with the photoperiod applied. The incidences of diapause and the duration of larval development were also measured after exposing larvae to short photoperiods (LD 8 : 16 h, LD 10 : 14 h or LD 12 : 12 h) in combination with various temperatures (20, 22.5 or 25 °C). Although an increase in the incidence of diapause appeared with the lowering of the temperature, no statistical differences were observed in the time needed for pupation within the photoperiodic treatments at the temperatures of 20 and 22.5 °C. Furthermore, when diapausing larvae were transferred to the long photoperiod of LD 16 : 8 h, they immediately proceeded to pupation, regardless of the photoperiod or the temperature to which they had been previously exposed, indicating that there were no differences in the intensity of diapause. Photoperiodic changes from LD 10 : 14 h to LD 12 : 12 h or to LD 14 : 10 h at different larval ages reduced the intensity of diapause with (a) early age of transfer and (b) increase of daylength. By contrast, when larvae were transferred from the long photoperiod of LD 14 : 10 h to shorter, such as LD 10 : 14 h or LD 12 : 12 h, a small increase in the intensity of diapause with the shortening of the daylength was apparent. These results support the hypothesis that insects may compare the duration of the photoperiod and could classify them as either longer or shorter in relation to the critical value.  相似文献   

6.
Lucilia sericata has a facultative diapause in the third larval instar after cessation of feeding. Induction of the diapause is influenced by the photoperiod and temperature conditions experienced by insects in the parental generation as well as those experienced by the larvae themselves. The sensitive stage of the parental generation for induction of diapause was examined using diapause‐averting conditions of 16 h light : 8 h darkness (LD 16:8) at 25°C and diapause‐inducing conditions of LD 12:12 at 20°C. The incidence of diapause in the progeny was predominantly determined by the conditions experienced by the parents in the adult stage. Moreover, the results of reciprocal crosses showed that only the mother's experience is involved in the induction of diapause in the progeny.  相似文献   

7.
The influence of environmental factors on the duration of diapause in Plodia interpunctella larvae reared in short photoperiods at 20 or 25° C was examined, Diapause terminated most rapidly in long photoperiods at high temperatures. Pupation was more delayed, and mortality was higher, in darkness than in the presence of light. At 20° C, LD 16: 8 hastened diapause termination only slightly in unchilled samples. Chilling for 10 weeks at 10° C greatly reduced the duration of diapause at 20 or 25° C in constant darkness, and rendered LD 16:8 effective in terminating diapause at 20° C. In addition, the quite short duration of diapause under LD 16:8 at 25° C was further shortened by holding for 6–10 weeks at 10° C or below, or by holding in an outbuilding during winter. Holding diapausing larvae at 15 or 20° C proved less effective. Temperature rises from 20 to 25 or 30° C proved effective in terminating diapause. In one stock, the temperature at which diapause was induced influenced its subsequent duration. Lighting conditions during induction had less influence on duration than had temperature, and no difference occurred between pupation times of larvae reared at different population densities, Under all conditions tested, diapause lasted longer in a recently collected field stock than in a laboratory stock.  相似文献   

8.
Diapause in a New Zealand strain of codling moth (Cydia pomonella Linnaeus [Lepidoptera: Olethreutidae]) was induced in larvae by photoperiods of 15 h or less. Once diapause had been initiated, it could not be terminated by any combination of conditions tested for at least 20 days after cocooning. In diapausing larvae a low rate of pupation occurred at 25 °C under a long day (18 h) photoperiod. A high rate of pupation was achieved under a long day regime when larvae were decocooned, and provided with apple as nourishment. Diapause could be terminated predictably in 94–100% of larvae by 1) conditioning at 15 °C and constant darkness for periods of 40–100 days, then 2) chilling at 2±2 °C and constant darkness for 20–50 days followed by 3) any post-chill condition periods at 25 °C, 18 h photoperiod. Complete diapause termination was achieved when 100 days conditioning was followed by 30 days or 50 days post-chill period. Under these conditions, 76% termination occurred in the post-chill period after 10 days, and 93% after 25 days.To terminate diapause in codling moth larvae, we recommend that a 100 days conditioning followed by 30 days chilling and 50 days post chilling periods be used.  相似文献   

9.
Larvae of the bean blister beetle Epicauta gorhami Marseul (Coleoptera: Meloidae) feed on grasshopper eggs in soil and undergo hypermetamorphosis. This beetle undergoes larval diapause in the fifth instar as a pseudopupa, a form characteristic of hypermetamorphosis in meloid beetles. The effects of temperature, photoperiod and soil humidity on larval development of E. gorhami are examined in a population in Miyazaki, Japan, using egg pods of Locusta migratoria L. as food. At lower temperatures (20 and 22.5 °C), all larvae become pseudopupae, regardless of the photoperiod. By contrast, at higher temperatures (27.5 and 30 °C), almost all larvae pupate at the end of the fourth instar, again regardless of the photoperiod. A long‐day photoperiodic response occurs only at an intermediate temperature (25 °C): under an LD 12 : 12 h photocycle, all larvae enter diapause, although the diapause incidence tends to decrease as the day length becomes longer. Pseudopupae are immobile and remain in diapause for ≥120 days when they are kept under the same conditions, except that diapause terminates within a relatively short time at 30 °C. Although lower soil humidity retards post‐feeding development, soil humidity has no effect on the diapause incidence. On the basis of the short developmental period and diapause avoidance under summer conditions, it is suggested that this beetle partially produces two generations a year in southwestern Japan.  相似文献   

10.
Abstract. The effects of thermoperiods on diapause induction in continuous darkness or under a 12 : 12 h LD photoperiod were investigated in the cabbage beetle, Colaphellus bowringi Baly, a typical short‐day species. The diapause response curves both at different constant temperatures and at the thermocycle of format CT x: (24 ? x) h (16 : 28 °C) under continuously dark rearing conditions showed that the incidence of diapause depended mainly on whether or not the mean temperature was ≤20 °C or >20 °C. If the mean temperature was ≤20 °C, all individuals entered diapause; if >20 °C, the incidence of diapause declined gradually with increasing mean temperatures. The thermocycle (CT 12 : 12 h) with a series of different cryophases (8–22 °C) and thermophases (24–32 °C) under continuous darkness demonstrated a cryophase response threshold temperature of approximately 19 °C and a thermophase response threshold temperature of approximately 31 °C. Thermoperiodic amplitude (temperature difference between cryophase and thermophase) was shown to have a significant influence on diapause induction at the mean temperatures of 22, 23 and 24 °C, but not at ≥25 °C. Thermoperiodic responses under LD 12 : 12 h clearly showed that the incidence of diapause was influenced strongly by the photophase temperature. The thermoperiod under LD 12 : 12 h induced a much lower incidence of diapause than the thermoperiod with the same temperature in continuous darkness. The ecological significance of thermoperiodic induction of diapause in this species is discussed.  相似文献   

11.
The effect of daylength and temperature on the regulation of the larval diapause of a central Missouri population of the sunflower moth, Homoeosoma electellum, was examined. Fully grown fourth-instar larvae exhibit a facultative diapause. Measurements of the effect of photoperiod on diapause induction revealed critical photoperiods of about 13 h 30 min light/day at 20°C, and between 11 h 45 min and 12 h light/day at 23°C. Third and fourth-instar larvae were shown to be the main sensitive stages for diapause determination. Daylength was also shown to be an important regulator of the rate of diapause development. A short day of LD 10:14 h permitted only a low rate of diapause development, whereas long days of LD 14:10 h and LD 16:8 h accelerated diapause development at 25 and 30°C. When long days were alternated with short days at 30°C the accelerating effect of long days on diapause development was not found. Systematic transfers of chilled diapausing larvae revealed an accelerated diapause development in groups transferred from 10 to 30°C LD 10:14 h, but diapause development was not accelerated in groups transferred from 10 to 30°C LD 16:8 h.  相似文献   

12.
The yellow peach moth, Conogethes punctiferalis (Guenée), a multivoltine species that overwinters as diapausing larvae, is one of the most serious insect pests on maize in China. Effect of photoperiod and temperature on larval diapause was examined under empirical laboratory conditions. Short‐day treatments caused larval diapause at 25°C, and the critical photoperiod was between 12 and 13 h (or 12 h 51 min) light per day. No sensitive instar was identified for diapause induction under alternated short‐ (L : D 11 : 13 h) and long‐day (L : D 14 : 10 h) treatments at different larval stages. However, accumulative treatment of three instars and 10 d under short‐day treatment was required for the induction of 50% larval diapause. All larvae entered diapause at 20°C, whereas less than 3% did so at 30°C, irrespective of the long‐ or short‐day treatment. Furthermore, under the short‐day treatment, more than 90% of larvae went into diapause with temperatures ≤ 25°C, but less than 17% did so at 28°C. In contrast, under the long‐day treatment, less than 19% of larvae went into diapause with temperatures ≥ 23°C. The forward shift (5°C) of critical temperature under the long‐day regime demonstrated the compensatory effect of temperature and photoperiod on diapause induction. In conclusion, C. punctiferalis had a temperature‐dependent type I photoperiodic diapause response; there was no sensitive instar for diapause determination, but the photoperiodic accumulation time countermeasures both of the short‐day cycles and the number of instars exposed, and the photoperiodic diapause response, was a temperature‐compensated phenomenon.  相似文献   

13.
The varied carpet beetle Anthrenus verbasci L. has a circannual pupation rhythm and pupates in the spring in the wild. The change in photoperiod acts as a predominant zeitgeber for this rhythm. However, it is unclear whether the change in ambient temperature acts as a zeitgeber. The present study examines the effects of low‐temperature pulses on this circannual rhythm by exposing larvae kept under constant short‐day conditions (LD 12 : 12 h) at 20 °C to a lower temperature of 15, 10 or 5 °C for 8 or 12 weeks at various phases. Larval development and pupation are suppressed during exposure to low temperature, with this pupation being induced in sufficiently grown larvae within 2 months of a return to 20 °C. These results are attributed to the exogenous suppression and stimulation of pupation, rather than being related to the circannual rhythm (i.e. masking of the circannual rhythm by temperature). Furthermore, long‐term observations demonstrate the existence of phase‐dependent phase shifts of circannual rhythm as a result of low‐temperature pulses. Circannual phase response curves to low temperature are constructed on the basis of the phase shifts obtained. A low‐temperature pulse as a winter signal can reset the circannual rhythm of A. verbasci. It is probable that both temperature and photoperiod play a role in the entrainment of this circannual rhythm to a natural year.  相似文献   

14.
Diapausing larvae of Eurytoma amygdali Enderlein (Hymenoptera, Eurytomidae) were collected in early August and late September. They were subjected to various photoperiod and temperature regimens for up to 20 weeks, then kept at L16:D8 and 19 °C for another 14 to 26 weeks for diapause to be terminated and pupation to take place. Photoperiod did not affect diapause completion. It was confirmed that the two morphologically distinct diapause stages have different temperature requirements for their completion. The first diapause stage was completed synchronously at temperatures between 16 and 19 °C. A higher temperature of 26 °C delayed diapause development. The second stage required lower temperatures between 4 and 10 °C. Spontaneous termination of diapause was observed at constant 19 °C. When applied to the first diapause stage for 20 weeks, low temperatures made the larvae refractory to subsequent intermediate temperatures. The first stage was thus maintained until a higher temperature of 26 °C made the larvae regain their ability to respond to the intermediate temperatures and complete this stage. Larvae grown in Retsou almonds had a higher diapause intensity than larvae grown in Truoito almonds. The results suggest that, in nature, the high temperatures of late summer and early autumn are likely to maintain the first diapause stage. Subsequently, the less warm temperatures of autumn allow the completion of the first stage by late autumn, and the low temperatures of late autumn and of winter allow the completion of the second diapause stage by mid winter.  相似文献   

15.
H. Dautel  W. Knülle 《Oecologia》1997,113(1):46-52
The occurrence of diapause and quiescence was investigated in Argas reflexus engorged larvae, nymphs I and nymphs II. For diapause experiments, larvae were maintained at five different locations: at constant 20°C long day (LD; 17 h light:7 h dark) or short day (SD; 10 h light:14 h dark), at two locations with natural photoperiod and temperature and at one location with natural photoperiod but constant 15°C. At 20°C, diapause incidence was low in physiologically young larvae, increased with larval age, and then decreased to zero in specimens of increased physiological age. This pattern, observed both at constant LD and SD, suggests that the propensity to diapause changes with the physiological age of the unfed larva. The duration of diapause decreased with increasing larval physiological age at all locations, resulting in a seasonally synchronized moulting pattern. The results suggest that A. reflexus larvae are photoperiodically sensitive both before and after feeding and that decreasing daylengths may be particularly strong inductive stimuli. The developmental zero and thermal constant of the larvae were determined as 13.24°C and 220 degree-days, respectively. Degree-day measurements revealed that larval A. reflexus may enter a diapause of different length when fed between August and December and kept at natural daylength. Development of engorged nymphs I and nymphs II, but not of larvae, was ultimatively restricted at a temperature of 37.5°C, but immediately resumed at 25°C, demonstrating the occurrence of quiescence at high temperatures. Similarly, at a low temperature of 15°C, many nymphs I and II did not develop within 58 months, but did so successfully after transfer to 25°C, without additional food intake. Received: 20 May 1997 / Accepted: 4 August 1997  相似文献   

16.
Plodia interpunctella Hübner (Lepidoptera: Pyralidae) comprises a model insect to analyse the photoperiodic time‐measuring system controlling its larval diapause. In the present study, the effective length of light pulse in night interruption experiments is determined at 25 °C. Various lengths of light pulse are tested by inserting them at the midnight of an LD 12 : 12 h photoperiod. When the light pulse is 15 or 30 min, the incidence of diapause is 86%. To inhibit the induction of diapause effectively, a light pulse of 1.75–2 h is needed. The incidence of diapause is 12% under an LD 12 : 5 : 2 : 5 h photoperiod. To determine the precise role of the light pulse, 2‐h light pulses placed at the midnight of an LD 12 : 12 h photoperiod are disrupted systematically by darkness. When a 2‐h light pulse is disrupted by 15 min of darkness, diapause is generally prevented (< 29%) regardless of the temporal position of darkness. Longer disruption by darkness induces diapause moderately (37–67%). A Bünsow experiment is also conducted at 25 and 20 °C, in which the main photophase of 12 h of light is combined with 24–72‐h scotophases scanned by a 2‐h light pulse. The photoperiodic cycle length tested, therefore, varies in the range 36–84 h. In each cycle length, the incidence of diapause fluctuates as the light pulse moves toward dawn. However, no regular and circadian changes in the percentage diapause are observed in relation to diapause determination.  相似文献   

17.
Diapausing larvae of Ephestia elutella reared at 20°C in short photoperiods (LD 11:13), and then maintained 12 weeks or longer at 5–15°C before transfer to 20 or 25°C, pupated sooner than unchilled controls. At 25°C, all samples kept in long photoperiods (LD 15:9) survived better and pupated faster than similarly treated samples held in short photoperiods (LD 9:15). Samples kept at 20°C after chilling pupated much slower than those at 25°C, and, except after exposure at 5°C, pupated at similar rates at LD 11:13 or 15:9, although mortality was higher at the shorter photoperiod. After exposure at 5°C, larvae required increased day-length as well as increased temperature to hasten pupation whereas after exposure at 10°C most responded to increased temperature only.For samples maintained in slightly heated or unheated outbuildings, the summer emergence was poorly synchronized and males on average emerged ahead of females. Samples moved from the unheated outbuilding to 25°C and long days in the laboratory in early spring, however, pupated quickly and males and females emerged together. A late phase of diapause development thus exists requiring both high temperature and long photoperiods to ensure a prompt resumption of morphogenesis. Spring temperatures in the United Kingdom are seldom high enough to synchronize the completion of diapause.  相似文献   

18.
Larvae of the bean blister beetle, Epicauta gorhami, feed on only grasshopper eggs and undergo hypermetamorphosis with pseudopupal diapause in the fifth instar. Whether E. gorhami larvae enter pseudopupal diapause or pupate directly from the fourth instar is controlled by temperature and photoperiod. In nature, larvae are confronted with a significant variation in the availability of food, suggesting the possibility that feeding conditions may also affect the diapause incidence. Here, we addressed this issue by changing the feeding conditions in the fourth instar under conditions of 16 h light : 8 h dark (LD 16 : 8) at 25°C. Food deprivation reduced the length of instar and increased the tendency to pupate, leading to the early eclosion of a small adult. Even non‐feeding fourth‐instar larvae pupated. Regardless of the timing of food deprivation, the post‐feeding larval period was constant and equivalent to that of ad libitum‐fed larvae, suggesting that premature exhaustion of the food supply triggers the initiation of pupation. In agreement with these results, when larvae were fed on intact grasshopper egg pods of various sizes from four species, those that fed on smaller egg pods had a decreased tendency to pseudopupate (i.e., to enter diapause). Food‐deprived larvae showed a clearer photoperiodic response and had a shorter critical day‐length. Thus, in E. gorhami, feeding conditions do not affect pupation success, but do affect the tendency to pupate or pseudopupate. This is the first report of the occurrence of premature pupation in carnivorous insects. We discuss our findings in the context of the natural history and behavioral ecology of E. gorhami.  相似文献   

19.
To investigate the physiology of Chrysopa pallens, the effect of photoperiod on diapause and development was examined in a Japanese population (33.4°N). The response stage for diapause of C. pallens was considered to be the prepupal stage. The critical photoperiod for diapause induction at 20.0°C was between 13 h light : 11 h dark (LD 13:11) and LD 14:10. The larval developmental period was affected by photoperiod: larvae in diapause took longer to complete their development. This difference of larval developmental period in relation to photoperiod was considered to be an adjustment of larval diapause timing.  相似文献   

20.
ABSTRACT. The duration of diapause in larvae of Plodia interpunctella (Hübner) (Lepidoptera, Pyralidae) was assessed at 20°C in LD 11:13. Mean times from hatch to pupation for diapausing larvae from different populations ranged from 88 to 236 days. Most non-diapausing larvae pupated within 70 days at this temperature. Transferring diapausing larvae to 25°C and LD 9:15, or to 20°C and LD 15:9, 70 days after hatch reduced the subsequent mean time to pupation by 18–82% and 9–63% respectively. Only two population samples terminated diapause faster under LD 15:9 at 20°C than under LD 9:15 at 25°C. The mortality of diapausing larvae caused by 6- or 10-week exposures at 5, 7.5 or 10°C was generally less than 25%. Hybrids produced from a reciprocal cross between a temperate and a tropical African stock survived well. For other stocks there was some correlation between survival and diapause intensity. The low temperature regime which resulted in the greatest shortening of pupation time after return to the conditions used to induce diapause, did not always coincide with the temperature permitting the best survival. Results, however, indicate that some individuals of all stocks but one from the tropics are likely to survive in the U.K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号