首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Sodium butyrate (NaBu) can enhance the expression of genes controlled by some of the mammalian promoters, but it can also inhibit cell growth and induce cellular apoptosis. Thus, the beneficial effect of using a higher concentration of NaBu on a foreign protein expression is compromised by its cytotoxic effect on cell growth. To overcome this cytotoxic effect of NaBu, the expression vector of antisense RNA of caspase-3 was constructed and transfected to recombinant Chinese hamster ovary (rCHO) cells producing a humanized antibody. Using this antisense RNA strategy, rCHO cells (B3) producing a low level of caspase-3 proenzyme were established. When batch cultures of both B3 cells and control cells transfected with antisense RNA-deficient plasmid were performed in the absence of NaBu, both cells showed similar profiles of cell growth and antibody production. Compared with control cell culture, under the condition of 5 mM NaBu addition at the exponential growth phase, expression of antisense RNA of caspase-3 significantly suppressed the NaBu-induced apoptosis of B3 cells and extended culture longevity by >2 days if the culture was terminated at cell viability of 50%. However, compared with control cell culture, the final antibody concentration of B3 cell culture was not increased in the presence of NaBu, which may be due to the loss of cellular metabolic capability resulted from the depolarization of mitochondrial membrane. Taken together, this study suggests that, although expression of antisense RNA of caspase-3 does not improve antibody productivity of rCHO cells, it can suppress NaBu-induced apoptotic cell death of rCHO cells and thereby may reduce problems associated with cellular disintegration.  相似文献   

2.
Human thrombopoietin (hTPO) is a heavily glycosylated protein with 6 and 24 potential N- and O-glycosylation sites, respectively. To determine the effect of sodium butyrate (NaBu) on the production and quality of hTPO in recombinant Chinese hamster ovary (rCHO) cells, NaBu (0-10 mM) was added to the cultures of exponentially growing cells. NaBu addition significantly increased both the specific and volumetric hTPO production, although it decreased the cell viability by apoptosis in a dose-dependent manner. The highest hTPO concentration of 82.2 +/- 5.6 microgml-1 was obtained in the culture with 3 mM NaBu addition. Compared with the culture without NaBu addition, the culture with 3 mM NaBu resulted in a 6.4-fold increase in qTPO and a 3.3-fold increase in the final hTPO concentration on day 7. However, NaBu deteriorated the quality of hTPO, resulting from increased heterogeneity, reduced acidic hTPO isoforms, reduced alpha(2 --> 3) sialylation, and decreased in vivo biological activity. We also found that the biological activity of hTPO in the culture with 3 mM NaBu addition collected on day 7 was 72% of that in the culture without NaBu addition. Taken together, the use of NaBu or its optimal concentration for high-level expression of a heavily glycosylated protein like hTPO should be determined by considering its detrimental effect on the quality of glycoprotein.  相似文献   

3.
Microcarriers are suitable for high-density cultures of cells requiring surface attachment and also offer the advantage of easy media removal for product recovery. We have used the macroporous microcarriers Cytopore 1 and 2 for the growth of CHO cells producing recombinant human beta-interferon (beta-IFN) in stirred batch cultures. Although these cells may grow in suspension, in the presence of Cytopore microcarriers they become entrapped in the inner bead matrix where they can be maintained at high densities. Cell growth rates were reduced in microcarrier cultures compared to suspension cultures. However, the beta-IFN yield was up to 3-fold greater as a result of an almost 5-fold higher specific productivity. Maximum productivity was found in cultures containing 1.0 mg/mL of Cytopore 1 or 0.5 mg/mL of Cytopore 2 with a cell/bead ratio of 1029 and 822, respectively. Beta-IFN molecules aggregated in the later stages of all cultures, causing a decrease in response by ELISA. However, the degree of aggregation was significantly less in the microcarrier cultures. The N-linked glycans from beta-IFN were isolated and analyzed by normal phase HPLC. There was no apparent difference in the profile of glycans obtained from each of the suspension and Cytopore culture systems. This suggests that Cytopore microcarriers may be useful in bioprocess development for enhanced recombinant glycoprotein production without affecting the glycosylation profile of the protein.  相似文献   

4.
Recombinant human interferon-beta (β-IFN), used in the therapeutic treatment of multiple sclerosis (MS), can be produced on a large-scale from genetically engineered Chinese hamster ovary (CHO) cells. However, its hydrophobicity causes non-reversible, molecular aggregation in culture. The parameters affecting aggregation were determined to be concentration, culture residence time, temperature and glycosylation. Although the protein can be produced in Escherichia coli in a non-glycosylated form, the addition of glycans confers a reduced rate of aggregation as well as a 10-fold higher bioactivity. We report on the application of a low temperature perfusion culture designed to control the parameters that cause aggregation. In this three-phase culture system there is a transition to a low temperature (32°C) in a batch mode prior to implementing perfusion at 1 volume/day using an acoustic cell separator. Perfusion at the low temperature resulted in a 3.5-fold increase in specific productivity and a 7-fold increase in volumetric productivity compared to the batch culture at 37°C. The percentage aggregation of β-IFN was reduced from a maximum of 43% in batch culture to a minimum of 5% toward the end of the perfusion phase. The glycosylation profile of all samples showed predominantly sialylated biantennary fucosylated structures. The extent of sialylation, which is important for bioactivity, was enhanced significantly in the perfusion culture, compared to the batch culture.  相似文献   

5.
EJ-A is a Balb-3T3 transfectant cell line that bears a small number of EJ-ras oncogene copies/cell, has low EJ-ras expression, and resembles the parental cell line in displaying a non-transformed phenotype. The glucocorticoid hormone dexamethasone reversibly induces transformation traits in EJ-A cells, namely: 1) morphological transformation; 2) increased growth rate and saturation density; 3) reduced G1 length; and 4) independence of the FGF requirement to initiate DNA synthesis. Western blot analysis revealed that dexamethasone does not increase the p21ras protein intracellular level. beta-IFN, added to the culture medium, does not suppress the dexamethasone-induced growth stimulation and morphological transformation. Therefore, glucocorticoid hormones can complement low EJ-ras expression to transform Balb-3T3 cells, by a mechanism that is likely to be independent of p21ras increase and beta-IFN decrease.  相似文献   

6.
7.
Sodium butyrate (NaBu) can enhance the expression of genes from some of the mammalian promoters including cytomegalovirus (CMV) and simian virus 40 (SV40), but it can also inhibit cell growth and induce cellular apoptosis. Thus, the beneficial effect of using a higher concentration of NaBu on a foreign protein expression is compromised by its cytotoxic effect on cell growth. To overcome this cytotoxic effect of NaBu, a survival protein, human Bcl-2, was overexpressed in recombinant Chinese hamster ovary (CHO) cells (SH2-0.32), producing a humanized antibody directed against the S surface antigen of hepatitis B virus. When batch cultures of both control cells transfected with bcl-2-deficient plasmid (SH2-0.32-Deltabcl-2) and cells transfected with bcl-2 expression plasmid (14C6-bcl-2) were performed in the absence of NaBu, both cells showed similar profiles of cell viability and antibody production. Compared with the SH2-0.32-Deltabcl-2 culture, under the condition of NaBu addition at the exponential growth phase, overexpression of the bcl-2 gene considerably suppressed the NaBu-induced apoptosis of 14C6-bcl-2 by inhibiting caspase 3 activity and extending culture longevity by >2 days. As a result, the final antibody concentration of 14C6-bcl-2 culture was twofold higher than that of SH2-0.32-Deltabcl-2 culture in the presence of NaBu and threefold higher than that of SH2-0.32-Deltabcl-2 and 14C6-bcl-2 cultures in the absence of NaBu.  相似文献   

8.
When sodium butyrate (NaBu) was added to serum-free suspension culture of recombinant CHO (rCHO) cells for enhanced expression of human thrombopoietin (hTPO), apoptotic cell death of rCHO cells was induced in a dose-dependent manner and hTPO quality was deteriorated in regard to sialic acid and acidic isoform contents. To overcome these problems, we overexpressed Bcl-2 protein, an antiapoptotic protein, in rCHO cells producing hTPO. Compared to serum-free suspension culture of control cells without Bcl-2 overexpression (R-neo cells) and NaBu addition, a more than 10-fold increase in the maximum hTPO concentration was obtained in serum-free suspension culture of cells with Bcl-2 overexpression (R-bc12-14 cells) and 3 mM NaBu addition. Both the enhanced specific productivity endowed by NaBu and the extended culture longevity provided by the antiapoptotic effect of Bcl-2 overexpression contributed to the enhancement of maximum hTPO concentration. The problem of quality reduction of hTPO induced by NaBu was not solved by Bcl-2 overexpression, but it was not that significant. Compared to the culture in the absence of NaBu, the percentage of hTPO isoforms in pI 3-5 with high in vivo biological activity produced by R-bc12-14 cells was decreased by approximately 18% in the presence of 3 mM. As a result, a more than 6-fold increase in the production of hTPO isoforms in pI 3-5 was achieved in R-bcl2-14 cell culture with 3 mM NaBu addition. Taken together, the data obtained suggest that Bcl-2 overexpression in rCHO cells and NaBu addition in serum-free suspension culture can be an effective means to enhance the production of highly glycosylated protein such as hTPO.  相似文献   

9.
促进CHO细胞生长及其产物hNGF表达的培养条件的初步研究   总被引:1,自引:1,他引:0  
以稳定表达人神经生长因子(hNGF)的重组工程CHO细胞株为对象,采用无血清流加悬浮培养(Fed batch culture)方式,考察使用基础培养基(无特殊添加物),分别添加丁酸钠、DMSO、KH2PO4的培养基及不同培养温度(32℃和37℃)对细胞生长和重组蛋白表达的影响。每日取样检测细胞密度、细胞活率、葡萄糖浓度、重组蛋白浓度。结果表明细胞培养温度由37℃下降至32℃,细胞生长周期明显延长,重组蛋白产量增加。5mmol/L丁酸钠和2% DMSO的加入虽然提高了重组蛋白的表达量,但严重抑制细胞生长。最大的蛋白比生成速率(qNGF)出现在37℃培养且添加2% DMSO的培养条件下,而最高蛋白表达量则出现于32℃培养添加3.65mmol/L KH2PO4的培养条件下。研究表明,将培养温度设为32℃,在基础培养基中添加3.65mmol/L KH2PO4或1% DMSO是提高hNGF表达水平的有效方法。  相似文献   

10.
Jiang W  Guo Q  Wu J  Guo B  Wang Y  Zhao S  Lou H  Yu X  Mei X  Wu C  Qiao S  Wu Y 《Molecular biology reports》2012,39(5):6235-6242
Sodium butyrate (NaBu), a histone deacetylase inhibitor, has been shown to inhibit cell growth, induce cell differentiation and apoptosis in multiple cell lines. In present study, we revealed the dual effects of NaBu in regulating hepatocellular carcinoma (HCC) cells. In two different HCC cell lines, SK-Hep1 and SMMC-7721, low concentrations of NaBu induced a significant increase in cell growth ratio and S-phase cell percentage, accompanied by a reduced p21 Cip1 expression at both mRNA and protein levels, while dissimilarly, high concentrations of NaBu inhibited cell growth and induced G1 arrest through up-regulation of p21 Cip1 and p27 Kip1 protein expression. The reduction of p45 Skp2 expression further indicated that the ubiquitin-mediated protein degradation might play a role in NaBu-induced up-regulation of p21 Cip1 and p27 Kip1. Moreover, the high concentration of NaBu was also able to trigger HCC cell apoptosis. Taken together, these results demonstrate the distinct effects of NaBu at different dosages. This finding may contribute to develop more effective tumor therapeutic protocols of NaBu in HCC.  相似文献   

11.
Sodium butyrate (NaBu), which is widely used in recombinant Chinese hamster ovary cell (rCHO) cultures for high-level expression of therapeutic proteins, is known to induce apoptosis in a dose-dependent manner. Lately, the significance of autophagy has increased in the field of CHO cell culture due to the fact that autophagy is related to the programmed cell death mechanism. To determine the effect of NaBu on autophagy as well as apoptosis of rCHO cells, rCHO cells producing erythropoietin were subjected to NaBu treatment. NaBu treatment up to 5 mM increased cleaved forms of PARP, caspase-3, and Annexin V positive population, confirming the previous results that NaBu induces apoptosis. Concurrently, NaBu treatment increased the level of accumulation of the autophagic marker, LC3-II, independently of nutrient depletion, suggesting that NaBu induces autophagy. To elucidate the potential role of autophagy induced by NaBu, a representative autophagy inducer (rapamycin) or an inhibitor (bafilomycin A1) was added to cultures together with NaBu. It was found that autophagy had the potential role of a positive cell survival mechanism under NaBu treatment. Furthermore, gradual reduction in mitochondrial membrane potential/mass and recruitment of a mitophagy protein, Parkin, to the mitochondria were observed under NaBu treatment, suggesting that this positive function of autophagy might be mediated by the autophagic removal of damaged mitochondria. Taken together, autophagy was observed in rCHO cell culture under NaBu treatments and the results obtained here support the positive effects of autophagy induced by NaBu treatments.  相似文献   

12.
Cell cultures containing 0 ∼ 5 mM sodium butyrate (NaBu) and grown at 30 and 37°C were conducted to investigate the combined effect of NaBu and low temperature on the quantity and quality of an antibody production in CHO cells. Although NaBu addition decreased cell viability by apoptosis in a dose-dependent manner at both 30 and 37°C, the onset of significant apoptosis induced by NaBu was delayed by lowering culture temperature. The highest specific antibody productivity (q p) of 23.26 pg/cell/day was obtained in the culture containing 2 mM NaBu at 30°C; however, the highest antibody concentration of 167.84 mg/L was achieved in the culture containing 1 mM NaBu at 30°C, as the detrimental effect of further NaBu addition on cell growth compromised its beneficial effect on q p. Moreover, protein quality with respect to the total sialic acid content and Nglycolylneuraminic acid (Neu5Gc) level was evaluated. There were no apparent changes regarding the total sialic acid content of the antibody, but manipulation of cultures with NaBu treatment or (and) low culture temperature did decrease Neu5Gc levels by 5 ∼ 10%. Biological activity of the antibody was also assessed, and no obvious changes were observed. Collectively, the simultaneous application of NaBu and low culture temperature was an effective way to extend culture period and enhance final antibody concentration, without compromising the sialic acid content or biological activity.  相似文献   

13.
A mutant of E. coli constitutive for β-galactosidase has been grown in batch culture with the carbon source, glycerol, fed at various fixed rates to the culture. High feeding rates where growth was only slightly restricted gave final enzyme levels similar to those obtained in cultures where all the glycerol was added initially. Low feeding rates resulted in breakdown of the β-galactosidase formed and gave reduced final levels of the enzyme.  相似文献   

14.
Culture conditions that affect product quality are important to the successful operation and optimization of recombinant protein production. The objective of this study was to optimize culture conditions for growth of recombinant Drosophila melanogaster S2 cells (S2AcRVGP) in order to enhance the production of rRVGP. The addition of DMSO and glycerol to the medium and growth at a reduced temperature (22 °C) were the culture condition variations selected to be tested. Experimental cultures were first performed in serum-free Sf900 II medium in 250 ml Schott flasks. The most promising conditions identified in these experiments were also tested on a higher scale in a 3l bioreactor. In the Schott flasks experiments, all the changes in culture conditions resulted in an increase of rRVGP production. The protein concentration was 3.6-fold higher with addition of 1% DMSO and 1% glycerol and 9.3-fold higher when the cells were cultured at 22 °C instead of the standard 28 °C. The maximum concentration of rRVGP reached was 591 μg l−1. In bioreactor experiments, with control of pH at 6.20 and DO at 50%, the reduced culture temperature (22 °C) was the strategy that promoted the highest glycoprotein production, 928 μg l−1.  相似文献   

15.
16.
Feng S  Yan YB 《Proteins》2008,71(2):844-854
All organisms have developed detect, repair, regulation, and stabilization mechanisms to survive from cellular and molecular damage induced by diverse stresses. Among them, the accumulation of osmolytes is a common mechanism evolved by cells to maintain cell volume and stabilize macromolecules against various environmental stresses. The molecular mechanisms by which osmolytes stabilize proteins and prevent aggregation have been well-established. However, little is known about the effects of osmolytes on mutated or damaged proteins. In this research, we investigated the effects of glycerol on the activity, structure, and stability of the wild type (WT) and D54G CK under normal and extreme (high temperature) conditions. It was found that glycerol had similar effects on the suppression of the aggregation during the refolding of both proteins. Under native conditions, the effect of glycerol on the mutated protein was more obvious than on the WT protein. Glycerol could efficiently force the mutated protein to fold to a state close to the WT protein, and thus stabilize the native state of the mutated protein. Glycerol could also protect both the WT and mutated proteins against heat-induced denaturation. However, the change in the transition free energy of heat-induced inactivation of the WT protein was larger than that of the mutated protein. These results suggested that glycerol might have differential effects on the changes of the chemical potential and the transition free energy of the WT and mutated proteins.  相似文献   

17.
After thawing cells, previously cryopreserved in the presence of dimethyl sulfoxide (DMSO), a decrease in their viability and increase in unscheduled DNA synthesis was observed. In 7 days, these parameters restored to the control level. Cryopreservation without DMSO resulted in the decrease in both cell viability and replicative and unscheduled DNA synthesis. In 14 days, these characteristics were seen to return to the normal level. Cryopreservation of cells without DMSO and their preservation in liquid nitrogen induced the frequency of chromosomal aberrations, mostly chromosomal breaks. The frequency of chromosomal aberrations increased with the duration of cell preservation in liquid nitrogen. The normal level was achieved following 7 days after cell thawing. Cells treated with DMSO only (without cryopreservation) display an increased number of chromosomal and chromatid breaks and translocations. Nonrandom distribution of chromosomal aberrations was observed, with particular chromosomes being involved in the appearance of dicentrics and translocations. The data obtained indicate that cryoprotective activity of DMSO is probably associated with the cell repair systems. The detected antimutagenic and mutagenic activity of DMSO may presumably reflect various conditions for its interaction with cells (with or without cryopreservation), as well as it may be specific for the muntjac cell line used in the present work.  相似文献   

18.
Bcl‐xL, a member of the Bcl‐2 family, is known to inhibit apoptosis of recombinant Chinese hamster ovary (rCHO) cells induced by the addition of sodium butyrate (NaBu), which is used for the elevated expression of recombinant protein. In order to understand the intracellular effects of Bcl‐xL overexpression on CHO cells treated with NaBu, changes to the proteome caused by controlled Bcl‐xL expression in rCHO cells producing erythropoietin (EPO) in the presence of 3 mM NaBu were evaluated using two‐dimensional differential in‐gel electrophoresis (2D‐DIGE) and MS analysis. The consequences of Bcl‐xL overexpression were not limited to the apoptotic signaling pathway. Out of eight proteins regulated significantly by Bcl‐xL overexpression in 3 mM NaBu addition culture, four proteins were related to cell survival (Iq motif‐containing GTPase‐activating protein 1), cell proliferation (dihydrolipoamide‐S‐acetyltransferase, guanine nucleotide binding protein alpha interacting 2), and repair of DNA damage (BRCA and CDKN1A interacting protein). Taken together, a DIGE approach reveals that overexpression of Bcl‐xL not only inhibits apoptosis in the presence of NaBu but also affects cell proliferation and survival in various aspects. Biotechnol. Bioeng. 2010; 105: 358–367. © 2009 Wiley Periodicals, Inc.  相似文献   

19.
Proton translocation coupled to dimethyl sulfoxide (DMSO) reduction was examined in Escherichia coli HB101 grown anaerobically on glycerol and DMSO. Rapid acidification of the medium was observed when an anaerobic suspension of cells, preincubated with glycerol, was pulsed with DMSO, methionine sulfoxide, nitrate, or trimethylamine N-oxide. The DMSO-induced acidification was sensitive to the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (60 microM) and was inhibited by the quinone analog 2-n-heptyl-4-hydroxy-quinoline-N-oxide (5.6 microM). Neither sodium azide nor potassium cyanide inhibited the DMSO response. An apparent----H+/2e- ratio of 2.9 was obtained for DMSO reduction with glycerol as the reductant. Formate and H2(g), but not lactate, could serve as alternate electron donors for DMSO reduction. Cells grown anaerobically on glycerol and fumarate displayed a similar response to pulses of DMSO, methionine sulfoxide, nitrate, and trimethylamine N-oxide with either glycerol or H2(g) as the electron donor. However, fumarate pulses did not result in acidification of the suspension medium. Proton translocation coupled to DMSO reduction was also demonstrated in membrane vesicles by fluorescence quenching. The addition of DMSO to hydrogen-saturated everted membrane vesicles resulted in a carbonyl cyanide p-trifluoromethoxyphenyl-hydrazone-sensitive fluorescence quenching of quinacrine dihydrochloride. The data indicate that reduction of DMSO by E. coli is catalyzed by an anaerobic electron transport chain, resulting in the formation of a proton motive force.  相似文献   

20.
The chemical additive sodium butyrate (NaBu) has been applied in cell culture media as a direct and convenient method to increase the protein expression in Chinese hamster ovary (CHO) and other mammalian cells. In this study, we examined an alternative chemical additive, 1,3,4‐O‐Bu3ManNAc, for its effect on recombinant protein production in CHO. Supplementation with 1,3,4‐O‐Bu3ManNAc for two stable CHO cell lines, expressing human erythropoietin or IgG, enhanced protein expression for both products with negligible impact on cell growth, viability, glucose utilization, and lactate accumulation. In contrast, sodium butyrate treatment resulted in a ~20% decrease in maximal viable cell density and ~30% decrease in cell viability at the end of cell cultures compared to untreated or 1,3,4‐O‐Bu3ManNAc treated CHO cell lines for both products. While NaBu treatment enhanced product yields more than the 1,3,4‐O‐Bu3ManNAc treatment, the NaBu treated cells also exhibited higher levels of caspase 3 positive cells using microscopy analysis. Furthermore, the mRNA levels of four cell apoptosis genes (Cul2, BAK, BAX, and BCL2L11) were up‐regulated more in sodium butyrate treated wild‐type, erythropoietin, or IgG expressing CHO‐K1 cell lines while most of the mRNA levels of apoptosis genes in 1,3,4‐O‐Bu3ManNAc treated cell lines remained equal or increased only slightly compared to the levels in untreated CHO cell lines. Finally, lectin blot analysis revealed that the 1,3,4‐O‐Bu3ManNAc‐treated cells displayed higher relative sialylation levels on recombinant EPO, consistent with the effect of the ManNAc component of this additive, compared to control while NaBu treatment led to lower sialylation levels than control, or 1,3,4‐O‐Bu3ManNAc‐treatment. These findings demonstrate that 1,3,4‐O‐Bu3ManNAc has fewer negative effects on cell cytotoxicity and apoptosis, perhaps as a result of a more deliberate uptake and release of the butyrate compounds, while simultaneously increasing the expression of multiple recombinant proteins, and improving the glycosylation characteristics when applied at comparable molarity levels to NaBu. Thus, 1,3,4‐O‐Bu3ManNAc represents a highly promising media additive alternative in cell culture for improving protein yields without sacrificing cell mass and product quality in future bioproduction processes.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号