首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In Xenopus, axis development is initiated by dorsally elevated levels of cytoplasmic beta-catenin, an intracellular factor regulated by GSK3 kinase activity. Upon fertilization, factors that increase beta-catenin stability are translocated to the prospective dorsal side of the embryo in a microtubule-dependent process. However, neither the identity of these factors nor the mechanism of their movement is understood. Here, we show that the GSK3 inhibitory protein GBP/Frat binds kinesin light chain (KLC), a component of the microtubule motor kinesin. Upon egg activation, GBP-GFP and KLC-GFP form particles and exhibit directed translocation. KLC, through a previously uncharacterized conserved domain, binds a region of GBP that is required for GBP translocation and for GSK3 binding, and competes with GSK3 for GBP. We propose a model in which conventional kinesin transports a GBP-containing complex to the future dorsal side, where GBP dissociates and contributes to the local stabilization of beta-catenin by binding and inhibiting GSK3.  相似文献   

2.
3.
The dorsoventral axis of the frog embryo is specified by a rotation of the egg cytoplasm relative to the cortex. When eggs undergoing the cortical/cytoplasmic rotation were examined by immunocytochemistry and electron microscopy, an extensive array of parallel microtubules was found covering the vegetal hemisphere of the egg. The microtubules were 1-3 microns deep from the plasma membrane and were aligned parallel to the direction of rotation. They formed at the start of rotation and disappeared at its completion. Colchicine and uv irradiation, inhibitors of the rotation, prevented the formation of the parallel microtubules. Based on these properties, we suggest that the parallel microtubules serve as tracks for the cortical/cytoplasmic rotation which specifies the dorsoventral axis of the embryo.  相似文献   

4.
A spiral cortical fiber system in fertilized sea urchin eggs   总被引:2,自引:0,他引:2  
Fiber systems of fertilized eggs of the sea urchin Strongylocentrotus purpuratus become aggregated and thus visible in phase-contrast light microscopy, when cells are fixed in 2% glutaraldehyde in 0.45 M Na-acetate buffer at pH 6.0 and embedded in epoxy. Studies of whole mounts and of 1-μm stained sections of the first-division cycle revealed a spiral array of subcortical fibers that apparently grow inward from the cell surface shortly after sperm entry and disappear prior to streak stage. They are independent of the microtubule system associated with the sperm aster, amphiaster, and mitotic apparatus. Their chemical identity is not known, but they may very likely be actin.  相似文献   

5.
Summary Using scanning electron microscopy, we show that the calcium ionophore A23187 has a profound effect on the surface morphology ofXenopus laevis eggs. The response to ionophore can be interpreted with respect to animal/vegetal polarity and the presence of an asymmetrically organized actomyosin-based contractile system in the egg cortex. When incubated in ionophore, the egg cortex contracts, pigment granules move towards the animal pole, and microvilli increase dramatically in size. While at first overall microvilli density decreases, many additional microvilli appear later in the animal hemisphere but not in the vegetal hemisphere. Eggs incubated in high concentrations of A23187 undergo the same surface changes at a faster rate, and rupture due to a massive cortical contraction. Local application of ionophore to the egg surface results in increased microvilli size and density in that area, with the animal hemisphere showing the greatest response. Since the effects of ionophore are inhibited by the actomyosin probe, N-ethylmaleimide-modified heavy meromyosin, actomyosin is implicated in the ionophore-induced surface changes.  相似文献   

6.
Triton-treated cortical fragments of unfertilized and fertilized sea urchin eggs prepared in the presence of greater than or equal to 5 mM EGTA contain 15-30% of the total egg actin. However, actin filaments are not readily apparent by electron microscopy on the cortical fragments of unfertilized eggs but are numerous on those of fertilized eggs. The majority of the actin associated with cortical fragments of unfertilized eggs is solubilized by dialysis against a low ionic strength buffer at pH 7.5. This soluble actin preparation (less than 50% pure actin) does not form proper filaments in 0.1 M KCl and 3 mM MgCl2, whereas actin purified from this preparation does, as judged by electron microscopy. Optical diffraction analysis reveals that these purified actin filaments have helical parameters very similar to those of muscle actin. Furthermore, the properties of the purified actin with regard to activation of myosin ATPase are similar to those of actin from other cell types. The possibility that actin is maintained in a nonfilamentous form on the inner surface of the unfertilized egg plasma membrane and is induced to assemble upon fertilization is discussed.  相似文献   

7.
This paper aims at examining the effect of colchicine, a microtubular poison, on the process of furrow formation in whole eggs and egg fragments as well as the process of artificial induction of furrow-like dents, in eggs of the newt, Cynops pyrrhogaster. To apply colchicine locally to eggs, the eggs were slit across or along a furrow in a colchicine solution during first cleavage. When a slit was made across or in front of a growing furrow at the onset of its growth, the furrow quickly ceased growing and often regressed. Cortices containing an entire growing furrow were isolated along with a thin layer of subcortical cytoplasm immediately after the start of the first cleavage. Furrows in the cortices degenerated when the cortices were cultured in a colchicine solution, whereas they continued growing when they were cultured in Holtfreter's saline. Furrow-inducing cytoplasm was injected to a site beneath the cortex in the animal half of the egg during first cleavage. When a small slit was made close to the site of the injection in a colchicine solution, no furrow-like dent was induced. These results imply that microtubules are directly involved in the generation and growth of cleavage furrows.  相似文献   

8.
Han Y  Yu J  Guo F  Watkins SC 《Protoplasma》2006,227(2-4):223-227
Summary. Transmission electron microscopy of immunogold-labeled Chinese pine egg cells before and after fertilization revealed that polysomes are associated with microtubules (MTs) from fertilization to the 2-nucleate embryo stage. Ribosome aggregates of various size and shape were randomly distributed in the cytoplasm of the eggs before fertilization. Single MTs or clusters were observed to be free of polysomes at this stage. Upon fertilization, all polysomes were attached to MTs, and this association persisted until the formation of the polarized embryo. Thereafter, the polysomes spread into the cytoplasm and no polysome-MT association was observed in the embryo. Some of the polysomes were attached to one end of the MTs, while others appeared to form contacts along their entire length. No polysome-microfilament association was observed at any stage of the development. The polysome-MT association may provide a mechanism for MT-dependent mRNA localization in early embryo development of this plant. Correspondence and reprints: Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, U.S.A.  相似文献   

9.
M R Rebagliati  D A Melton 《Cell》1987,48(4):599-605
Previous experiments have shown that mRNA translation in frog oocytes can be inhibited by the injection of a complementary antisense RNA. Here we explore the use of antisense RNAs to study the functions of localized maternal mRNAs during postfertilization development. While developmental abnormalities were observed in injected fertilized eggs, these abnormalities could not be attributed to the antisense RNA since they were induced at a similar frequency in control embryos. Biochemical tests show that the injected antisense RNA does not form stable hybrids in vivo with its complementary endogenous mRNA. In addition, a novel activity that unwinds RNA:RNA duplexes was found. This activity exists at high levels in eggs and early embryos and is absent or very much diminished in oocytes and late blastula embryos. These results suggest that antisense RNAs may be of limited use in studying the functions of maternal RNAs in Xenopus.  相似文献   

10.
A novel kinesin, GhKCH1, has been identified from cotton (Gossypium hirsutum) fibers. GhKCH1 has a centrally located kinesin catalytic core, a signature neck peptide of minus end-directed kinesins, and a unique calponin homology (CH) domain at its N terminus. GhKCH1 and other CH domain-containing kinesins (KCHs) belong to a distinct branch of the minus end-directed kinesin subfamily. To date the KCH kinesins have been found only in higher plants. Because the CH domain is often found in actin-binding proteins, we proposed that GhKCH1 might play a role in mediating dynamic interaction between microtubules and actin microfilaments in cotton fibers. In an in vitro actin-binding assay, GhKCH1's N-terminal region including the CH domain interacted directly with actin microfilaments. In cotton fibers, GhKCH1 decorated cortical microtubules in a punctate manner. Occasionally GhKCH1 was found to be associated with transverse-cortical actin microfilaments, but never with axial actin cables in cotton fibers. Localization of GhKCH1 on cortical microtubules was independent of the integrity of actin microfilaments. Thus, GhKCH1 may play a role in organizing the actin network in coordination with the cortical microtubule array. These data also suggest that flowering plants may employ unique KCHs to coordinate actin microfilaments and microtubules during cell growth.  相似文献   

11.
Kinesin from porcine brain was prepared by a procedure based on the strong binding of the protein to microtubules in the presence of sodium fluoride and ATP. The protocol reduces the requirement for taxol and AMP-PNP. The kinesin is active in terms of its ability to move microtubules on glass slides and its ATPase. The ATPase of this kinesin is about 8 nmol/min/mg; it is activated to 19 nmol/min/mg in the presence of microtubules. The relationship between gliding velocity and ATP concentration follows Michaelis-Menten kinetics. Using the motility assay, the maximal velocity is 0.78 micron/sec, and the Km value is 150 microM for ATP. For GTP the corresponding values are 0.38 micron/sec and 1.7 mM. ADP is a competitive inhibitor (Ki = 0.29 mM). Crude preparations of kinesin do not support motility on glass slides, whereas gel-filtered kinesin does. A search for potential inhibitory factors showed that one of them is MAP2; however, its inhibitory effect becomes visible only in certain conditions. MAP2 bound to microtubules does not inhibit kinesin-induced motility. However, when MAP2 and kinesin are preadsorbed to the glass surface independently of microtubules, MAP2 prevents the interaction of kinesin with microtubules, as if it formed a lawn that acted as a spacer and thus repelled the MAP-free microtubules or crosslinked the MAP-containing ones. The repelling effect of MAP2 domains (projection or assembly fragments obtained by chymotryptic cleavage) added separately is less pronounced and can be overcome by kinesin. These results reinforce the view of MAP2 as a spacer molecule.  相似文献   

12.
Colchicine, podophyllotoxin and vinblastine have been found to inhibit the action of vasopressin on water movement in the toad urinary bladder. Tubulin is the major colchicine binding component of toad bladder epithelial cells, accounting for approximately 3.3% of the total cell protein. More than 99% of the tubulin is found in the soluble fraction after sonication, the remainder is in the particulate fraction. Similar to the characteristics of the binding of colchicine to tubulins from other sources, the binding of colchicine to toad bladder tubulin is temperature- and time-dependent, is inhibited competitively by podophyllotoxin (Ki= 5.5 x 10(-7)m), and has a binding constant of 1 X 10(6) liters/mole at 37 degrees. Binding activity decays according to first-order kinetics and is stabilized by vinblastine. The characteristics of the interactions of colchicine and podophyllotoxin with epithelial cell tubulin in vitro closely parallel the ability of these drugs to inhibit the response to vasopressin in vivo. These results, coupled with those of functional and morphological studies, support the view that the ability of these drugs to affect vasopressin-induced water movement across toad bladder epithelial cells is related to the depolymerization of cytoplasmic microtubules.  相似文献   

13.
14.
At fertilization, the vitelline envelope surrounding the egg of Xenopus laevis is modified by the addition of an electron-dense component termed the “F layer.” The F layer functions as a block to polyspermy and as a block to the escape of macromolecules from the perivitelline space, thereby causing an osmotically driven envelope elevation. F-layer formation has been hypothesized to result from interaction between a cortical-granule lectin, released in the cortical reaction, and a jelly-coat ligand. Evidence for this hypothesis was sought by determining the location of the cortical-granule lectin both before and after fertilization, using a specific antibody conjugated to horseradish peroxidase. The cortical-granule lectin was localized only in the cortical granules of the unfertilized egg and was located predominantly in the perivitelline space and the F layer of a fertilized egg. These observations support the hypothesis that the F layer is formed by a cortical-granule-Iectin–jelly layer-ligand interaction.  相似文献   

15.
Rearrangements of cortical microtubules (CMTs) during the differentiation of axial secondary xylem elements within taproots and shoots of Aesculus hippocastanum L. (horse-chestnut) are described. A correlative approach was employed using indirect immunofluorescence microscopy of α-tubulin in 6- to 10-μm sections and transmission electron microscopy of ultrathin sections. All cell types – fibres, vessel elements and axial parenchyma – derive from fusiform cambial cells which contain randomly oriented CMTs. At the early stages of development, fibres and axial parenchyma cells possess helically arranged CMTs, which increase in number as secondary wall thickening proceeds and simple pits develop. In contrast, incipient vessel elements are distinguished by the marking out of sites of bordered pits; these sites first appear as microtubule-free regions within the reticulum of randomly oriented CMTs that characterises their precursor fusiform cambial cells. Subsequently, the ring of CMTs which develops at the periphery of the microtubule-free region decreases in diameter as the over-arching pit border is formed. Like bordered pits, large-diameter, non-bordered pits (contact pits) which develop between vessel elements and adjacent contact ray cells originate as microtubule-free regions and are also associated with development of a ring of CMTs at the periphery. In the case of contact pits, however, there is no reduction in the diameter of the CMT ring during pit development. Tertiary cell wall thickenings are also a feature of vessel elements and appear to form at sites where bands of laterally associated, transversely oriented CMTs, separated from each other by microtubule-free zones, are found. Later, these bands of CMTs become narrower, and separate into pairs of microtubule bundles located on each side of the developing wall thickening. Development of perforations between vessel elements is also associated with the presence of a ring of CMTs at their periphery. Received: 13 July 1998 / Accepted: 30 November 1998  相似文献   

16.
Two microtubule-containing structures are implicated in dorsoventral polarization of the frog egg, and we examined the relationship between them. The sperm aster provides a directional cue for a cortical rotation specifying polarity, and a vegetal cortical array of parallel microtubules is likely part of the rotational machinery. The growing aster has an accumulation of microtubules marking the path of the sperm pronucleus, and its microtubules extend into the egg cortex as well as the cytoplasm. To test whether the vegetal parallel array was an extension of astral cortical growth, fertilized or activated eggs were bisected into animal and vegetal fragments. The vegetal fragments formed parallel arrays, even when isolated within a few minutes of egg activation. Neither the sperm centrosome nor another microtubule organizing center in the animal half of the egg is required for formation of the parallel array, but some animal half activity is involved in its disappearance. Correspondence to: R.P. Elinson  相似文献   

17.
Eggs from the sea urchin, Lytechinus pictus, were injected with either EGTA or EDTA, and were subsequently fertilized. EGTA prevented cortical vesicle discharge and formation of the fertilization membrane. EDTA had either no effect, or sometimes retarded the elevation of the fertilization membrane, or reduced the percentage of eggs with elevated membranes. Theoretical considerations lead to estimates of the probable effects of EGTA and EDTA on the internally released calcium which triggers the cortical reaction. Whether or not cytoplasmic calcium buffers are considered, it is concluded: (1) that normally several times the threshold calcium concentration for the cortical reaction is released into a subsurface space; (2) that if a rapidly-equilibrating high-affinity buffer is present, it is locally saturated by the calcium released internally; (3) the injected EDTA reduces the subsurface free calcium concentration normally reached to approximately threshold for the cortical reaction, while injected EGTA reduces the calcium concentration to below this threshold; and (4) a rise in the internal ionic calcium concentration is a necessary step in the activation of the cortical reaction at fertilization.  相似文献   

18.
19.
Anti-tubulin antibodies and confocal immunofluorescence microscopy were used to examine the organization and regulation of cytoplasmic and cortical microtubules during the first cell cycle of fertilized Xenopus eggs. Appearance of microtubules in the egg cortex temporally coincided with the outgrowth of the sperm aster. Microtubules of the sperm aster first reached the animal cortex at 0.25, (times normalized to first cleavage), forming a radially organized array of cortical microtubules. A disordered network of microtubules was apparent in the vegetal cortex as early as 0.35. Cortical microtubule networks of both animal and vegetal hemispheres were reorganized at times corresponding to the cortical rotation responsible for specification of the dorsal-ventral (D-V) axis. Optical sections suggest that the cortical microtubules are continuous with the microtubules of the sperm aster in fertilized eggs, or an extensive activation aster in activated eggs. Neither assembly and organization, nor disassembly of the cortical microtubules coincided with MPF activation during mitosis. However, cycloheximide or 6-dimethylaminopurine, which arrest fertilized eggs at interphase, blocked cortical microtubule disassembly. Injection of p13, a protein that specifically inhibits MPF activation, delayed or inhibited cortical microtubule breakdown. In contrast, eggs injected with cyc delta 90, a truncated cyclin that arrest eggs in M-phase, showed normal microtubule disassembly. Finally, injection of partially purified MPF into cycloheximide-arrested eggs induced cortical microtubule breakdown. These results suggest that, despite a lack of temporal coincidence, breakdown of the cortical microtubules is dependent on the activation of MPF.  相似文献   

20.
The dorsal-ventral axis of amphibian embryos is specified by the "cortical rotation," a translocation of the egg cortex relative to the vegetal yolk mass. The mechanism of cortical rotation is not understood but is thought to involve an array of aligned, commonly oriented microtubules. We have demonstrated an essential requirement for kinesin-related proteins (KRPs) in the cortical rotation by microinjection beneath the vegetal cortex of an antipeptide antibody recognising multiple Xenopus egg KRPs. Time-lapse videomicroscopy revealed a striking local inhibition of the cortical rotation around the injection site, indicating that KRP-mediated translocation of the cortex is generated by forces acting across the vegetal subcortical region. Anti-tubulin immunofluorescence showed that the antibody disrupted both formation and maintenance of the aligned microtubule array. Direct examination of rhodamine-labelled microtubules by confocal microscopy showed that the anti-KRP antibody provoked striking three-dimensional flailing movement of the subcortical microtubules. In contrast, microtubules in antibody-free regions undulated only within the plane of the cortex, a significant population exhibiting little or no net movement. These findings suggest that KRPs have a critical role during cortical rotation in tethering microtubules to the cortex and that they may not contribute significantly to the translocation force as previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号