首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The membrane insertion of the E1 protein of a coronavirus, mouse hepatitis virus A59, was studied in a wheat germ cell-free translation system. E1 is a transmembrane protein spanning the lipid bilayer several times. It is synthesized without a cleavable signal sequence, localized intracellularly, and not transported to the cell surface. It thus represents a model intracellular protein. We found that the synthesis of E1 is specifically and stably blocked by the addition of signal recognition particle to the wheat germ system. Subsequent addition of salt-extracted pancreatic microsomes resulted in the full release of this arrest as well as the completion and the correct membrane integration of E1. Such signal recognition particle-induced arrests failed to produce shorter peptides of a defined length. Addition of signal recognition particle to a synchronized translation at any time during the synthesis of about the first two thirds of E1 (150 amino acids) blocked further translation, suggesting that the most C-terminal of the three internal hydrophobic domains of E1 could function as its signal sequence.  相似文献   

2.
The molecular events of membrane translocation and insertion have been investigated using a number of different model proteins. Each of these proteins has specific features that allow interaction with the membrane components which ensure that the proteins reach their specific local destination and final conformation. This review will give an overview on the best-characterized proteins studied in the bacterial system and emphasize the distinct aspects of the pathways.  相似文献   

3.
Predicted membrane topology of the coronavirus protein E1   总被引:16,自引:0,他引:16  
The structure of the envelope protein E1 of two coronaviruses, mouse hepatitis virus strain A59 and infectious bronchitis virus, was analyzed by applying several theoretical methods to their amino acid sequence. The results of these analyses combined with earlier data on the orientation and protease sensitivity of E1 assembled in microsomal membranes lead to a topological model. According to this model, the protein is anchored in the lipid bilayer by three successive membrane-spanning helices present in its N-terminal half whereas the C-terminal part is thought to be associated with the membrane surface; these interactions with the membrane protect almost the complete polypeptide against protease digestion. In addition, it is predicted that the insertion of E1 into the membrane occurs by the recognition of the internal transmembrane region(s) as a signal sequence.  相似文献   

4.
U Tatu  I Braakman    A Helenius 《The EMBO journal》1993,12(5):2151-2157
Using influenza hemagglutinin (HA0) and vesicular stomatitis virus G protein as model proteins, we have analyzed the effects of dithiothreitol (DTT) on conformational maturation and transport of glycoproteins in the secretory pathway of living cells. While DTT caused reduction of folding intermediates and misfolded proteins in the endoplasmic reticulum (ER), it did not affect molecules that had already acquired a mature trimeric conformation, whether present in the ER or elsewhere. The conversion to DTT resistance was therefore a pre-Golgi event. Reduction of folding intermediates was dependent on the intactness of the ER and on metabolic energy, suggesting cooperativity between DTT and ER folding factors. DTT did not inhibit most cellular functions, including ATP synthesis and protein transport within the secretory pathway. The results established DTT as an effective tool for analyzing the folding and compartmental distribution of proteins with disulfide bonds.  相似文献   

5.
Coronaviruses are positive-strand RNA viruses of extraordinary genetic complexity and diversity. In addition to a common set of genes for replicase and structural proteins, each coronavirus may carry multiple group-specific genes apparently acquired through relatively recent heterologous recombination events. Here we describe an accessory gene, ORF3, unique to canine coronavirus type I (CCoV-I) and characterize its product, glycoprotein gp3. Whereas ORF3 is conserved in CCoV-I, only remnants remain in CCoV-II and CCoV-II-derived porcine and feline coronaviruses. Our findings provide insight into the evolutionary history of coronavirus group 1a and into the dynamics of gain and loss of accessory genes.  相似文献   

6.
The intracellular sites of biosynthesis of the structural proteins of murine hepatitis virus A59 have been analyzed using cell fractionation techniques. The nucleocapsid protein N is synthesized on free polysomes, whereas the envelope glycoproteins E1 and E2 are translated on the rough endoplasmic reticulum (RER). Glycoprotein E2 present in the RER contains N-glycosidically linked oligosaccharides of the mannose-rich type, supporting the concept that glycosylation of this protein is initiated at the co-translational level. In contrast, O-glycosylation of E1 occurs after transfer of the protein to smooth intracellular membranes. Monensin does not interfere with virus budding from the membranes of the endoplasmic reticulum, but it inhibits virus release and fusion of infected cells. The oligosaccharide side chains of E2 obtained under these conditions are resistant to endoglycosidase H and lack fucose suggesting that transport of this glycoprotein is inhibited between the trans Golgi cisternae and the cell surface. Glycoprotein E1 synthesized in the presence of monensin is completely carbohydrate-free. This observation suggests that the intracellular transport of this glycoprotein is also blocked by monensin.  相似文献   

7.
8.
The carbohydrate contents of coronavirus glycoproteins E1 and E2 have been analyzed. E2 has complex and mannose-rich-type oligosaccharide side-chains, which are attached by N-glycosidic linkages to the polypeptide. Glycosylation of E2 is initiated at the co-translational level, and it is inhibited by tunicamycin, 2-deoxy-glucose, and 2-deoxy-2-fluoro-glucose. Thus, E2 belongs to a glycoprotein type found in many other enveloped viruses. E1, in contrast, represents a different class of glycoprotein. The following observations indicate that its carbohydrate side-chains have 0-glycosidic linkage. (1) The constituent sugars of E1 are N-acetylglucosamine, N-acetylgalactosamine, galactose, and neuraminic acid; mannose and fucose are absent. (2) The side-chains can be removed by β-elimination. (3) Glycosylation of E1 is not sensitive to the compounds interfering with N-glycosylation. E1 is the first viral glycoprotein analyzed that contains only 0-glycosidic linkages. Coronaviruses are therefore a suitable model system to study biosynthesis and processing of this type of glycoprotein.  相似文献   

9.
After synthesis on membrane-bound ribosomes, the variant surface glycoprotein (VSG) of Trypanosoma brucei is modified by: (a) removal of an N-terminal signal sequence, (b) addition of N-linked oligosaccharides, and (c) replacement of a C-terminal hydrophobic peptide with a complex glycolipid that serves as a membrane anchor. Based on pulse-chase experiments with the variant ILTat-1.3, we now report the kinetics of three subsequent processing reactions. These are: (a) conversion of newly synthesized 56/58-kD polypeptides to mature 59-kD VSG, (b) transport to the cell surface, and (c) transport to a site where VSG is susceptible to endogenous membrane-bound phospholipase C. We found that the t 1/2 of all three of these processes is approximately 15 min. The comparable kinetics of these processes is compatible with the hypotheses that transport of VSG from the site of maturation to the cell surface is rapid and that VSG may not reach a phospholipase C-containing membrane until it arrives on the cell surface. Neither tunicamycin nor monensin blocks transport of VSG, but monensin completely inhibits conversion of 58-kD VSG to the mature 59-kD form. In the presence of tunicamycin, VSG is synthesized as a 54-kD polypeptide that is subsequently processed to a form with a slightly higher Mr. This tunicamycin-resistant processing suggests that modifications unrelated to N-linked oligosaccharides occur. Surprisingly, the rate of VSG transport is reduced, but not abolished, by dropping the chase temperature to as low as 10 degrees C.  相似文献   

10.
The biosynthesis of human CD8 glycoprotein in transfected rat epithelial cells produces an unglycosylated precursor, an intermediate species only initially O-glycosylated, and a doublet mature form carrying neutral and sialylated O-linked oligosaccharides with the core-2 structure (Pascale, M. C., Malagolini, N., Serafini-Cessi, F., Migliaccio, G., Leone, A., and Bonatti, S. (1992) J. Biol. Chem. 267, 9940-9947). In this study the most relevant post-translational events: dimerization, addition of the first O-linked GalNAc, fulfillment of O-linked chains, as well as expression of involved glycosyltransferases, have been examined and correlated with the localization and transit rate of CD8 through the exocytic pathway. The glycosyltransferase activities measured in rat epithelial cells transfected with human CD8 DNA are entirely consistent with the primary structure assigned to CD8 oligosaccharides. The half-time of appearance of the initially O-glycosylated precursor and mature form was estimated to be 4 and 14 min, respectively, and the half-time for delivery of mature CD8 to the cell surface was found to be about 30 min, indicating a very fast routing. Pulse experiments with [35S]cysteine at 37 degrees C followed by chase-periods at low temperatures showed that folding/dimerization occurs before routing to the Golgi apparatus, whereas the addiction of O-linked GalNAc appears to take place later, very likely in cis-Golgi cisternae. Treatment of cells with monensin accumulated the intermediate CD8 form carrying non-elongated O-linked GalNAc, whereas brefeldin A treatment produced a sialylated glycoprotein species with a mobility faster than the mature CD8. These results indicate that the two drugs affect assembly of O-linked chains at different time of their processing.  相似文献   

11.
A number of proteins that are necessary for membrane transport have been identified using cell-free assays and yeast genetics. Although our knowledge of transport mechanisms remains limited, common themes are clearly emerging. In particular, specific GTP-binding proteins appear to be involved, not only at all steps of membrane traffic but also at more than one check-point within each step. The ordered sequence of events occurring during vesicle formation, targeting and fusion may be regulated in a stepwise manner by specific GTP-dependent switches, which act as modular elements of the transport mechanism.  相似文献   

12.
The role of N-linked glycosylation in processing and intracellular transport of rubella virus glycoprotein E2 has been studied by expressing glycosylation mutants of E2 in COS cells. A panel of E2 glycosylation mutants were generated by oligonucleotide-directed mutagenesis. Each of the three potential N-linked glycosylation sites was eliminated separately as well as in combination with the other two sites. Expression of the E2 mutant proteins in COS cells indicated that in rubella virus M33 strain, all three sites are used for the addition of N-linked oligosaccharides. Removal of any of the glycosylation sites resulted in slower glycan processing, lower stability, and aberrant disulfide bonding of the mutant proteins, with the severity of defect depending on the number of deleted carbohydrate sites. The mutant proteins were transported to the endoplasmic reticulum and Golgi complex but were not detected on the cell surface. However, the secretion of the anchor-free form of E2 into the medium was not completely blocked by the removal of any one of its glycosylation sites. This effect was dependent on the position of the deleted glycosylation site.  相似文献   

13.
The E1 glycoprotein of the avian coronavirus infectious bronchitis virus contains a short, glycosylated amino-terminal domain, three membrane-spanning domains, and a long carboxy-terminal cytoplasmic domain. We show that E1 expressed from cDNA is targeted to the Golgi region, as it is in infected cells. E1 proteins with precise deletions of the first and second or the second and third membrane-spanning domains were glycosylated, thus suggesting that either the first or third transmembrane domain can function as an internal signal sequence. The mutant protein with only the first transmembrane domain accumulated intracellularly like the wild-type protein, but the mutant protein with only the third transmembrane domain was transported to the cell surface. This result suggests that information specifying accumulation in the Golgi region resides in the first transmembrane domain, and provides the first example of an intracellular membrane protein that is transported to the plasma membrane after deletion of a specific domain.  相似文献   

14.
Human coronavirus HCoV-229E uses human aminopeptidase N (hAPN) as its receptor (C. L. Yeager et al., Nature 357:420-422, 1992). To identify the receptor-binding domain of the viral spike glycoprotein (S), we expressed soluble truncated histidine-tagged S glycoproteins by using baculovirus expression vectors. Truncated S proteins purified by nickel affinity chromatography were shown to be glycosylated and to react with polyclonal anti-HCoV-229E antibodies and monoclonal antibodies to the viral S protein. A truncated protein (S(547)) that contains the N-terminal 547 amino acids bound to 3T3 mouse cells that express hAPN but not to mouse 3T3 cells transfected with empty vector. Binding of S(547) to hAPN was blocked by an anti-hAPN monoclonal antibody that inhibits binding of virus to hAPN and blocks virus infection of human cells and was also blocked by polyclonal anti-HCoV-229E antibody. S proteins that contain the N-terminal 268 or 417 amino acids did not bind to hAPN-3T3 cells. Antibody to the region from amino acid 417 to the C terminus of S blocked binding of S(547) to hAPN-3T3 cells. Thus, the data suggest that the domain of the spike protein between amino acids 417 and 547 is required for the binding of HCoV-229E to its hAPN receptor.  相似文献   

15.
Double-label immunofluorescence staining studies in virus-infected subclone 11 of LB cells indicated that almost all of the vesicular stomatitis virus (VSV) glycoprotein (G) was plasma membrane-associated during the logarithmic phase of virus replication. In contrast, treatment with interferon (IFN) resulted in inhibition of VSV-G transport, so that almost all of the G remained associated with the Golgi complex (GC) at comparable times after infection. In both IFN-treated and control cells, G was resistant to treatment with the enzyme endo-beta-N-acetylglucosamine H (endo H) indicating that the bulk of the G had reached the trans compartment of the GC.  相似文献   

16.
17.
Nitroxide spin labels were incorporated into selected sites within the β-barrel of the bacterial outer-membrane transport protein BtuB by site-directed mutagenesis, followed by chemical modification with a methanethiosufonate spin label. The electron paramagnetic resonance lineshapes of the spin-labeled side chain (R1) from these sites are highly variable, and have spectral parameters that reflect secondary structure and local steric constraints. In addition, these lineshape parameters correlate with crystallographic structure factors for Cα carbons, suggesting that the motion of the spin label is modulated by both the local modes of motion of the spin label and the local dynamics of the protein backbone. Experiments performed as a function of lipid composition and sample temperature indicate that nitroxide spin labels on the exterior surface of BtuB, which face the membrane hydrocarbon, are not strongly influenced by the phase state of the bulk lipids. However, these spectra are modulated by membrane hydrocarbon thickness. Specifically, the values of the scaled mobility parameter for the R1 lineshapes are inversely proportional to the hydrocarbon thickness. These data suggest that protein dynamics and structure in BtuB are directly coupled to membrane hydrophobic thickness.  相似文献   

18.
Some viruses acquire their envelopes by budding through internal membranes of their host cell. We have expressed the cloned cDNA for glycoproteins from two such viruses, the E1 protein of coronavirus, which buds in the Golgi region, and VP10 protein of rotavirus, which assembles in the endoplasmic reticulum. Messenger RNA was prepared from both cDNAs by using SP6 polymerase and either translated in vitro or injected into cultured CV1 cells or Xenopus oocytes. In CV1 cells, the E1 protein was localised to the Golgi region and VP10 protein to the endoplasmic reticulum. In Xenopus oocytes, the E1 protein acquired post-translational modifications indistinguishable from the sialylated, O-linked sugars found on viral protein, while the VP10 protein acquired endoglycosidase-H-sensitive N-linked sugars, consistent with their localisation to the Golgi complex and endoplasmic reticulum, respectively. Thus the two proteins provide models with which to study targeting to each of these intracellular compartments. When the RNAs were expressed in matured, meiotic oocytes, the VP10 protein was modified as before, but the E1 protein was processed to a much lesser extent than in interphase oocytes, consistent with a cessation of vesicular transport during cell division.  相似文献   

19.
20.
Epithelial cells infected with the coronavirus transmissible gastroenteritis virus (TGEV) and fixed by glutaraldehyde induced a high alpha interferon (IFN-alpha) production in nonimmune porcine as well as human or bovine peripheral blood mononuclear cells (PBMC). IFN-alpha was detected as early as 3 h after exposure of PBMC to infected cells and at producer/inducer cell ratios as low as 1/1. Two of four monoclonal antibodies directed against the viral transmembrane glycoprotein E1 could block the IFN-inducing capacity of both TGEV-infected cells and viral particles. On the other hand, IFN-alpha induction was not markedly affected by monoclonal antibodies directed against other E1 epitopes, against peplomer glycoprotein E2, or against nucleocapsid protein. Thus, these findings strongly imply that IFN induction by TGEV results from interactions between an outer membrane domain of E1 and the PBMC membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号