首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron-nuclear double-resonance (ENDOR) spectra of protons coupled to molybdenum(V) in reduced xanthine oxidase samples have been recorded. Under appropriate conditions these protons may be studied without interference from protons coupled to reduced iron-sulfur centers. Spectra have been obtained for the molybdenum(V) species known as Rapid, Slow, Inhibited, and Desulfo Inhibited. Resonances corresponding to at least nine protons or sets of protons are observed for all four species, with coupling constants in the range 0.08-4 MHz. Most of these protons do not exchange when 2H2O is used as solvent. Additional protons giving couplings up to 40 MHz are also detected. These correspond to EPR-detectable protons studied in earlier work. The strongly coupled protons may be replaced by 2H, through appropriate use of 2H2O or of 2H-substituted substrates, with consequent disappearance of the 1H resonances. In most cases the corresponding 2H ENDOR features have also been observed. The nature of the various coupled protons is briefly discussed. Results permit specific conclusions to be drawn about the structures of the Inhibited and Desulfo Inhibited species. In particular, the data indicate that the aldehyde residue of the Inhibited species has been oxidized and that the four protons derived from the ethylene glycol molecule in the Desulfo Inhibited species are not all equivalent. Recent assignments [Edmondson, D.E., & D'Ardenne, S.C. (1989) Biochemistry 28, 5924-5930] of the weakly coupled protons in the latter species appear not to be soundly based. The possibility of obtaining more detailed structural information from the spectra is briefly considered.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The binuclear Cu(A) site engineered into Pseudomonas aeruginosa azurin has provided a Cu(A)-azurin with a well-defined crystal structure and a CuSSCu core having two equatorial histidine ligands, His120 and His46. The mutations His120Asn and His120Gly were made at the equatorial His120 ligand to understand the histidine-related modulation to Cu(A), notably to the valence delocalization over the CuSSCu core. For these His120 mutants Q-band electron nuclear double resonance (ENDOR) and multifrequency electron paramagnetic resonance (EPR) (X, C, and S-band), all carried out under comparable cryogenic conditions, have provided markedly different electronic measures of the mutation-induced change. Q-band ENDOR of cysteine C(beta) protons, of weakly dipolar-coupled protons, and of the remaining His46 nitrogen ligand provided hyperfine couplings that were like those of other binuclear mixed-valence Cu(A) systems and were essentially unperturbed by the mutation at His120. The ENDOR findings imply that the Cu(A) core electronic structure remains unchanged by the His120 mutation. On the other hand, multifrequency EPR indicated that the H120N and H120G mutations had changed the EPR hyperfine signature from a 7-line to a 4-line pattern, consistent with trapped-valence, Type 1 mononuclear copper. The multifrequency EPR data imply that the electron spin had become localized on one copper by the His120 mutation. To reconcile the EPR and ENDOR findings for the His120 mutants requires that either: if valence localization to one copper has occurred, the spin density on the cysteine sulfurs and the remaining histidine (His46) must remain as it was for a delocalized binuclear Cu(A) center, or if valence delocalization persists, the hyperfine coupling for one copper must markedly diminish while the overall spin distribution on the CuSSCu core is preserved.  相似文献   

3.
Proton ENDOR has been observed from frozen solutions (ca. 38K degrees) of copper meso-(4-N-tetra-methylpyridyl)porphyrin (CuTMpyP(4)) complexed with Salmon sperm DNA in water and D2O. Lines from exchangeable protons of the DNA bases have been observed in these ENDOR spectra. Analyses of these ENDOR data show that the separations of these DNA protons from the copper atom are between 3.76 and 3.84 A with angles of 19.5 to 22.5 degrees between the Cu-H vectors and the gz axis. A distant ENDOR response has also been observed from phosphorous nuclei in the DNA backbone. We estimate that the phosphorous atoms producing this ENDOR signal are 7.5-10 A from the copper center of the porphyrin. These ENDOR data combined with results from an earlier NMR investigation have been used to construct a computer simulated model of the binding site in which the porphyrin is partially intercalated and extends into the major groove of DNA. The two GC base pairs at this site are slightly inequivalent. For each, the G imino proton and one of the C amino protons are at appropriate positions to account for the ENDOR signals arising from exchangeable protons. It is unlikely that this inequivalence would persist at room temperature where dynamic processes would give an apparently symmetric interaction. Although the model accounts for all reported experimental data involving tetracationic porphyrin species which have been suggested to be intercalators, it is not a unique solution.  相似文献   

4.
Abstract

Proton ENDOR has been observed from frozen solutions (ca. 38K°) of copper meso-(4-N-tetra-methylpyridyl)porphyrin (CuTMpyP(4)) complexed with Salmon sperm DNA in water and D2O. Lines from exchangeable protons of the DNA bases have been observed in these ENDOR spectra. Analyses of these ENDOR data show that the separations of these DNA protons from the copper atom are between 3.76 and 3.84 A with angles of 19.5 to 22.5 degrees between the Cu-H vectors and the gz axis. A distant ENDOR response has also been observed from phosphorous nuclei in the DNA backbone. We estimate that the phosphorous atoms producing this ENDOR signal are 7.5–10 Å from the copper center of the porphyrin. These ENDOR data combined with results from an earlier NMR investigation (1) have been used to construct a computer simulated model of the binding site in which the porphyrin is partially intercalated and extends into the major groove of DNA. The two GC base pairs at this site are slightly inequivalent. For each, the G imino proton and one of the C amino protons are at appropriate positions to account for the ENDOR signals arising from exchangeable protons. It is unlikely that this inequivalence would persist at room temperature where dynamic processes would give an apparently symmetric interaction. Although the model accounts for all reported experimental data involving tetracationic porphyrin species which have been suggested to be intercalators, it is not a unique solution.  相似文献   

5.
6.
Electron nuclear double resonance (ENDOR) spectroscopy is used to probe the coordination of the mixed valence (Fe(II).Fe(III)) diiron cluster of the methane monooxygenase hydroxylase component (MMOH-) isolated from Methylosinus trichosporium OB3b. ENDOR resonances are observed along the principal axis directions g1 = 1.94 and g3 = 1.76 from at least nine different protons and two different nitrogens. The nitrogens are strongly coupled and appear to be directly coordinated to the cluster irons. The ratio of their superhyperfine coupling constants is roughly 4:7, which equals the ratio of the spin expectation values of the Fe(II) and Fe(III) in the ground state and suggests that at least one nitrogen is coordinated to each iron of the mixed valence cluster. Moreover, the superhyperfine and quadrupole coupling constants assigned to the Fe(III) site (AN = 13.6 MHz, PN = 0.7 MHz) are comparable with those observed for semimethemerythrin sulfide (AN = 12.1 MHz, PN = 0.7 MHz), for which the nitrogen ligands are histidines. At least three of the coupled protons exchange slowly when MMOH- is incubated in D2O, and 2H ENDOR resonances are subsequently observed. These observations are also consistent with histidine ligation of the iron cluster. On addition of the inhibitor dimethyl sulfoxide (Me2SO) to MMOH- the EPR spectrum sharpens and shifts dramatically. Only one set of 14N ENDOR resonances is observed with frequencies equal to those assigned to the Fe(III)-histidine resonances of uncomplexed MMOH- suggesting that the nitrogen coordination to the Fe(II) site is altered or possibly lost in the presence of Me2SO. 2H ENDOR resonances are observed in the presence of d6-Me2SO indicating that the inhibitor Me2SO binds near or possibly to the diiron cluster. In contrast, no 2H ENDOR resonances are observed from d4-methanol upon addition to MMOH-. Thus, the changes observed in the EPR spectrum of MMOH- upon addition of methanol may result from binding to a site away from the diiron cluster or from bulk solvent effects on the protein structure.  相似文献   

7.
 The apo protein of imidazole glycerol phosphate dehydratase (IGPD) from Saccharomyces cerevisiae combines stoichiometrically with certain specific divalent metal cations to assemble the catalytically active form comprising 24 protein subunits and tightly bound metal. VO2+ ions react similarly but, uniquely, result in a metallo-protein (VO-IGPD) with neither catalytic activity nor the ability to bind to the reaction intermediate analogue, 2-hydroxy-3-(1,2,4-triazol-1-yl) propylphosphonate. Since VO2+ apparently assembles the quaternary structure correctly, it is used in the present study as a spin probe to investigate the metal centre coordination environment by electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopy. At neutral pH, the EPR spectrum of VO-IGPD reveals at least three distinct VO2+ sub-spectra with one predominant at low pH. The spin Hamiltonian parameters for some of the sub-spectra are consistent with 51V having nitrogen in the inner-sphere equatorial coordination environment from, most probably, multiple coordinating histidines. Further evidence for inner-sphere nitrogen ligands is obtained from ENDOR spectroscopy. The spectra of the low rf region show signals from interactions with 14N which are consistent with couplings to the imino nitrogen of coordinated histidine residues. In addition a number of proton ENDOR line pairs are resolved. Of the few that disappear upon exchange of the protein into D2O, one most likely originates from the exchangeable proton of the N-H group of a coordinated histidine imidazole. 1H-ENDOR line pairs from non-exchangeable protons with splittings of approximately 3 MHz can be attributed to imidazole carbon protons. Thus, most of the couplings observed by ENDOR are consistent with being from the imidazole heterocycle of one or more histidine ligands. Received: 27 June 1996 / Accepted: 14 March 1997  相似文献   

8.
We present an electron nuclear double resonance (ENDOR) study of the bound Qc.- ubisemiquinone in the mitochondrial quinol cytochrome c reductase complex. An ENDOR probe specifically modified for insertion into our electron paramagnetic resonance cavity was used for this study. We observed strongly hyperfine-coupled protons whose exchangeable nature indicated they were hydrogen-bonded to the quinone oxygen(s). It is thought that such hydrogen bonds are critical in binding the ubiquinone to protein, in stabilizing its semiquinone form, and in modulating the thermodynamic properties of the bound ubiquinone in the mitochondrial quinol cytochrome c reductase complex. Additional ENDOR features were assigned to protons of the quinone ring itself and to weakly coupled protons that may be associated with nearby amino acids. From very weakly hyperfine-coupled, distant, exchangeable protons there was also ENDOR evidence to suggest proximity and accessibility of the ubiquinone site to the solvent.  相似文献   

9.
We previously reported the vanadyl hyperfine couplings of VO(2+)-ATP and VO(2+)-ADP complexes in the presence of the nitrogenase Fe protein from Klebsiella pneumoniae (Petersen et al. in Biochemistry 41:13253-13263, 2002). It was demonstrated that different VO(2+)-nucleotide coordination environments coexist and are distinguishable by electron paramagnetic resonance (EPR) spectroscopy. Here orientation-selective continuous-wave electron-nuclear double resonance (ENDOR) spectra have been investigated especially in the low-radio-frequency range in order to identify superhyperfine interactions with nuclei other than protons. Some of these resonances have been attributed to the presence of a strong interaction with a 31P nucleus although no resolvable superhyperfine structure due to 31P or other nuclei was detected in the EPR spectra. The superhyperfine coupling component is determined to be about 25 MHz. Such a 31P coupling is consistent with an interaction of the metal with phosphorus from a directly, equatorially coordinated nucleotide phosphate group(s). Additionally, novel more prominent 31P ENDOR signals are detected in the low-frequency region. Some of these correspond to a relatively weak 31P coupling. This coupling is present with ATP for all pH forms but is absent with ADP. The ENDOR resonances of these weakly coupled 31P are likely to originate from an interaction of the metal with a nucleotide phosphate group of the nucleoside triphosphate and are attributed to a phosphorus with axial characteristics. Another set of resonances, split about the nuclear Zeeman frequency of 23Na, was detected, suggesting that a monovalent Na+ ion is closely associated with the divalent metal-nucleotide binding site. Na+ replacement by K+ unambiguously confirmed that ENDORs at radio frequencies between 3.0 and 4.5 MHz arise from an interaction with Na+ ions. In contrast to the low-frequency 31P signal, these resonances are present in spectra with both ADP and ATP, and for both low- and neutral-pH forms, although slight differences are detected, showing that these are sensitive to the nucleotide and pH.  相似文献   

10.
Electron nuclear double resonance (ENDOR) signals have been obtained from iron-linked nitrogens in frozen solutions of cytochrome c, metmyoglobin cyanide, and a low spin protohemin mercaptide complex. Hyperfine couplings from heme protons have also been obtained from metmyoglobin cyanide and from a low spin protohemin cyanide complex. Several of these proton resonances are assigned to specific heme protons.  相似文献   

11.
The electrons trapped in single crystals of rhamnose X-irradiated at low temperature were studied by ENDOR spectroscopy. Hyperfine couplings of protons in the environs of the electron have been determined from ENDOR measurements, including those of some of the more remote carbon-bound hydrogen atoms. The likely site of electron trapping in the crystal structure of rhamnose was inferred from calculations of the electric potential generated by the dipoles of hydroxy groups about preexisting void spaces. Electron-proton distances for nonexchangeable hydrogen atoms from points within the void were calculated from the crystal structure and compared with distances obtained from hyperfine couplings. Good agreement was obtained between experimental and calculated values.  相似文献   

12.
The 1H electron nuclear double resonance (ENDOR) spectra in frozen solutions of the reduced [2Fe-2S] cluster in ferredoxin from Arthrospira (Spirulina) platensis have been measured at low temperatures (5-20 K) and simulated using orientational selection methods. The analysis confirmed the existence of a single paramagnetic species with iron valence states II and III connected uniquely to the cluster irons. The experimental ENDOR spectra were fitted to a model including the spin distribution on the centre, the orientation of the g-matrix, and the isotropic and anisotropic hyperfine couplings of the nearest protons in the crystallographically determined structure. In order to partially simulate ENDOR line shapes, a statistical distribution of the corresponding torsion angles between the Fe(III) centre and one of the beta-CH2 protons was introduced. From the analysis, four of the larger hyperfine couplings found were assigned to the cysteine beta-protons near the Fe(III) ion of the cluster, with isotropic hyperfine couplings ranging from 1.6 to 4.1 MHz. The spin distribution on the two iron ions was estimated to be +1.85 for the Fe(III) ion and -0.9 for the Fe(II) ion. The Fe(III) ion was identified as being coordinated to the cysteine ligands Cys49 and Cys79, confirming previous NMR results. The direction of the g-tensor with respect to the cluster was deduced. The g1-g2 plane is parallel to the planes through each iron and its adjacent cysteine sulfurs; the g2-g3 plane is nearly perpendicular to the latter planes and deviates by 25 degrees from the FeSSFe plane. The g1 direction is dominated by the bonding geometry of Fe(II) and does not align with the Fe(II)-Fe(III) vector.  相似文献   

13.
The nitrogenase Fe-protein is the specific ATP-activated electron donor to the active site-containing nitrogenase MoFe-protein. It has been previously demonstrated that different VO(2+)-nucleotide coordination environments exist for the Fe-protein that depend on pH and are distinguishable by EPR spectroscopy. After having studied the nitrogenase 31P and 23Na superhyperfine structure for this system by electron nuclear double resonance (ENDOR) spectroscopy (Petersen et al. 2008 in J Biol Inorg Chem. doi:10.1007/s00775-008-0360-0), we here report on the 1H-interactions with the nucleotide-bound metal center after substitution of the natural diamagnetic metal Mg2+ with paramagnetic oxo-vanadium(IV). ENDOR spectra show a number of resonances arising from interactions of the VO2+ ion with protons. In the presence of reduced Fe-protein and VO2+ ADP, at least three sets of nonexchangeable protons are detected. At low pH the superhyperfine couplings of most of these are consistent with proton interactions originating from the nucleotide. There is no indication of 1H-resonances that exchange in D2O at neutral pH and could be assigned to inner-sphere hydroxyl coordination. Exchangeable hydroxyl protons in the inner coordination sphere with reduced Fe-protein are only found in the low pH form; based on their hyperfine tensor components these have been assigned to an axially coordinated hydroxyl water molecule. The pH-dependent alterations of the proton couplings that exchange in D2O suggest that they are partially caused by a rearrangement in the local hydroxyl coordination environment of the metal center. These rearrangements especially affect the apical metal position, where an axially coordinated water present at low pH is absent at neutral pH. Oxidation of the Fe-protein induced substantial changes in the electron-nucleus interactions. This indicates that the oxidation state of the iron-sulfur cluster has an important effect on the metal coordination environment at the nucleotide binding site of the Fe-protein. The distinct VO(2+)-nucleotide coordination structures with ADP and ATP and the redox state of the [4Fe-4S] cluster imply that VO2+ has a critical influence on the switch regions of the regulatory protein, and, taken together, this provides a plausible explanation for the inhibitory action of VO2+.  相似文献   

14.
Electron-nuclear double resonance (ENDOR) spectroscopy has been used to study ligand and copper hyperfine interactions in Cu(II) complexes of human transferrin. A nearly isotropic superhyperfine interaction of the Cu(II) spin with a single 14N nucleus was identified, and the principal values of its tensor were estimated. All principal values of the copper hyperfine tensor were also directly measured for the first time. Resonances from at least two exchangeable protons were observed, but their origin could not be ascertained. At physiological pH, and in the presence of bicarbonate, ENDOR spectra of the two metal-binding sites were virtually indistinguishable.  相似文献   

15.
Hydrons and electrons are substrates for the enzyme hydrogenase, but cannot be observed in X-ray crystal structures. High-resolution 1H electron nuclear double resonance (ENDOR) spectroscopy offers a means to detect the distribution of protons and unpaired electrons. ENDOR spectra were recorded from frozen solutions of the nickel-iron hydrogenases of Desulfovibrio gigas and Desulfomicrobium baculatum, in the "active" state ("Ni-C" EPR signal) and analyzed by orientationally selective simulation methods. The experimental spectra were fitted using a structural model of the nickel-iron centre based on crystallographic results, allowing for differences in electron spin distribution as well as the spatial orientation of the g-matrix ( g-tensor), and anisotropic and isotropic hyperfine couplings of the protons nearest to the nickel ion. ENDOR signals, detected after complete deuterium exchange, were assigned to six protons of the cysteines bound to nickel. The assignment took advantage of the substitution of a selenium for a sulfur ligand, which occurs naturally between the [NiFeSe] and [NiFe] hydrogenases from Dm. baculatum and D. gigas, respectively, and was found to affect just two signals. The four signals with the largest hyperfine couplings, including isotropic contributions from 4.5 to 13.5 MHz, were assigned to the beta-methylene protons of the two terminal cysteine ligands, one of which is substituted by seleno-cysteine in [NiFeSe] hydrogenase. The electron spin is delocalized onto the nickel (50%) and its sulfur ligands, with a higher proportion on the terminal than the bridging ligands. The g-matrix was found to align with the active site in such a way that the g1- g2 plane is nearly coplanar (18.3 degrees) with the plane defined by nickel and three sulfur atoms, and the g2 axis deviates by 22.9 degrees from the vector between nickel and iron. Significantly for the reaction of the enzyme, direct evidence for the binding of hydrons at the active site was obtained by the detection of H/D-exchangeable ENDOR signals.  相似文献   

16.
The techniques of EPR and electron nuclear double resonance (ENDOR) were used to probe structure and electronic distribution at the nitric oxide (NO)-ligated heme alpha 3 in the nitrosylferrocytochrome alpha 3 moiety of fully reduced cytochrome c oxidase. Hyperfine and quadrupole couplings to NO (in both 15NO and 14NO forms), to histidine nitrogens, and to protons near the heme site were obtained. Parallel studies were also performed on NO-ligated myoglobin and model NO-heme-imidazole systems. The major findings and interpretations on nitrosylferrocytochrome alpha 3 were: 1) compared to other NO-heme-imidazole systems, the nitrosylferrocytochrome alpha3 gave better resolution of EPR and ENDOR signals; 2) at the maximal g value (gx = 2.09), particularly well resolved NO nitrogen hyperfine and quadrupole couplings and mesoproton hyperfine couplings were seen. These hyperfine and quadrupole couplings gave information on the electronic distribution on the NO, on the orientation of the g tensor with respect to the heme, and possibly on the orientation of the FeNO plane; 3) a combination of experimental EPR-ENDOR results and EPR spectral simulations evidenced a rotation of the NO hyperfine tensor with respect to the electronic g tensor; this implied a bent Fe-NO bond; 4) ENDOR showed a unique proton not seen in the other NO heme systems studied. The magnitude of this proton's hyperfine coupling was consistent with this proton being part of a nearby protein side chain that perturbs an axial ligand like NO or O2.  相似文献   

17.
Yeast mitochondrial complex III contains a subunit with a [2Fe-2S] cluster (the Rieske center) that has unusual physical and chemical properties. For apparently similar centers isolated from bacteria, it has been shown by electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) measurements that these [2Fe-2S] centers are coordinated by at least one and probably two nitrogen ligands. This work describes similar ENDOR and ESEEM studies on the intact mitochondrial complex. We find that this [2Fe-2S] cluster exhibits ESEEM and ENDOR properties that appear to be indistinguishable from those observed with the isolated bacterial systems. Furthermore, changes in EPR lineshape that occur as complex III is progressively reduced are not accompanied by any changes in the nitrogen coupling parameters. This spectroscopic evidence for nitrogen coordination is supported by published sequence data on four Rieske iron-sulfur subunits. It seems likely that this is a general characteristic of such [2Fe-2S] redox active centers.  相似文献   

18.
Electron nuclear double resonance (ENDOR) spectroscopy has been used to study protons in nitrosyl horse heart myoglobin (MbNO). (1)H ENDOR spectra were recorded for different settings of the magnetic field. Detailed analysis of the ENDOR powder spectra, using computer simulation, based on the "orientation-selection" principle, leads to the identification of the available protons in the heme pocket. We observe hyperfine interactions of the N(HisF8)-Fe(2+)-N(NO) complex with five protons in axial and with eight protons in the rhombic symmetry along different orientations, including those of the principal axes of the g-tensor. Protons from His-E7 and Val-E11 residues are identified in the two symmetries, rhombic and axial, exhibited by MbNO. Our results indicate that both residues are present inside the heme pocket and help to stabilize one particular conformation.  相似文献   

19.
The early suggestion by Lozier and Butler (Photochem. Photobiol. 17, 133–137 (1973)) that EPR Signal II arises from radicals associated with the water-splitting process in PSII has been confirmed and extended over the intervening years. Recent work has identified the Signal II radicals, \(\begin{array}{*{20}c} {\mathop D\nolimits^{\begin{array}{*{20}c} + \\ . \\ \end{array} } } \\ \end{array}\) and \(\begin{array}{*{20}c} {\mathop Z\nolimits^{\begin{array}{*{20}c} + \\ . \\ \end{array} } } \\ \end{array}\) , with plastosemiquinone cation species. In the experiments presented here we have used ENDOR spectroscopy and D2O/H2O exchange to characterize these paramagnets in more detail. The ENDOR matrix region, which arises from protons which interact weakly with the unpaired electron spin, is well-resolved at 4 K and at least seven resonances are apparent. A number of hyperfine couplings in the 3–8 MHz range are observed and are suggested to arise from methyl or hydroxyl protons which occur as substituents on the plastosemiquinone cation ring or from amino acid protons hydrogen-bonded to the 1,4-hydroxyl groups. Orientation selection experiments are consistent with these possibilities. D2O/H2O exchange shows that the D+/Z+ site is accessible to solvent. However, the exchange occurs slowly and is not complete even after 72 hours which suggests that the free radicals are functionally isolated from solvent water.  相似文献   

20.
Photoaccumulation at 205 K in the presence of dithionite produces EPR signals in anaerobically prepared membranes from Chlorobium limicola and Heliobacterium chlorum that resemble the EPR spectrum of phyllosemiquinone (A1*-) photoaccumulated in photosystem I. We have used ENDOR and special TRIPLE resonance spectroscopy to demonstrate conclusively that these signals arise from menasemiquinone electron acceptors reduced by photoaccumulation. Hyperfine couplings to two protons H-bonded to the semiquinone oxygens have been identified by exchange of H. chlorum into D2O, and hyperfine couplings to the methyl group, and the methylene group of the phytyl side chain, of the semiquinone have also been assigned. The electronic structure of these menasemiquinones in these reaction centers is very similar to that of phyllosemiquinone in PSI, and shows a distorted electron spin density distribution relative to that of phyllosemiquinone in vitro. Special TRIPLE resonance spectrometry has been used to investigate the effect of detergents and oxygen on membranes of C. limicola. Triton X-100 and oxygen affect the menaquinone binding site, but n-dodecyl beta-D-maltoside preparations exhibit a relatively unaltered special TRIPLE spectrum for the photoaccumulated menasemiquinone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号