首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Known methods for isolating cell nuclei are divided into two classes, depending on whether or not the nuclei are capable of forming gels in dilute alkali or strong saline solutions. Methods which produce nuclei that can form gels apparently prevent the action of an intramitochondrial enzyme capable of destroying the gel-forming capacity of the nuclei. Methods in the other class are believed to permit this enzyme to act on the nuclei during the isolation procedure, causing detachment of DNA from some nuclear constituent (probably protein). 2. It is shown that heating in alkaline solution and x-irradiation can destroy nuclear gels. Heating in acid or neutral solutions can destroy the capacity of isolated nuclei to form gels. 3. Chemical and biological evidence is summarized in favor of the hypothesis that DNA is normally bound firmly to some nuclear component by non-ionic linkages.  相似文献   

2.
Hepatic nuclei that are isolated in aquenous solutions of low ionic strength or glycerol contain all or nearly all the nonmitochondrial DNA polymerase activity of the cell. The presence of polymerase activity in the cytoplasm is due to extraction of nuclear enzymes by buffer and inorganic salts. Even with low ionic strength solutions, some leaching of nuclear enzymes occurs if the concentration of liver in the homogenizing medium is greater than 10%. As defined by sucrose gradient analysis, the normal adult rat liver nucleus contains mainly or entirely a single species of DNA polymerase (3.2 S) whereas the regenerating nucleus after 70% hepatectomy has an additional enzyme (7.1 S). The total activity of regenerating nuclei is about twice the normal value. The increase resides in the 7.1 S activity. The 7.1 S DNA polymerase had been purified partially from regenerating liver nuclei (isolated in low ionic strength solutions) and cytosol (prepared under conditions of nuclear enzyme extraction). The properties of the activity from the two sources are indistinguishable. A mixture of albumin and spermidine enhances by several-fold the activities of the 3.2 S and 7.1 S DNA polymerases. In the presence of spermidine, but not in its absence, the activity of the 7.1 S DNA polymerase is strictly proportional to the amount of the enzyme preparation.  相似文献   

3.
近年来我们实验室已成功地利用细胞核体外组装的实验模式,将多种生物的DNA在非洲爪蟾卵提取物中实现了非细胞体系核装配。但亲缘关系最远的原核生物的染色体DNA是否也能在此真核体系中进行核装配一直没有报道。我们以大肠杆菌染色体DNA为材料,研究了它诱导的非细胞体系核装置。在光镜与电镜水平观察了核装配的过程。显微分光光度计扫描显示DNA片段在核装配过程中经历了凝集-去凝集的变化。证明大肠杆菌染色体DNA也  相似文献   

4.
We determined that there is a protein in rat liver capable of inhibiting DNA polymerase alpha. To assay for this inhibitor, DNA polymerase alpha was purified from R3230AC rat mammary tumor, a rich source of this enzyme. Protein fractions from Sephacryl S200 gel filtration of total soluble liver extract showing inhibition of DNA polymerase alpha were further chromatographed on DEAE-cellulose. This step revealed two inhibitor protein populations with the major form corresponding to a molecular weight of 143,000 dalton. Soluble extract from isolated rat liver nuclei also showed the presence of at least two inhibitors; the major form was 200,000+ dalton in molecular weight. Both the 143,000 and 200,000+ dalton inhibitor proteins were capable of inhibiting the R3230AC tumor DNA polymerase alpha in a dose-dependent manner. These inhibitors exhibited similar inhibition of nuclear matrix-associated DNA polymerase alpha from either the R3230AC tumor or from regenerating rat liver.  相似文献   

5.
Nucleosomes prepared from human placental nuclei and Escherichia coli DNA-dependent RNA polymerase (nucleoside triphosphate: RNA nucleotidyl transferase EC.2.7.7.6) form stable initiation complexes. This property is utilized as a probe of nucleosome structure. RNA polymerase initiation has been studied on purified nucleosomes, nucleosome cores, and nucleosomal DNA. The affinity of E. coli RNA polymerase for both nucleosome cores and monomers was 5-6 fold less than found for nucleosomal DNA. No difference in apparent initiation Km was found between cores and mononucleosomes. This suggests that initiation does not preferentially occur on the DNA tails of nucleosomes. Once initiated and allowed to form nascent RNA, these complexes are very stable to ionic strength changes. Under conditions in which free enzyme is inactivated with rifampicin, the enzyme in the complex retains activity as demonstrated by its ability to transcribe and reinitiate on both nucleosomes and free DNA. These complexes can be well resolved from free nucleosomes on preparative polyacrylamide gels and both can be eluted from gels for analysis of proteins and DNA sequence complexity. Studies using (125I) labelled nucleosomes show that histones are retained in the initiation complex, and are not dissociated by the enzyme during initiation.  相似文献   

6.
Apoptosis is a physiological process by which selected cells are deleted from a population in response to specific regulatory signals. A hallmark of apoptosis is the internucleosomal degradation of DNA prior to cell death. We are studying glucocorticoid-induced lymphocytolysis as a model system for apoptosis within the immune system. In rat thymocytes, the internucleosomal DNA cleavage which occurs following glucocorticoid treatment is both time- and dose-dependent, and is blocked by the glucocorticoid antagonist RU 486, indicating that this effect is mediated by the glucocorticoid receptor. Similar experiments using glucocorticoid-responsive (wt) and glucocorticoid-resistant (nt) S49.1 lymphoma cell lines confirm that internucleosomal DNA degradation and cell death are glucocorticoid receptor-mediated events and thus reflect the direct effects of glucocorticoids on lymphocytes. In an effort to identify the nuclease(s) responsible for the DNA degradation, we have developed two assays to detect nucleases whose activity is altered by glucocorticoid treatment. The first assay involves electrophoresing extracts of nuclear protein from control and glucocorticoid-treated lymphoid cells into SDS-polyacrylamide gels containing [32P]DNA within the gel matrix. This assay is used to estimate the molecular mass of the nuclease, based on the observed in situ nuclease activity. The second assay uses HeLa nuclei as a substrate to detect internucleosomal cleavage activity present in nuclear extracts of control and glucocorticoid-treated lymphoid cells. Using these assays we have identified a novel Ca2+, Mg2+-dependent nuclease with an apparent molecular weight of 18 kDa in both S49 wt cells and rat thymocytes treated with glucocorticoids. Furthermore, nuclear extracts of glucocorticoid-treated, but not control, rat thymocytes and S49 wt cells were capable of cleaving HeLa chromatin at internucleosomal sites. In an effort to determine the identity of the nuclease capable of internucleosomal cleavage of DNA, nuclear extracts from dex-treated rat thymocytes were fractionated by gel filtration chromatography under non-denaturing conditions, and the fractions were analyzed using the [32P]DNA SDS-PAGE and HeLa nuclei assays. When analyzed under native conditions, the 18 kDa nuclease described previously appears to exist as a 25 kDa protein which may be part of a high molecular weight complex. Interestingly, only the 25 kDa form of the protein was associated with internucleosomal DNA cleavage activity where as the high molecular weight form of the enzyme was devoid of this activity.  相似文献   

7.
The mammalian sperm nucleus provides an excellent model for studying the relationship between the formation of nuclear structure and the initiation of DNA replication. We previously demonstrated that mammalian sperm nuclei contain a nuclear matrix that organizes the DNA into loop domains in a manner similar to that of somatic cells. In this study, we tested the minimal components of the sperm nucleus that are necessary for the formation of the male pronucleus and for the initiation of DNA synthesis. We extracted mouse sperm nuclei with high salt and dithiothreitol to remove the protamines in order to form nuclear halos. These were then treated with either restriction endonucleases to release the DNA not directly associated with the nuclear matrix or with DNAse I to digest all the DNA. The treated sperm nuclei were injected into oocytes, and the paternal pronuclear formation and DNA synthesis was monitored. We found that restriction digested sperm nuclear halos were capable of forming paternal pronuclei and initiating DNA synthesis. However, when isolated mouse sperm DNA or sperm DNA reconstituted with the nuclear matrices were injected into oocytes, no paternal pronuclear formation or DNA synthesis was observed. These data suggest that the in situ nuclear matrix attachment organization of sperm DNA is required for mouse paternal pronuclear DNA synthesis.  相似文献   

8.
We have investigated whether or not ATP or other nucleoside di- and trisphosphates (including some nonhydrolysable ATP analogues) can stimulate the activity and/or the processivity of DNA polymerase α associated with the nuclear matrix obtained from HeLa S3 cell nuclei that had been stabilized at 37°C prior to subfractionation, as has been reported previously for DNA polymerase α bound to the nuclear matrix prepared from 22-h regenerating rat liver. We have found that HeLa cell matrix-associated DNA polymerase α activity could not be stimulated at all by ATP or other nucleotides, a behaviour which was shared also by DNA polymerase α activity that solubilizes from cells during the isolation of nuclei and that is thought to be a form of the enzyme not actively engaged in DNA replication. Moreover, the processivity of matrix-bound DNA polymerase α activity was low (< 10 nucleotides). These results were obtained with the matrix prepared with either 2M NaCl or 0·25 M (NH4)2SO4 and led us to consider that a 37° incubation of isolated nuclei renders resistant to high-salt extraction a form of DNA polymerase α which is unlikely to be involved in DNA replication in vivo.  相似文献   

9.
Incubation of adriamycin with isolated nuclei converts nuclear DNA to a form which is susceptible to hydrolysis by Neurosporacrassa nuclease an enzyme highly specific for the cleavage of single-stranded DNA. The effect of adriamycin on nuclear DNA incubated in the presence of the nuclease can be determined by measuring the release of acid-soluble nucleotides or by analyzing the DNA after centrifugation in neutral sucrose gradients. Similar changes in chromatin structure are not observed during incubation of nuclei with adriamycin alone. In addition to adriamycin, daunomycin and ethidium bromide are also active in inducing the formation of DNA structures which are susceptible to the Neurosporacrassa nuclease. The results suggest that certain antitumor agents can induce the formation of single-strand regions in nuclear DNA and that these sites probably occur as a result of a DNA strand separating event.  相似文献   

10.
The mouse compared with the rat, is more resistent to the acute toxic action of aflatoxin B1 and is refractory to its hepatocarcinogenic properties. Aflatoxin B1 inhibits DNA synthesis more strongly than RNA synthesis in the rat, and both nucleic acid syntheses more strongly in rat than in the mouse. Mouse hepatic microsomes, like those of the rat, are capable of metabolizing aflatoxin B1 in vitro in the presence of NADPH, to an active form which binds to DNA both in solution and in intact nuclei and also inhibits nuclear RNA synthesis. Non NADPH-dependent binding of aflatoxin B1 to nuclei is not effective in inhibiting RNA polymerase and is largely removed by washing with lipid solvents. Mouse nuclear RNA polymerases particularly Mn 2+ (NH4)2SO4 primed acitivity are more resistant to inhibition in vitro by activated aflatoxin B1 than are the corresponding enzyme activities in rat liver nuclei. This would appear to be due to the bound aflatoxin B1 being less efficient in the case of the mouse nucleus, in inhibiting RNA synthesis. Mouse liver slices exhibit a much lesser degree of inhibition of RNA synthesis by aflatoxin B1 than do rat liver slices. Accompanying this is a lower level of binding of aflatoxin B1 to subcellular particulate fractions in the mouse liver slice compared to the rat, this disparity being most marked in the case of the nuclear fraction. The suggestion is made that the resistance of RNA synthesis in the mouse liver, to aflatoxin B1, and perhaps also resistance to its toxicity, is dependent, not on a lower capacity to activate the toxin, but (a) on a less efficient inhibition of RNA synthesis by nuclear bound toxin, and (b) a detoxifying mechanism at least partially situated in the cytosol fraction.  相似文献   

11.
Xenopus egg extract provides an extremely powerful approach in the study of cell cycle regulated aspects of nuclear form and function. Each egg contains enough membrane and protein components to support multiple rounds of cell division. Remarkably, incubation of egg extract with DNA in the presence of an energy regeneration system is sufficient to induce formation of a nuclear envelope around DNA. In addition, these in vitro nuclei contain functional nuclear pore complexes, which form de novo and are capable of supporting nucleocytoplasmic transport. Mitotic entry can be induced by the addition of recombinant cyclin to an interphase extract. This initiates signaling that leads to disassembly of the nuclei. Thus, this cell-free system can be used to decipher events involved in mitotic remodeling of the nuclear envelope such as changes in nuclear pore permeability, dispersal of membrane, and disassembly of the lamina. Both general mechanisms and individual players required for orchestrating these events can be identified via biochemical manipulation of the egg extract. Here, we describe a procedure for the assembly and disassembly of in vitro nuclei, including the production of Xenopus egg extract and sperm chromatin DNA.  相似文献   

12.
Whole rat liver nuclei were treated with citraconic anhydride, a reagent specific for primary amines. Dramatic changes were observed in nuclear morphology and light scattering properties. An analysis for DNA and RNA content suggested that DNA was released from the nuclei with a short half-time, approximately 2-4s demonstrating a biphasic release profile. RNA was similarly released but with a monophasic profile. Analysis of SDS-PAGE gels of modified nuclei demonstrated a progressive enrichment of nuclear matrix (lamins) polypeptides with extent of modification. H1 histone was quantitatively lost as a function of modification reagent concentration, while approx. 50% of the nucleosomal histones cosedimented with DNA- and RNA-free nuclei. Modification in the presence of 2 mM EGTA released all the DNA and RNA [less than or equal to 1% remaining) while retaining structures characteristic of nuclear matrix, nucleoli, and ribonucleoprotein (predominantly hnRNA group A and B). These nucleic acid-deficient structures have been termed nuclear fossils to differentiate them from high salt detergent-prepared empty nuclear sacks, nuclear remnants, or nuclear scaffolds. Modification in the presence of 2% Triton X-100 results in structures similar to the nuclear fossils (EGTA treatment), but missing the double bilayer and a 51K polypeptide that is a major component of the other structures. The use of chemical modification on the nucleus provides an experimental approach for examining the role of ionic interactions in controlling nuclear structure. Citraconylation may thus serve two functions: (a) as a protein-specific perturbant of nuclei capable of simply and rapidly preparing a range of structural variants for the analysis of nuclear interactions; (b) offer a paradigm for control of nucleic acid-polypeptide interactions based on post-translational alterations in protein charge.  相似文献   

13.
A rapid and reproducible method for the purification of the Ca/Mg-endonuclease from porcine and rat liver and for the stabilization of the enzyme activity is presented. The optimum conditions for enzyme activity were determined. The enzyme degrades double-stranded DNA endonucleolytically. In the course of digestion of form I closed circular SV 40 DNA, the form II nicked circular DNA is the prominent intermediate product. Digestion of hen erythrocyte nuclei with added endonuclease produces a ladder of mono- and oligonucleosomal fragments similar to that generated by micrococcal nuclease digestion. Determination of the 5'-terminal nucleotides indicates the absence of a significant base specificity. Analyzing the cleavage pattern of end-labeled pBR322 restriction fragments on sequencing gels shows that the enzyme exhibits a weak preference for dinucleotides with A in the 5'-position; dinucleotides with 5%-C are less readily cleaved. Digestion of end-labeled pBR322 DNA, followed by electrophoresis in agarose gels produces a "smear"-like fragmentation pattern with weak superimposed bands, while micrococcal nuclease generates a different and much more distinct pattern. These data show that the sequence specificity of the enzyme is less pronounced than that of micrococcal nuclease and that the sites preferentially cleaved are not the same.  相似文献   

14.
Purified calpains are capable of proteolyzing several high Mr nuclear proteins and solubilizing a histone H1 kinase activity from rat liver nuclei upon exposure to 10(-6) - 10(-5) M Ca2+. Major nuclear substrates displayed apparent molecular masses of 200, 130, 120, and 60 kDa on Coomassie Blue-stained SDS-PAGE gels. The nuclear proteins and the H1 kinase were released from Triton-treated nuclei following incubation with buffer containing 0.5 M NaCl. They therefore appeared to be internal nuclear matrix proteins. The nuclear H1 kinase activity solubilized by incubation with m-calpain was eluted in the void volume of a Bio-Gel A-1.5m column, indicating an apparent mass greater than 1,500 kDa. Treatment of the calpain-solubilized kinase with 0.5 M NaCl dissociated it to a form having an apparent mass of 300 kDa (Stokes radius = 5.6 nm), suggesting that the 300-kDa (Stokes radius = 5.6 nm), nuclei by calpain treatment as a large complex containing other internal matrix proteins. Purified human erythrocyte mu-calpain was capable of proteolyzing the nuclear matrix proteins at 10(-6) M Ca2+. In contrast, human erythrocyte multicatalytic protease complex produced little cleavage of the nuclear proteins. Proteolysis of nuclear proteins by either mu-calpain or m-calpain was inhibited by calpastatin. These experiments suggest a physiologic role for the calpains in the turnover of nuclear proteins.  相似文献   

15.
DNA replication in cell-free extracts from Drosophila melanogaster.   总被引:10,自引:4,他引:6       下载免费PDF全文
G Crevel  S Cotterill 《The EMBO journal》1991,10(13):4361-4369
We have developed an efficient in vitro replication system from 0-2 h Drosophila melanogaster embryos. Demembranated Xenopus sperm DNA when incubated in such an extract first becomes enclosed in a nucleus-like structure with a nuclear envelope and a karyoskeleton. It then undergoes one round of semiconservative replication--this replication appears completely dependent on nuclear formation. Up to 30% of input DNA is nucleated in one reaction. Efficient nuclear formation and replication are dependent on a cold treatment step, prior to disruption of the embryos. They also depend on the age of the embryos used. Extracts from older embryos (0-5 h) are capable of nuclear formation, although at a much reduced efficiency, and repair synthesis, but seem to have lost the ability to initiate DNA replication. In addition to replicating sperm DNA this system appears capable of carrying out semi-conservative replication on some plasmids. However, it cannot use these to trigger nuclear formation; replication is only seen if the plasmids are coincubated with sperm DNA. The in vitro formed nuclei have not been observed to trigger nuclear envelope breakdown and entry into mitosis. However, they can re-replicate the DNA if the nuclei are permeabilized. This system should be a useful complement to the previously isolated Xenopus in vitro replication system. In addition the amenability of Drosophila to genetic study should open up new approaches not previously possible with Xenopus.  相似文献   

16.
The major nuclease activity in nuclei of mycelia of Neurospora crassa has been identified as that of endoexonuclease, an enzyme purified and characterized previously from mitochondria and vacuoles which acts endonucleolytically on single-stranded DNA and RNA and possesses highly processive exonuclease activity with double-stranded DNA. Cross-contamination from the other organelles was eliminated as a source of the activity. Endo-exonuclease of nucleoplasm, chromatin, and nuclear matrix showed 80-100% cross-reaction with antisera raised to purified extranuclear endoexonuclease and was also strongly inhibited by 20 microM aurin tricarboxylic acid. In addition, it yielded some of the same-sized polypeptides on activity gel analysis. Nuclei also contained immunochemically cross-reactive trypsin-activable endo-exonuclease activity, a form of enzyme that was shown previously to occur in high amounts in the cytosol and in a tightly bound form associated with the mitochondrial inner membrane. Pretreatment of wild-type mycelia for 1 h with 4-16 micrograms/ml the DNA-damaging agent, 4-nitroquinoline-1-oxide (4-NQO), which caused about 50-80% growth inhibition, resulted in a dose-dependent loss of up to 80% of inactive endo-exonuclease from nuclei. At low doses of 4-NQO, this was accompanied by increases in the level of active enzyme. Nuclei of the DNA repair-deficient uvs-3 mutant were found to contain only 12% of the active enzyme and about 32% of inactive enzyme as that in wild-type nuclei. Mycelial growth of this mutant was 10 times more sensitive to 4-NQO than the wild-type. At a dose which resulted in equivalent growth inhibition, 4-NQO had no effect on the level of active endo-exonuclease in uvs-3 nuclei and caused an increase (over 30%) in the level of inactive enzyme. These data are consistent with a role of endo-exonuclease in the repair of nuclear DNA.  相似文献   

17.
Protein ERp60, previously found in the internal nuclear matrix in chicken liver nuclei, is a member of the protein disulfide isomerase family. It binds DNA and double helical polynucleotides in vitro with a preferential recognition toward the matrix-associated regions of DNA and poly(dA) x poly(dT), and its binding is inhibited by distamycin. ERp60 can be cross-linked chemically to DNA in the intact nuclei, suggesting that its association with DNA is present in vivo. As a whole, these results indicate that ERp60 is a component of the subset of nuclear matrix proteins that are responsible for the attachment of DNA to the nuclear matrix and for the formation of DNA loops. A distinctive feature of this protein, which has two thioredoxin-like sites, is that its affinity to poly(dA) x poly(dT) is strongly dependent on its redox state. Only its oxidized form, in fact, does it bind poly(dA) x poly(dT). The hypothesis can be made that through the intervention of ERp60, the redox state of the nucleus influences the formation or the stability of some selected nuclear matrix-DNA interactions.  相似文献   

18.
A cell-free system prepared from the estrogen-primed chick oviduct was developed and used to study the uptake of cytoplasmic progesterone-receptor complex by isolated nuclei. The receptor and purified nuclei were shown to be stable at 25 degrees, but not at 37 degrees. Thus, nuclear incubations were routinely performed at 25 degrees. Such incubations revealed greater nuclear uptake of the cytoplasmic hormone-receptor complex as compared to control incubations performed at 0 degrees. The uptake process showed a quantitative preference for oviduct nuclei. No net uptake occurred during 0 degrees incubations when the nuclei were preincubated in the absence of cytoplasmic components at 25 degrees. In contrast, the temperature requirement was partially removed by preincubation of the hormone-receptor complex at 25 degrees prior to incubation with nuclei at 0 degrees. Nuclear uptake was not accompanied by measurable alterations in the sedimentation properties of the progesterone receptor. The activation and nuclear uptake of receptor was clearly dependent upon prior binding of steroid hormone to the receptor indicating that the active nuclear form of the receptor could not be generated in the absence of the hormone. Receptor precipitation with ammonium sulfate also partially removed the temperature requirement for nuclear binding. In contrast to temperature activation, ammonium sulfate precipitation activated the receptor in the absence of hormone. It thus seemed likely that temperature and salt activation of receptor occurred via different mechanisms. Although we were able to destroy up to 60% of the nuclear DNA content by treatment with DNase prior to nuclear incubation, some 80 to 85% of the receptor-binding capacity was still present in the treated nuclei. Thus, chick progesterone receptors apparently bind to a relatively DNase-resistant portion of the oviduct genome. The properties of this system indicate its value for further investigation into the initial events of progesterone action in the chick oviduct.  相似文献   

19.
A new procedure is described for fractionation of chromatin into DNA, RNA, and total chromatin protein. By isopycnic gradient centrifugation of chromatin preparations in Cs2SO4 solutions containing dimethylsulfoxide and sodium sarcosyl it is possible to obtain highly purified fractions of these components. The method gives a very high yield of these chromatin fractions unlike some other methods, where irreversible binding to columns occurs. Also with this method it is possible to obtain highly concentrated fractions, which after a simple dialysis step, can be conveniently analyzed by polyacrylamide gel electrophoresis.Nuclei from L-929 cells were isolated by a method involving citric acid or by a method using a nonionic detergent. The yields of DNA obtained by both methods was compared. Chromatin was isolated from purified nuclei (prepared in either of the above ways) in two different ways also. In one method, chromatin was extracted from nuclei with 1 m NaCl. A second method involving fractionation of lysed nuclei in sucrose and metrizamide solutions was also used. The yields of DNA obtained by both methods was compared. There appears to be little nuclear membrane contamination of any of these chromatin preparations.A preliminary analysis of L-929 cell chromatin total RNA and protein fractions on polyacrylamide and agarose gels has been made. Both fractions appear to be quite complex with a wide spectrum of subcomponents of differing S values.  相似文献   

20.
T Ooka  J Daillie 《Biochimie》1975,57(2):235-246
We have demonstrated the presence of two DNA polymerases in KB cells and studied the variation of their activities in a synchronous cell population. During the cell cycle we observed in nuclei, only one DNA dependent DNA polymerase, the 3.4 S or minipolymerase, and similarly in the cytoplasm only one enzyme, the 8.3 S or maxipolymerase. The former shows preference for native DNA and the latter for denatured DNA. Their Mg++ and K+ requirements are different and their pH optima are 8.5 and 7 for nuclear polymerase and cytoplasmic polymerase respectively. The cytoplasmic polymerase activity remains stable from one cell cycle to the other with each cell reconstituting its stock at the start of the following cycle (G1 and early S phases). On the contrary nuclear activity decreases in G2, M and early G1, then increases to a maximum in the middle of the S phase. This fluctuation in enzyme activity could be due to degradation, transfer to the cytoplasm or the association of the enzyme with the chromatin and/or the nuclear membrane after completion of DNA synthesis. Our results do not permit us to choose between these three hypotheses. However their significance is discussed in the light of the results obtained by some authors who, on the contrary, have tended to minimise the role of the minipolymerase in DNA duplication, whereas we, from our findings, ascribe a preponderant role to this enzyme. The cytoplasmic maxipolymerase (8.3 S) may simply be a storage form of the enzyme from which minipolymerase can be formed as needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号