首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Caffeic acid, rosmarinic acid and oligomers of caffeic acid with multiple catechol groups are all constituents of Salvia officinalis. Their antioxidant potential was investigated with regard to their radical scavenging activity and the stability and structure of the intermediate radicals. Pulse-radiolytic studies revealed very high rate constants with hydroxyl radicals. Evidence from kinetic modeling calculations suggested an unusual complex behavior due to the presence of both O4- and O3-semiquinones and formation and decay of a hydroxyl radical adduct at the vinyl side chain. The radical structures observed by EPR spectroscopy after autoxidation in slightly alkaline solutions were only partially identified due to their instability and generally represented dissociated O4-semiquinones. Hybrid density-functional calculations of the potential radical structures showed distinct differences between the resonance stabilization of the O4- and O3-semiquinones of caffeic and dihydrocaffeic acids, reflected also in the considerably faster decay of the O3-semiquinone observed by pulse radiolysis. No evidence was found for dimerization reactions via Cbeta radicals typical for lignin biosynthesis.  相似文献   

2.
1. In the presence of dihydroxyfumarate, horseradish peroxidase catalyses the conversion of p-coumaric acid into caffeic acid at pH 6. This hydroxylation is completely inhibited by superoxide dismutase. 2. Dihydroxyfumarate cannot be replaced by ascorbate H2O2, NADH, cysteine or sulphite. Peroxidase can be replaced by high (10 mM) concentrations of FeSO4, but this reaction is almost unaffected by superoxide dismutase. 3. Hydroxylation by the peroxidase/dihydroxyfumarate system is completely inhibited by low concentrations of Mn2+ or Cu2+. It is proposed that this is due to the ability of these metal ions to react with the superoxide radical O2--. 4. Hydroxylation is partially inhibited by mannitol, Tris or ethanol and completely inhibited by formate. This seems to be due to the ability of these reagents to react with the hydroxyl radical -OH. 5. It is concluded that O2-- is generated during the oxidation of dihydroxyfumarate by peroxidase and reacts with H2O2 to produce hydroxyl radicals, which then convert p-coumaric acid into caffeic acid.  相似文献   

3.
Polyphenols are widely distributed in various fruits, vegetables and seasonings. It is well known that they have several physiological effects due to their antioxidative activities. Their activities depend on structural characteristics that favour the formation of their corresponding stable radicals. During the examination at which pH values, the polyphenol radicals are stabilized, we confirmed that polyphenol radicals were stabilized in NaHCO3/Na2CO3 buffer (pH 10) rather than in physiological pH region. Then, we measured electron spin resonance (ESR) spectra at pH 10 to examine the characteristics of free radical species derived from caffeic acid (CA) with an unsaturated side chain, dihydrocaffeic acid (DCA) with a saturated side chain, chlorogenic acid (ChA) and rosmarinic acid (RA). In analyzing the radical structures, ESR simulation, determinations of macroscopic and microscopic acid dissociation constants and molecular orbital (MO) calculation were performed. In CA, the monophenolate forms were assumed to participate in the formation of free radical species, while in DCA, the diphenol form and the monophenolate forms were presumed to contribute to the formation of free radical species. On the basis of the results, we propose the possible structures of the free radical species formed from polyphenols under alkaline conditions.  相似文献   

4.
Polyphenols are widely distributed in various fruits, vegetables and seasonings. It is well known that they have several physiological effects due to their antioxidative activities. Their activities depend on structural characteristics that favour the formation of their corresponding stable radicals. During the examination at which pH values, the polyphenol radicals are stabilized, we confirmed that polyphenol radicals were stabilized in NaHCO3/Na2CO3 buffer (pH 10) rather than in physiological pH region. Then, we measured electron spin resonance (ESR) spectra at pH 10 to examine the characteristics of free radical species derived from caffeic acid (CA) with an unsaturated side chain, dihydrocaffeic acid (DCA) with a saturated side chain, chlorogenic acid (ChA) and rosmarinic acid (RA). In analyzing the radical structures, ESR simulation, determinations of macroscopic and microscopic acid dissociation constants and molecular orbital (MO) calculation were performed. In CA, the monophenolate forms were assumed to participate in the formation of free radical species, while in DCA, the diphenol form and the monophenolate forms were presumed to contribute to the formation of free radical species. On the basis of the results, we propose the possible structures of the free radical species formed from polyphenols under alkaline conditions.  相似文献   

5.
Reactivities of several proanthocyanidins (monomers of condensed tannins) and gallate esters (representing hydrolyzable tannins) with hydroxyl radicals, azide radicals, and superoxide anions were investigated using pulse radiolysis combined with kinetic spectroscopy. We determined the scavenging rate constants and the decay kinetics of the aroxyl radicals both at the wavelength of the semiquinone absorption (275 nm) and the absorption band of the gallate ester ketyl radical (400-420 nm). For most compounds second-order decay kinetics were observed, which reflect disproportionation of the semiquinones. In the case of the oligomeric hydrolysable tannins, pentagalloyl glucose and tannic acid, the decay kinetics were more complex involving sequential first-order and second-order reactions, which could only be resolved by kinetic modeling. A correlation of the reaction rates with hydroxyl radicals (k*OH) with the number of adjacent aromatic hydroxyl groups (i.e., representing catechol and/or pyrogallol structures) was obtained for both condensed and hydrolyzable tannins. Similar correlation for the reactions with azide radicals and superoxide anions are less obvious, but exist as well. We consider proanthocyanidins superior radical scavenging agents as compared with the monomeric flavonols and flavones and propose that these substances rather than the flavonoids proper represent the antioxidative principle in red wine and green tea.  相似文献   

6.
Oxidative deposition of iron in ferritin or the autoxidation of iron in the absence of protein produces radicals from Good's buffers. Radical species are formed from the piperazine ring-based buffers Hepes (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), Epps 4-(2-hydroxyethyl)-1-piperazinepropanesulfonic acid, and Pipes 1,4-piperazinediethanesulfonic acid, but not from Mes (4-morpholineethanesulfonic acid) which contains a morpholine ring. The radicals all have half-lives around 10 min and display very similar electron paramagnetic resonance spectra consisting of at least 30 lines. The Hepes radical can be formed by the addition of potassium superoxide directly to the buffer and its production during iron(II) autoxidation is inhibited by superoxide dismutase (EC 1.15.1.1). Catalase (EC 1.11.1.6) accelerates the decay of the EPR spectrum. Thus the buffer radicals are secondary radical species produced from oxygen radicals formed during the iron catalyzed Haber-Weiss process. The deoxyribose/thiobarbituric acid assay for hydroxyl radical production shows that Hepes is an effective hydroxyl radical scavenging agent. The Hepes radical can also be formed electrolytically at a potential of +0.8 V (vs standard hydrogen electrode). Oxidation of Hepes at pH 10 during the autoxidation of iron(II) or by the addition of hydrogen peroxide produces a nitroxide radical. These results indicate that piperazine ring Good buffers should be avoided in studies of redox processes in biochemistry.  相似文献   

7.
Chlorogenic acid (3-O-caffeoylquinic acid) inhibited haematin- and haemoglobin-catalysed retinoic acid 5,6-epoxidation. Some other phenol compounds (caffeic acid and 4-hydroxy-3-methoxybenzoic acid) also showed inhibitory effects on the haematin- and haemoglobin-catalysed epoxidation, but salicylic acid did not. Of the above compounds, caffeic acid and chlorogenic acid were potent inhibitors compared with the other two, suggesting that the o-hydroquinone moiety of chlorogenic acid and caffeic acid is essential to the inhibition of the epoxidation. Although caffeic acid inhibited retinoic acid 5,6-epoxidation requiring the consumption of O2, formation of retinoic acid radicals was not inhibited on the addition of caffeic acid to the incubation mixture. The above results suggest that caffeic acid does not inhibit the formation of retinoic acid radicals but does inhibit the step of conversion of retinoic acid radical into the 5,6-epoxide.  相似文献   

8.
The diabetogenic agent alloxan is selectively accumulated in insulin-producing cells through uptake via the GLUT2 glucose transporter in the plasma membrane. In the presence of intracellular thiols, especially glutathione, alloxan generates "reactive oxygen species" (ROS) in a cyclic reaction between this substance and its reduction product, dialuric acid. The cytotoxic action of alloxan is initiated by free radicals formed in this redox reaction. Autoxidation of dialuric acid generates superoxide radicals (O(2)(*-)) and hydrogen peroxide (H(2)O(2)), and finally hydroxyl radicals ((*)OH). Thus, while superoxide dismutase (SOD) only reduced the toxicity, catalase, in particular in the presence of SOD, provided complete protection of insulin-producing cells against the cytotoxic action of alloxan and dialuric acid due to H(2)O(2) destruction and the prevention of hydroxyl radical ((*)OH) formation, indicating that it is the hydroxyl radical ((*)OH) which is the ROS ultimately responsible for cell death. After selective accumulation in pancreatic beta cells, which are weakly protected against oxidative stress, the cytotoxic glucose analogue alloxan destroys these insulin-producing cells and causes a state of insulin-dependent diabetes mellitus through ROS-mediated toxicity in rodents and in other animal species, which express this glucose transporter isoform in their beta cells.  相似文献   

9.
The effect of caffeic acid, a kind of catechol, on the Fenton reaction was examined by using the ESR spin trapping technique. Caffeic acid enhanced the formation of hydroxyl radicals in the reaction mixture, which contained caffeic acid, hydrogen peroxide, ferric chloride, EDTA, and potassium phosphate buffer. Chlorogenic acid, which is an ester of caffeic acid with quinic acid, also stimulated the formation of the hydroxyl radicals. Quinic acid did not stimulate the reaction, suggesting that the catechol moiety in chlorogenic acid is essential to the enhancement of the hydroxyl-radical formation. Indeed, other catechols and related compounds such as pyrocatechol, gallic acid, dopamine, and noradrenaline effectively stimulated the formation of the hydroxyl radicals. The above results confirm the idea that the catechol moiety is essential to the enhancement. Ferulic acid, 4-hydroxy-3-methoxybenzoic acid, and salicylic acid had no effect on the formation of the hydroxyl radicals. The results indicate that the enhancement by the catechols of the formation of hydroxyl radicals is diminished if a methyl ester is formed at the position of the hydroxyl group of the catechol. In the absence of iron chelators such as EDTA, DETAPAC, desferrioxamine, citrate, and ADP, formation of hydroxyl radicals was not detected, suggesting that chelators are essential to the reaction. The enhancement of the formation of hydroxyl radicals is presumably due to the reduction of ferric ions by the catechols. Thus, the catechols may exert deleterious effects on biological systems if chelators such as EDTA, DETAPAC, desferrioxamine, citrate, and ADP are present.  相似文献   

10.
The rates of photo-oxidation of adenine in the presence of peroxydisulphate (PDS) have been determined by measuring the absorbance of adenine at 260.5 nm spectrophotometrically. The rates and the quantum yields (phi) of oxidation of adenine by sulphate radical anion (SO4(-)) have been determined in the presence of different concentrations of caffeic acid. Increase in the concentration of caffeic acid is found to decrease the rate of oxidation of adenine suggesting that caffeic acid acts as an efficient scavenger of SO4(-) and protects adenine from it; SO4(-) competes for adenine as well as for caffeic acid. From competition kinetics, the rate constant of SO4(-) with caffeic acid has been calculated to be 1.24 +/- 0.2 x 10(10) mol(-1)dm(3)s(-1). The quantum yields of photo-oxidation of adenine have been calculated from the rates of oxidation of adenine and the light intensity absorbed by PDS at 254 nm, the wavelength at which PDS is activated to SO4' -. The results of experimentally determined quantum yields (phi exptl) and the quantum yields calculated (phi cl) by assuming that caffeic acid acts only as a scavenger of SO4(-) radicals show that phi exptl values are lower than phi cl values. The phi prime values, which are experimentally found quantum yield values at each caffeic acid concentration and corrected for SO4(-) scavenging by caffeic acid, are also found to be greater than phi exptI values. These observations suggest that the adenine radicals are repaired by caffeic acid, in addition to scavenging of sulphate radical anions.  相似文献   

11.
The harmful effects of ultraviolet (UV) exposure on the skin are associated with the generation of reactive oxygen species (ROS) such as superoxide anion radical ( O(2)(-)), hydrogen peroxide (H(2)O(2)), hydroxyl radical ( OH), and singlet oxygen ((1)O(2)) as well as with lipid peroxides and their radicals (LOOH and LOO ). To give direct proof that such ROS are generated in UV-exposed skin, we proposed the in vivo detection and imaging method in which both a sensitive and specific chemiluminescence (CL) probe, such as CLA, and an ultralow-light imaging apparatus with a CCD camera were used. With this method we found that O(2)(-) is formed intrinsically and that (1)O(2) and O(2)(-) are generated in the UVA-exposed skin of mice. In addition, we indicated that antioxidative ability against ROS in the skin of hairless rats decreased as age increased. Using these findings, we demonstrated the protective abilities of sodium ascorbate, caffeic acid, essential aroma oils, and zinc(ii) ion and its complexes, which we administered to mice both topically and orally. We present a review for the current state of our research proposing the sensitive CL method as a useful in vivo tool in photobiological research for the detection of oxidative stress as well as for the evaluation of antioxidative agents to the skin.  相似文献   

12.
Despite a wealth of experimental evidence concerning the efficacy of the biocidal action associated with the TiO(2) photocatalytic reaction, our understanding of the photochemical mechanism of this particular biocidal action remains largely unclear. It is generally accepted that the hydroxyl radical (.OH), which is generated on the surface of UV-illuminated TiO(2), plays the main role. However, our understanding of the exact mode of action of the hydroxyl radical in killing microorganisms is far from complete, and some studies report that other reactive oxygen species (ROS) (H(2)O(2) and O(2).(-), etc.) also play significant roles. In particular, whether hydroxyl radicals remain bound to the surface or diffuse into the solution bulk is under active debate. In order to examine the exact mode of action of ROS in inactivating the microorganism, we tested and compared the levels of photocatalytic inactivation of MS-2 phage and Escherichia coli as representative species of viruses and bacteria, respectively. To compare photocatalytic microbial inactivation with the photocatalytic chemical degradation reaction, para-chlorobenzoic acid, which rapidly reacts with a hydroxyl radical with a diffusion-limited rate, was used as a probe compound. Two different hydroxyl radical scavengers, tert-butanol and methanol, and an activator of the bulk phase hydroxyl radical generation, Fe(2+), were used to investigate their effects on the photocatalytic mode of action of the hydroxyl radical in inactivating the microorganism. The results show that the biocidal modes of action of ROS are very different depending on the specific microorganism involved, although the reason for this is not clear. It seems that MS-2 phage is inactivated mainly by the free hydroxyl radical in the solution bulk but that E. coli is inactivated by both the free and the surface-bound hydroxyl radicals. E. coli might also be inactivated by other ROS, such as O(2).(-) and H(2)O(2), according to the present results.  相似文献   

13.
To clarify the effect of superoxide dismutase (SOD) on the formation of hydroxyl radical in a standard reaction mixture containing 15 microM of xanthone, 0.1 M of 5,5-dimethyl-1-pyrroline N-oxide (DMPO), and 45 mM of phosphate buffer (pH 7.4) under UVA irradiation, electron paramagnetic resonance (EPR) measurements were performed. SOD enhanced the formation of hydroxyl radicals. The formation of hydroxyl radicals was inhibited on the addition of catalase. The rate of hydroxyl radical formation also slowed down under a reduced oxygen concentration, whereas it was stimulated by disodium ethylenediaminetetraacetate (EDTA) and diethyleneaminepentaacetic acid (DETAPAC). Above findings suggest that O(2), H(2)O(2), and iron ions participate in the reaction. SOD possibly enhances the formation of the hydroxyl radical in reaction mixtures of photosensitizers that can produce O(2)(-.).  相似文献   

14.
The hydroxyl radical adducts of 5, 5 dimethyl-1-pyrolline-N-oxide (DMPO) and 3, 3,5, 5 tetramethyl-1-pyrolline-N-oxide (TMPO) formed in the presence of hydrogen peroxide and Fe are normally quite stable, but in the presence of 5-20 micromolar myoglobin their ESR signals decay rapidly. This decay probably reflects further oxidation of the adduct to nonparamgnetic products.

The ESR signal of the hydroxyl radical adduct of 1-alpha-phenyl-tert-butyl nitrone (PBN) formed under similar conditions is subject to non-heme dependent attenuation, possibly via hydroxyl radical scavenging, but not to heme dependent decay. Hydrogen peroxide readily converts myoglobin to its ferryl (FeIV) derivative, and this centre may be responsible for the oxidation of the DMPO and TMPO adducts. The different behaviour of PBN may be due to differences in susceptibility to ferrylmyoglobin mediated oxidation, or to steric differences controlling access to the heme pocket of myoglobin, and is relevant to the choice of spin trap for biological experiments aimed at detecting hydroxyl radicals in the presence of myoglobin or other heme proteins.  相似文献   

15.
The formation of ortho-quinone from ortho-diphenol is a key step in its dimerization. An NMR analysis of the oxidation of 3,4-dihydroxycinnamic acid (caffeic acid) by NaIO4 revealed the formation of 3-(3',4'-dioxo-1',5'-cyclohexadienyl) propenoic acid (o-quinone) prior to the formation of furofuran-type lignan 4,8-exo-bis (3,4-dihydroxyphenyl)-3,7-dioxabicyclo[3.3.0]octane-2,6-dione. Both electrolytic and enzymatic oxidation of caffeic acid also generated o-quinone. The yields of o-quinone from caffeic acid were quantified by NMR and HPLC analyses. A stable isotope-labeling study of the formation of lignans directly proved the random radical coupling of semiquinone radicals formed from a set of caffeic acid and o-quinone.  相似文献   

16.
Several caffeic acid esters isolated from propolis exhibit interesting antioxidant properties, but their in vivo use is compromised by hydrolysis of the ester bond in the gastrointestinal tract. Therefore, a series of caffeic acid amides were synthesized and their in vitro antioxidant profile was determined. A series of hydroxybenzoic acids, hydroxycinnamic acids, and the synthesized caffeic acid amides were tested for both their 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and microsomal lipid peroxidation-inhibiting activity. Some of the highly active antioxidants were further tested by means of electron paramagnetic resonance for their hydroxyl radical scavenging activity. Since a promising antioxidant compound should show a lipid peroxidation-inhibiting activity at micromolar level and a low cytotoxicity, the cytotoxicity of the phenolic compounds was also studied. In all the assays used, the caffeic acid anilides and the caffeic acid dopamine amide showed an interesting antioxidant activity.  相似文献   

17.
In vitro antioxidant profile of phenolic acid derivatives   总被引:2,自引:0,他引:2  
Several caffeic acid esters isolated from propolis exhibit interesting antioxidant properties, but their in vivo use is compromised by hydrolysis of the ester bond in the gastrointestinal tract. Therefore, a series of caffeic acid amides were synthesized and their in vitro antioxidant profile was determined. A series of hydroxybenzoic acids, hydroxycinnamic acids, and the synthesized caffeic acid amides were tested for both their 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and microsomal lipid peroxidation-inhibiting activity. Some of the highly active antioxidants were further tested by means of electron paramagnetic resonance for their hydroxyl radical scavenging activity. Since a promising antioxidant compound should show a lipid peroxidation-inhibiting activity at micromolar level and a low cytotoxicity, the cytotoxicity of the phenolic compounds was also studied. In all the assays used, the caffeic acid anilides and the caffeic acid dopamine amide showed an interesting antioxidant activity.  相似文献   

18.
To spin trap hydroxyl radical (HO*) with in vivo detection of the resultant radical adducts, the use of two spin traps, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) (10 mmol/kg) has been compared. In mice treatment with 5-aminolevulinic acid and Fe3+ resulted in detection of adducts of hydroxyl radicals (HO*), but only with use of DEPMPO. Similarly, 'HO* adducts' generated via nucleophilic substitution of SO4*- adducts formed in vivo could be observed only when using DEPMPO as the spin trap. The reasons for the differences observed between DEPMPO and DMPO are likely due to different in vivo lifetimes of their hydroxyl radical adducts. These results seem to be the first direct in vivo EPR detection of hydroxyl radical adducts.  相似文献   

19.
Radical scavenging by reconstituted lyophilized powders of water extracts from 16 common vegetables was measured using electron spin resonance (ESR) with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), hydroxyl radicals, (.OH) or superoxide anion radicals (O2.-), as DMPO-OH or DMPO-OOH spin adducts. On a dry weight basis, eggplant, and red, yellow and green bell pepper extracts showed potent superoxide anion radical scavenging activities (SOD-like activities). Ascorbate oxidase- or heat-treatments, decreased SOD-like activities in bell pepper extracts suggesting that ascorbate accounts for much of their free radical scavenging activity. Eggplant epidermis extract exhibited the most potent hydroxyl radical scavenging and SOD-like activities. Eggplant SOD-like activity did not decrease after ascorbate oxidase treatment, but decreased following ultrafiltration demonstrating that SOD-like activity is partially due to high molecular weight substances. Nasunin, an anthocyanin in eggplant epidermis, showed markedly potent superoxide anion radical scavenging activity, while it inhibited hydroxyl radical generation probably by chelating ferrous ion.  相似文献   

20.
Hydroxycinnamates are among the most widely distributed plant phenylpropanoids present in the free, conjugated-soluble and insoluble-bound forms. This review will focus on the occurrence, in vitro and in vivo antioxidant activities of ferulic, coumaric, caffeic and sinapic acids and their derivatives. Hydroxycinnamates are found in almost all food groups though they are abundant in cereals, legumes, oilseeds, fruits, vegetables and beverages and render antioxidant activity by scavenging hydroxyl radical, superoxide radical anion, several organic radicals, peroxyl radical, peroxinitrite and singlet oxygen, among others. Further, their antioxidant activity as chain breaking antioxidants and reducing agents is also notable. Ferulic acid and its derivatives such as ferulic acid ethyl ester, ferulic acid dehydrodimers, feruloyl glycosides and curcumin have demonstrated potent antioxidant activity in both in vitro and in vivo systems. Similarly, caffeic acid and some of its derivatives such as caffeic acid phenethyl ester, rosmarinic acid, and chlorogenic acid exhibit antioxidant activity. The highest antioxidant activity was observed for caffeic acid whereas p-coumaric acid had the least effect among major hydroxycinnamic acids. The importance of structural effects on the potency of antioxidant activity of hydroxycinnamates is discussed. While this review also shows the existence of substantial body of evidences for in vitro antioxidant activity of hydroxycinnamates, there is a clear gap for in vivo information, particularly for sinapic and p-coumaric acids and their derivatives. The role of grains, fruits, vegetables and red wine in disease risk reduction and health promotion could partly be attributed to their constituent hydroxycinnamates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号