共查询到20条相似文献,搜索用时 0 毫秒
1.
Purinergic Signalling - 相似文献
2.
Clostridium botulinum neurotoxins are zinc endopeptidase proteins responsible for cleaving specific peptide bonds of proteins of neuroexocytosis apparatus. The ability of drugs to interfere with toxin's catalytic activity is being evaluated with zinc chelators and metalloprotease inhibitors. It is important to develop effective pharmacological treatment for the intact holotoxin before the catalytic domain separates and enters the cytosol. We present here evidence for a novel mechanism of an inhibitor binding to the holotoxin and for the chelation of zinc from our structural studies on Clostridium botulinum neurotoxin type B in complex with a potential metalloprotease inhibitor, bis(5-amidino-2-benzimidazolyl)methane, and provide snapshots of the reaction as it progresses. The binding and inhibition mechanism of this inhibitor to the neurotoxin seems to be unique for intact botulinum neurotoxins. The environment of the active site rearranges in the presence of the inhibitor, and the zinc ion is gradually removed from the active site and transported to a different site in the protein, probably causing loss of catalytic activity. 相似文献
3.
A novel mechanism of myocyte degeneration involving the Ca2+-permeable growth factor-regulated channel 总被引:5,自引:0,他引:5
Iwata Y Katanosaka Y Arai Y Komamura K Miyatake K Shigekawa M 《The Journal of cell biology》2003,161(5):957-967
Disruption of the dystrophin-glycoprotein complex caused by genetic defects of dystrophin or sarcoglycans results in muscular dystrophy and/or cardiomyopathy in humans and animal models. However, the key early molecular events leading to myocyte degeneration remain elusive. Here, we observed that the growth factor-regulated channel (GRC), which belongs to the transient receptor potential channel family, is elevated in the sarcolemma of skeletal and/or cardiac muscle in dystrophic human patients and animal models deficient in dystrophin or delta-sarcoglycan. However, total cell GRC does not differ markedly between normal and dystrophic muscles. Analysis of the properties of myotubes prepared from delta-sarcoglycan-deficient BIO14.6 hamsters revealed that GRC is activated in response to myocyte stretch and is responsible for enhanced Ca2+ influx and resultant cell damage as measured by creatine phosphokinase efflux. We found that cell stretch increases GRC translocation to the sarcolemma, which requires entry of external Ca2+. Consistent with these findings, cardiac-specific expression of GRC in a transgenic mouse model produced cardiomyopathy due to Ca2+ overloading, with disease expression roughly parallel to sarcolemmal GRC levels. The results suggest that GRC is a key player in the pathogenesis of myocyte degeneration caused by dystrophin-glycoprotein complex disruption. 相似文献
4.
5.
Bovine glutamate dehydrogenase is potently inhibited by zinc and the major impact is on V(max) suggesting a V-type effect on catalysis or product release. Zinc inhibition decreases as glutamate concentrations decrease suggesting a role for subunit interactions. With the monocarboxylic amino acid norvaline, which gives no evidence of subunit interactions, zinc does not inhibit. Zinc significantly decreases the size of the pre-steady state burst in the reaction but does not affect NADPH binding in the enzyme-NADPH-glutamate complex that governs the steady state turnover, again suggesting that zinc disrupts subunit interactions required for catalytic competence. While differential scanning calorimetry suggests zinc binds and induces a slightly conformationally more rigid state of the protein, limited proteolysis indicates that regions in the vicinity of the antennae regions and the trimer-trimer interface become more flexible. The structures of glutamate dehydrogenase bound with zinc and europium show that zinc binds between the three dimers of subunits in the hexamer, a region shown to bind novel inhibitors that block catalytic turnover, which is consistent with the above findings. In contrast, europium binds to the base of the antenna region and appears to abrogate the inhibitory effect of zinc. Structures of various states of the enzyme have shown that both regions are heavily involved in the conformational changes associated with catalytic turnover. These results suggest that the V-type inhibition produced with glutamate as the substrate results from disruption of subunit interactions necessary for efficient catalysis rather than by a direct effect on the active site conformation. 相似文献
6.
Abate A Yang G Dennery PA Oberle S Schröder H 《Free radical biology & medicine》2000,29(11):1135-1142
7.
Cho DH Choi YJ Jo SA Ryou J Kim JY Chung J Jo I 《American journal of physiology. Cell physiology》2006,291(2):C317-C326
Thiazolidinediones (TZDs), synthetic peroxisome proliferator-activated receptor (PPAR) ligands, have been implicated in the inhibition of protein synthesis in a variety of cells, but the underlying mechanisms remain obscure. We report that troglitazone, the first TZD drug, acutely inhibited protein synthesis by decreasing p70 S6 kinase (p70S6K) activity in bovine aortic endothelial cells (BAEC). This inhibition was not accompanied by decreased phosphorylation status or in vitro kinase activity of mammalian target of rapamycin (mTOR). Furthermore, cotreatment with rapamycin, a specific mTOR inhibitor, and troglitazone additively inhibited both p70S6K activity and protein synthesis, suggesting that the inhibitory effects of troglitazone are not mediated by mTOR. Overexpression of the wild-type p70S6K gene significantly reversed the troglitazone-induced inhibition of protein synthesis, indicating an important role of p70S6K. Okadaic acid, a protein phosphatase 2A (PP2A) inhibitor, partially reversed the troglitazone-induced inhibition of p70S6K activity and protein synthesis. Although troglitazone did not alter total cellular PP2A activity, it increased the physical association between p70S6K and PP2A, suggesting an underlying molecular mechanism. GW9662, a PPAR antagonist, did not alter any of the observed inhibitory effects. Finally, we also found that the mTOR-independent inhibitory mechanism of troglitazone holds for the TZDs ciglitazone, pioglitazone, and rosiglitazone, in BAEC and other types of endothelial cells tested. In conclusion, our data demonstrate for the first time that troglitazone (and perhaps other TZDs) acutely decreases p70S6K activity through a PP2A-dependent mechanism that is independent of mTOR and PPAR, leading to the inhibition of protein synthesis in endothelial cells. protein synthesis 相似文献
8.
9.
10.
11.
12.
A novel mechanism of action of chemically modified tetracyclines: inhibition of COX-2-mediated prostaglandin E2 production. 总被引:9,自引:0,他引:9
R N Patel M G Attur M N Dave I V Patel S A Stuchin S B Abramson A R Amin 《Journal of immunology (Baltimore, Md. : 1950)》1999,163(6):3459-3467
Tetracyclines (doxycycline and minocycline) inhibit inducible NO synthase expression and augment cyclooxygenase (COX)-2 expression and PGE2 production. In contrast, chemically modified tetracyclines (CMTs), such as CMT-3 and -8 (but not CMT-1, -2, and -5), that lack antimicrobial activity, inhibit both NO and PGE2 production in LPS-stimulated murine macrophages, bovine chondrocytes, and human osteoarthritis-affected cartilage, which spontaneously produces NO and PGE2 in ex vivo conditions. Furthermore, CMT-3 augments COX-2 protein expression but inhibits net PGE2 accumulation. This coincides with the ability of CMT-3 and -8 to inhibit COX-2 enzyme activity in vitro. The action of CMTs is distinct from that observed with tetracyclines because 1) CMT-3-mediated inhibition of PGE2 production coincides with modification of COX-2 protein, which is distinct from the nonglycosylated COX-2 protein generated in the presence of tunicamycin, as observed by Western blot analysis and 2) CMT-3 and -8 have no significant effect on COX-2 mRNA accumulation. In contrast, CMT-3 and -8 do not inhibit COX-1 expression in A549 human epithelial cells at the level of protein and mRNA accumulation or modification of COX-1 protein. CMT-3 and -8 inhibit the sp. act. of COX-2 (but not COX-1) in cell-free extracts. These results demonstrate differential action of CMT-3 (Metastat) on COX-1 and -2 expression, which is distinct from other tetracyclines. 相似文献
13.
Selective inhibition of cyclooxygenase-2 with antisense oligodeoxynucleotide restricts induction of rat adjuvant-induced arthritis 总被引:3,自引:0,他引:3
Yamada R Sano H Hla T Hashiramoto A Kawahito Y Mukai S Kohno M Tsubouchi Y Inoue M Komatsu A Inoue K Kondo M 《Biochemical and biophysical research communications》2000,269(2):415-421
14.
15.
A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer. 总被引:6,自引:0,他引:6
Enrico L DiGiammarino Amanda S Lee Craig Cadwell Weixing Zhang Brian Bothner Raul C Ribeiro Gerard Zambetti Richard W Kriwacki 《Nature structural biology》2002,9(1):12-16
The p53 tumor suppressor requires tetramerization to function as an initiator of cell cycle arrest and/or apoptosis. Children in southern Brazil that exhibit an elevated incidence of adrenocortical carcinoma (ACC) harbor an Arg 337 to His mutation within the tetramerization domain of p53 (p53-R337H; 35 of 36 patients). The mutant tetramerization domain (p53tet-R337H) adopts a native-like fold but is less stable than the wild type domain (p53tet-wt). Furthermore, the stability of p53tet-R337H is highly sensitive to pH in the physiological range; this sensitivity correlates with the protonation state of the mutated His 337. These results demonstrate a pH-sensitive molecular defect of p53 (R337H), suggesting that pH-dependent p53 dysfunction is the molecular basis for these cases of ACC in Brazilian children. 相似文献
16.
Yu Y Gong R Mu Y Chen Y Zhu C Sun Z Chen M Liu Y Zhu Y Wu J 《Journal of immunology (Baltimore, Md. : 1950)》2011,187(9):4844-4860
Chronic inflammation induced by hepatitis B virus (HBV) is a major causative factor associated with the development of cirrhosis and hepatocellular carcinoma. In this study, we investigated the roles of three inflammatory factors, IL-8, IL-29 (or IFN-λ1), and cyclooxygenase-2 (COX-2), in HBV infection. We showed that the expression of IL-29, IL-8, and COX-2 genes was enhanced in HBV-infected patients or in HBV-expressing cells. In HBV-transfected human lymphocytes and hepatocytes, IL-29 activates the production of IL-8, which in turn enhances the expression of COX-2. In addition, COX-2 decreases the production of IL-8, which in turn attenuates the expression of IL-29. Thus, we proposed that HBV infection induces a novel inflammation cytokine network involving three inflammatory factors that regulate each other in the order IL-29/IL-8/COX-2, which involves positive regulation and negative feedback. In addition, we also demonstrated that COX-2 expression activated by IL-8 was mediated through CREB and C/EBP, which maintains the inflammatory environment associated with HBV infection. Finally, we showed that the ERK and the JNK signaling pathways were cooperatively involved in the regulation of COX-2. We also demonstrated that IL-29 inhibits HBV replication and that IL-8 attenuates the expression of IL-10R2 and the anti-HBV activity of IL-29, which favors the establishment of persistent viral infection. These new findings provide insights for our understanding of the mechanism by which inflammatory factors regulate each other in response to HBV infection. 相似文献
17.
L.B. Margolis A.V. Victorov L.D. Bergelson 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1982,720(3):259-265
A new approach has been developed for studying the transfer of liposome-entrapped substances into cells. The cells are incubated with liposomes containing two markers that in the free (non-entrapped) state enter the cells at different rates. Comparison of the ratio of cell-associated markers applied either in free or in liposome-entrapped form permits the evaluation of different pathways of cellular uptake of the intraliposomal substances. When epithelial cell sheets were incubated with egg phosphatidylcholine liposomes containing two different sugars they became cell-associated at a ratio different from their initial ratio inside the liposomes. Since the cell-associated ratio was shifted towards the value observed when the cells were incubated with a mixture of the two sugars in the free state, it is suggested that the liposomes become permeable during incubation and that the liberated substances enter the cells in the free form. On the other hand, cell-liposome interaction was demonstrated by NMR measurement and gel-filtration experiments to result in transformation of small unilamellar liposomes into larger multilayered aggregates. This transformation depends on the contact of the liposomes with the cell sheet. It is supposed that interliposomal aggregation is the underlying mechanism of cell-induced leakage of liposomes. 相似文献
18.
Griffiths SL Grainger DJ 《BioEssays : news and reviews in molecular, cellular and developmental biology》2006,28(6):629-641
Metabolic Syndrome is a cluster of risk factors (including obesity, hypertension and insulin resistance), which is associated with late-onset diabetes and coronary heart disease. Elevated levels of the protease inhibitor PAI-1 are well-known molecular markers of the Metabolic Syndrome. Here, however, we present a hypothesis that PAI-1 acts as a causative factor in the development of Metabolic Syndrome and its clinical sequelae. We propose that PAI-1 inhibits the activity of members of the proprotein convertase (PC) class of serine proteases and that this underlies, at a molecular level, many of the other features of the Metabolic Syndrome cluster. 相似文献
19.
Inhibition of cyclooxygenase-2 (cox-2) is considered to be anti-inflammatory, whereas inhibition of the constitutive isozyme cox-1 causes renal and gastrointestinal toxicity. Therefore, to achieve an optimal anti-inflammatory effect, an inhibitor should be cox-2 selective without inhibiting cox-1. For this purpose, 10 different cox-2-selective phosphorothioated oligonucleotides (S-oligos) were tested to inhibit the cox-2 enzyme selectively in vivo. An aqueous solution of these S-oligos (3 mg/kg body weight) was injected intraperitoneally (i.p.) into male Sprague-Dawley rats with colitis induced by trinitrobenzene sulfonic acid (TNBS). The colonic levels of cox-2 protein, mRNA, myeloperoxidase (MPO), and prostaglandin E2 (PGE2) were increased significantly on day 1 and remained significantly elevated until day 7 post-TNBS administration, whereas cox-1 remained unaltered. Two S-oligos were found to be effective in reducing the level of cox-2 protein selectively without any effect on the cox-1. The effective S-oligo, but not the mismatched control oligo, reduced the tissue levels of PGE2 and MPO activity significantly. The effective S-oligo reduced the level of cox-2 but not the cox-1 mRNA significantly, whereas a mismatched or a sense control oligo did not affect the levels of these isoforms. M-fold analysis demonstrated extensive secondary structure formation in the cox-2 mRNA. These findings demonstrate that only a few selected sites in the cox-2 target mRNA are accessible in vivo, probably because of the presence of secondary structures. Suppression of cox-2 protein, PGE2, and MPO activity by the S-oligo might prove to be an anti-inflammatory property. 相似文献
20.
Molecular determinants for the selective inhibition of cyclooxygenase-2 by lumiracoxib 总被引:1,自引:0,他引:1
Lumiracoxib is the first example of a marketed COX-2 inhibitor of the arylacetic acid class, and it is reported to be the most selective COXIB in vivo. However, the molecular basis of its COX-2 inhibition has not been completely defined. Using standard assays, lumiracoxib was found to be a poor inhibitor of purified ovine COX-1 and a relatively weak inhibitor of purified human COX-2. The extent of COX-2 inhibition plateaued at around 50% and suggested that the inhibitor may be reversibly bound to the enzyme. Kinetic studies with lumiracoxib demonstrated that it was a time-dependent and slowly reversible inhibitor of human COX-2 that exhibited at least two binding steps during inhibition. Derivatives of lumiracoxib were synthesized with or without the methyl group on the phenylacetic acid ring and with various substitutions on the lower aniline ring. Inhibition studies demonstrated that the methyl group on the phenylacetic acid ring is required for COX-2 selectivity. The chemical identity and position of the substituents on the lower aniline ring were important in determining the potency and extent of COX inhibition as well as COX-2 selectivity. Mutation of Ser-530 to Ala or Val-349 to Ala or Leu abolished the potent inhibition observed with wild-type human COX-2 and key lumiracoxib analogs. Interestingly, a Val-349 to Ile mutant was inhibited with equal potency to human COX-2 with 2,6-dichloro-, 2,6-dimethyl-, or 2-chloro-6-methyl-substituted inhibitors and, in the case of lumiracoxib, actually showed an increase in potency. Taken together with a recent crystal structure of a lumiracoxib-COX-2 complex, the kinetic analyses presented herein of the inhibition of mutant COX-2s by lumiracoxib allows the definition of the molecular basis of COX-2 inhibition. 相似文献