首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fourier-transform infrared (FTIR) spectroscopy has been used to quantify the alpha-helix and beta-sheet contents of subtilisin Carlsberg dissolved in several nonaqueous, as well as aqueous, solvents. Independently, the catalytic activity of the enzyme has been measured in the same solvents. While our previous FTIR studies revealed no connection between the secondary structure and enzymatic activity for subtilisin suspended in various organic solvents, a very different situation is observed herein for the dissolved enzyme. Specifically, if either the alpha-helix or beta-sheet content in a given solvent is higher or lower than in water, no appreciable enzymatic catalysis is observed. Conversely, when the secondary structure of subtilisin dissolved in a given nonaqueous solvent is similar to that in water, so is the enzymatic activity. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 485-491, 1997.  相似文献   

2.
To investigate how the conformational flexibility of subtilisin affects its ability to discriminate between enantiomeric amino acid and ester substrates for the subtilisin-catalyzed reaction in an organic solvent, the flexibility around the active site and the surface of subtilisin was estimated from the mobility of a spin label bound to subtilisin by ESR spectroscopy. Many studies on enzyme flexibility focus on the active site. Both the surface and active site flexibility play an important role in the enantioselectivity enhancement of the enzyme-catalyzed reaction. It was found, however, that the different behavior observed for the enantioselectivity between the amino acid and ester substrates could be correlated with the flexibility around the surface rather than the flexibility at the active site of subtilisin. In other words, for the ester substrates, the greater flexibility around the surface of subtilisin induced by a conformational change resulting from the presence of an additive such as DMSO is essential for the enantioselectivity enhancement. This model is also supported by the Michaelis-Menten kinetic parameters for each enantiomeric substrate. Our findings provide insight into the enantioselectivity enhancement for the resolution of enantiomers for enzyme-catalyzed reactions in organic solvents.  相似文献   

3.
We developed an FTIR (Fourier transform infrared) methodology for quantitatively assessing the secondary structure of proteins suspended in nonaqueous media. This methodology was used to measure the percentages of alpha-helices and beta-sheets of subtilisin Carlsberg, prepared under different conditions, placed in various organic solvents. The title question was addressed with respect to some instances of markedly influencing the subtilisin activity in organic solvents reported in the literature. It is concluded that the mechanism of subtilisin activation by KCl and N-Ac-L-Phe-NH(2) present in the aqueous solution of the enzyme prior to lyophilization may be due to their preservation of the secondary structure, otherwise altered by the dehydration. Likewise, subtilisin inactivation in the protein-dissolving solvent DMSO (dimethyl sulfoxide) is likely caused by enzyme denaturation (the loss of both alpha-helices and beta-sheets). On the other hand, some other ligands, as well as protein nondissolving organic solvents, while greatly affecting the subtilisin activity, have little effect on its secondary structure, thus ruling out the causal relationship between the two. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 351-362, 1997.  相似文献   

4.
The insolubility of nitrile substrates in aqueous reaction mixture decreases the enzymatic reaction rate. We studied the interaction of fourteen water miscible organic solvents with immobilized nitrile hydrolyzing biocatalyst. Correlation of nitrilase function with physico-chemical properties of the solvents has allowed us to predict the enzyme behavior in such non-conventional media. Addition of organic solvent up to a critical concentration leads to an enhancement in reaction rate, however, any further increase beyond the critical concentration in the latter leads to the decrease in catalytic efficiency of the enzyme, probably due to protein denaturation. The solvent dielectric constant (epsilon) showed a linear correlation with the critical concentration of the solvent used and the extent of nitrile hydrolysis. Unlike alcohols, the reaction rate in case of aprotic solvents could be linearly correlated to solvent log P. Further, kinetic analysis confirmed that the affinity of the enzyme for its substrate (K (m)) was highly dependent upon the aprotic solvent used. Finally, the prospect of solvent engineering also permitted the control of enzyme enantioselectivity by regulating enantiomer traffic at the active site.  相似文献   

5.
A very sensitive NMR method has been developed for measuring deuterated water bound to proteins suspended in nonpolar solvents. This has been used to determine the amount of bound water as a function of water activity for subtilisin Carlsberg suspended in hexane, benzene, and toluene and for alpha-chymotrypsin in hexane. The adsorption isotherms for subtilisin in the three solvents are very similar showing that water activity can be usefully employed to predict the amount of water bound to proteins in nonpolar organic media. Comparison of the degree of enzyme hydration reached in nonpolar solvents with that obtained in air shows that adsorption of strongly bound water is hardly affected by the low dielectric medium, but adsorption of loosely bound water is significantly reduced. This suggests that the hydrophobic regions of the protein surface are preferentially solvated by solvent molecules, and that in a nonpolar environment formation of a complete monolayer of water over the protein surface is thermodynamically unfavorable. (c) 1995 John Wiley & Sons, Inc.  相似文献   

6.
Summary Subtilisin from Bacillus subtilis was modified with polyethylene glycol (PEG), or adsorbed either on celite or porous glass, or directly used as a suspended powder to catalyse peptide synthesis and transesterification reactions in organic solvents. The rather low yield of peptide synthesis probably resulted from the enzyme tendency to catalyse hydrolysis and transesterification side reactions. The kinetics of transesterification catalysed by PEG-subtilisin was consistent with a ping-pong mechanism modified by a hydrolytic branch. Initial rates of transesterification were found to be dependent on alcohol and organic base concentrations in the reaction mixture. The high affinity of benzyloxycarbonyl-l-serine-methyl ester for the enzyme indicated that a change in substrate specificity of subtilisin occurred in organic phase. The 50-fold increase in the rate of synthesis of benzyloxycarbonyl-l-serine-l-phenylalanine amide which was observed when PEG-subtilisin was used instead of immobilized or powdered enzyme, suggested that a higher flexibility of the polypeptide chain modified by the covalent attachment of a number of soluble PEG moieties occurred in organic solvents. This also resulted in a lower stability of PEG-subtilisin at high temperature.Offprint requests to: A. Puigserver  相似文献   

7.
A protein solubilization method has been developed to directly solubilize protein clusters into organic solvents containing small quantities of surfactant and trace amounts of water. Termed "direct solubilization," this technique was shown to solubilize three distinct proteins - subtilisin Carlsberg, lipase B from Candida antarctica, and soybean peroxidase - with much greater efficiencies than extraction of the protein from aqueous solution into surfactant-containing organic solvents (referred to as extraction). More significant, however, was the dramatic increase in directly solubilized enzyme activity relative to extracted enzyme activity, particularly for subtilisin and lipase in polar organic solvents. For example, in THF the initial rate towards bergenin transesterification was ca. 70 times higher for directly solubilized subtilisin than for the extracted enzyme. Furthermore, unlike their extracted counterparts, the directly solubilized enzymes yielded high product conversions across a spectrum of non-polar and polar solvents. Structural characterization of the solubilized enzymes via light scattering and atomic force microscopy revealed soluble proteins consisting of active enzyme aggregates containing approximately 60 and 100 protein molecules, respectively, for subtilisin and lipase. Formation of such clusters appears to provide a microenvironment conducive to catalysis and, in polar organic solvents at least, may protect the enzyme from solvent-induced inactivation.  相似文献   

8.
The rates of transesterification reactions catalyzed by the protease subtilisin Carlsberg suspended in various anhydrous solvents at 30 degrees C can be increased more than 100-fold by the addition of denaturing organic cosolvents (dimethyl sulfoxide or formamide); in water, the same cosolvents exert no enzyme activation. At 4 degrees C, the activation effect on the lyophilized protease is even higher, reaching 1000-fold. Marked enhancement of enzymatic activity in anhydrous solvents by formamide is also observed for two other enzymes, alpha-chymotrypsin and Rhizomucor miehei lipase, and is manifested in two transesterification reactions. In addition to lyophilized subtilisin, crosslinked crystals of subtilisin are also amenable to the dramatic activation by the denaturing cosolvents. In contrast, subtilisin solubilized in anhydrous media by covalent modification with poly(ethylene glycol) exhibits only modest activation. These observations are rationalized in terms of a mechanistic hypothesis based on an enhanced protein flexibility in anhydrous millieu brought about by the denaturing organic cosolvents. The latter exert their lubricating effect largely at the interfaces between enzyme molecules in a solid preparation, thus easing the flexibility constraints imposed by protein-protein contacts. (c) 1996 John Wiley & Sons, Inc.  相似文献   

9.
The activity and stability of native subtilisin Karlsberg and subtilisin 72 and their complexes with sodium dodecyl sulfate (SDS) in organic solvents were studied. The kinetic constants of the hydrolysis of specific chromogenic peptide substrates Z- ALA-Ala-Leu-pNA and Glp-Ala-Ala-Leu-pNA by the subtilisins were determined. It was found that the subtilisin Karlsberg complex with SDS in anhydrous organic solvents is an effective catalyst of peptide synthesis with multifunctional amino acids in positions P1 and P'1 (Glu, Arg, and Asp) containing unprotected side ionogenic groups.  相似文献   

10.
M Philipp  I H Tsai  M L Bender 《Biochemistry》1979,18(17):3769-3773
The p-nitrophenyl esters of straight-chain fatty acids were used as substrates of the enzyme subtilisin Novo (EC 3.4.4.16) and its chemically produced artificial enzyme thiolsubtilisin. Subtilisin and thiolsubtilisin pH--activity profiles were determined, and kinetic effects of the active site O-S substitution were observed. Among the substrates tested, both enzymes show highest specificity with p-nitrophenyl butyrate. It was also found that subtilisin is more sensitive to changes in substrate chain length than is thiolsubtilisin. Second-order acylation rate constants (k2/Ks) are remarkably similar for both enzymes. However, thiolsubtilisin deacylation rate constants and Km values are lower than analogous subtilisin constants. While thiolsubtilisin deacylation rate constants give a pH profile identical with that of subtilisin, the pH profile of thiolsubtilisin acylation rate constants shows an active site pK value lowered from the subtilisin pK of 7.15 and exhibits an inflection point at pH 8.45, which is absent in subtilisin.  相似文献   

11.
When it is assumed that organic solvents do not interfere with the binding process nor with the catalytic mechanism, the contribution of substrate-solvent interactions to enzyme kinetics can be accounted for by just replacing substrate concentrations in the equations by thermodynamic activities. It appears from the transformation that only the affinity parameters (K(m), K(sp)) are affected by this. Thus, in theory, the values of these corrected, intrinsic parameters (K(m) (int), k(sp) (int)) and the maximal rate (V(1)) should be equal for all media. This was tested for hydrolysis, transesterification, and esterification reactions catalyzed by pig pancreas lipase and Pseudomonas cepacia lipase in various organic solvents. Correction was carried out via experimentally determined activity coefficients for the substrates in these solvents or, if not feasible, from values in data bases. However, although the kinetic performances of each enzyme in the solvents became much more similar after correction, differences still remained. Analysis of the enzyme suspensions revealed massive particles, which explains the low activity of enzymes in organic solvents. However, no correlation was found between estimates of the amount of catalytically available enzyme (present at the surface of suspended particles or immobilized on beads) and the maximal rates observed. Moreover, the solvents had similar effects on the intrinsic parameters of suspended and immobilized enzyme. The possible causes for the effects of the solvents on the catalytic performance of the enzymes, remaining after correction for solvent-substrate interactions and the amount of participating enzyme, are discussed with respect to the premises on which the correction method is based. (c) 1995 John Wiley & Sons, Inc.  相似文献   

12.
We report here the first determinations of individual rate constants and equilibrium constants for enzymatic reactions in essentially anhydrous organic solvents. Using the added nucleophile method we have measured the effect of changing solvent on the binding and catalytic steps for subtilisin-catalyzed transesterification of N-protected amino acid esters. The detailed information generated indicates that once the substrate has bound to the enzyme, the catalytic machinery can work at rates equivalent to those in water. The decreased overall rates for subtilisin suspended in anhydrous solvents are merely the result of extremely high values for K(s), in most cases, coupled with low concentrations of nucleophile ( approximately 1.0M in organic solvents, and 55M in water). The method described, which is generally applicable, and straightforward experimentally, will, we believe, enable a clearer understanding of how changing solvent can predictably affect the activity and specificity of the enzyme. (c) 1992 John Wiley & Sons, Inc.  相似文献   

13.
Calculation of kinetic constants of an enzymatic reaction in organic solvents requires knowledge of the functional active-site concentration in organic solvents, and this can be significantly different than that in water. An experimental method for active-site titration of serine proteases in organic media has been developed based on the kinetics of inhibition by phenylmethanesulfonyl fluoride (PMSF), a serine-specific inhibitor (or suicide substrate). This kinetic approach is fundamentally different from other techniques that require complete titration of all accessible enzyme active sites. This active site titration method was applied to subtilisins BPN' and Carlsberg and alpha-chymotrypsin and resulted in fractions of active sites that ranged from 8 to 62% (of the fraction active in water) depending on the enzyme, the method of enzyme preparation, and the organic solvent used. The active-site concentration of subtilisin BPN' and Carlsberg increased with increasing hydrophobicity of the solvent and with increasing solvent hydration in tetrahydrofuran. The dependence of the fraction of active sites on the nature of the organic solvent appears to be governed largely by solvent-induced inactivation caused by direct interaction of a hydrophilic solvent with the enzyme. (c) 1996 John Wiley & Sons, Inc.  相似文献   

14.
P450 enzymes are of high interest for synthetic applications due to their ability to catalyze hydroxylation reactions at inactivated C-H bonds. The low solubility of many substrates in buffer, however, is limiting the applications of P450s. Our recent demonstration that the P450 enzymes CYP2D6 and CYP3A4 can function very well in biphasic solvent systems is one step towards overcoming this drawback, but is not practical when substrates or products are unstable in water, or with water-soluble products. An alternative strategy, which also facilitates enzyme recycling, is to directly resuspend lyophilized enzyme into nearly anhydrous organic solvents. Interestingly, we report here that CYP2D6 colyophilized with trehalose and suspended in n-decane shows higher activity than in aqueous buffer. This study demonstrates the unexpected high tolerance of CYP2D6 to some low water organic solvents and provides an alternative strategy to facilitate the use of this enzyme in synthesis.  相似文献   

15.
The reaction of vanadium-bromoperoxidase from the brown alga Ascophyllum nodosum with hydrogen peroxide, bromide, and 2-chlorodimedone has been subjected to an extensive steady-state kinetic analysis. Systematic variation of pH and the concentrations of these three components demonstrate that the reaction model includes four enzyme species: native bromoperoxidase, a bromoperoxidase-bromide inhibitory complex, a bromoperoxidase-hydrogen peroxide intermediate, and a bromoperoxidase-HOBr species. This latter intermediate did not display any direct interaction with the nucleophilic reagent as oxidized bromine species (Br-3, Br2, and/or HOBr) were the primary reaction products. The generation of oxidized bromine species was as fast as the bromination of 2-chlorodimedone. The enzyme did not show any specificity with regard to bromination of various organic compounds. Formation of the bromoperoxidase-bromide inhibitory complex was competitive with the reaction between hydrogen peroxide and enzyme. From the steady-state kinetic data lower limits for the second-order rate constants at various pH values were calculated for individual steps in the catalytic cycle. This pH study showed that native enzyme must be unprotonated prior to binding of hydrogen peroxide (second-order association rate constant of 2.5.10(6) M-1.s-1 at pH greater than 6). The pKa for the functional group controlling the binding of hydrogen peroxide was 5.7 and is ascribed to a histidine residue. The reaction rate between bromide and enzyme-hydrogen peroxide intermediate also depended on pH (second-order association rate constant of 1.7.10(5) M-1.s-1 at pH 4.0).  相似文献   

16.
We studied a model transesterification reaction catalyzed by subtilisin Carlsberg suspended in toluene, n-hexane, diisopropyl ether, and mixtures of these solvents. To account for solvent effects due to differences in water partitioning between the enzyme and the bulk solvents, we measured water sorption isotherms for the enzyme in each solvent. We measured catalytic activity as a function of enzyme hydration and obtained bell-shaped curves with maxima at the same enzyme hydration in all the solvents. However, the activity maxima were different in all the media, being the lowest in toluene. Differences in the partitioning of substrates and product between the bulk solvent phase and the enzyme active site were accounted for but could not explain the lower catalytic activity observed in toluene. The fact that toluene is very similar to one of the substrates suggested the possibility of competitive inhibition by this solvent. We derived a model allowing for differences in solvation of the substrates, by using thermodynamic activities instead of concentrations, as well as for competitive inhibition by toluene. The model fit the experimental data well, confirming that toluene had a direct adverse effect on the catalytic activity of the enzyme. (c) 1996 John Wiley & Sons, Inc.  相似文献   

17.
N Gollop  B Damri  Z Barak  D M Chipman 《Biochemistry》1989,28(15):6310-6317
Acetohydroxy acid synthase (AHAS, EC 4.1.3.18) isozyme III from Escherichia coli has been studied in steady-state kinetic experiments in which the rates of formation of acetolactate (AL) and acetohydroxybutyrate (AHB) have been determined simultaneously. The ratio between the rates of production of the two alternative products and the concentrations of the substrates pyruvate and 2-ketobutyrate (2KB) leading to them, R, VAHB/VAL = R[( 2KB]/[pyruvate]), was found to be 40 +/- 3 under a wide variety of conditions. Because pyruvate is a common substrate in the reactions leading to both products and competes with 2-ketobutyrate to determine whether AL or AHB is formed, steady-state kinetic studies are unusually informative for this enzyme. At a given pyruvate concentration, the sum of the rates of formation of AL and AHB was nearly independent of the 2-ketobutyrate concentration. On the basis of these results, a mechanism is proposed for the enzyme that involves irreversible and rate-determining reaction of pyruvate, at a site which accepts 2-ketobutyrate poorly, if at all, to form an intermediate common to all the reactions. In the second phase of the reaction, various 2-keto acids can compete for this intermediate to form the respective acetohydroxy acids. 2-Keto acids other than the natural substrates pyruvate and 2-ketobutyrate may also compete, to a greater or lesser extent, in the second phase of the reaction to yield alternative products, e.g., 2-ketovalerate is preferred by about 2.5-fold over pyruvate. However, the presence of an additional keto acid does not affect the relative specificity of the enzyme for pyruvate and 2-ketobutyrate; this further supports the proposed mechanism. The substrate specificity in the second phase is an intrinsic property of the enzyme, unaffected by pH or feedback inhibitors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Kinetics of lipase-catalyzed esterification in supercritical CO(2)   总被引:4,自引:0,他引:4  
This study compares two solvents for enzymatic reactions: supercritical carbon dioxide (SCCO(2)) and organic solvent (n-hexane). The model reaction that was chosen was the esterification of oleic acid by ethanol catalyzed by an immobilized lipase from Mucor miehei (Lypozyme). The stability of the enzyme appeared to be quite good and similar in both media but was affected by the water content. Partition of water between solvents and immobilized enzyme has been calculated from experimental adsorption isotherms. The water content of the solid phase has a dramatic influence on the activity of the enzyme and its optimum value for activity was about 10% (w/w) in both media. A kinetic study enabled a Ping-Pong Bi-Bi reaction mechanism with inhibition by ethanol to be suggested. Despite some differences in kinetic constants, activity was in the same range in both media. Hypotheses for explaining the kinetic constant variations have been proposed and particular attention has been paid to the pH effects.  相似文献   

19.
Enzymatic catalysis in nonaqueous solvents   总被引:39,自引:0,他引:39  
Subtilisin and alpha-chymotrypsin vigorously act as catalysts in a variety of dry organic solvents. Enzymatic transesterifications in organic solvents follow Michaelis-Menten kinetics, and the values of V/Km roughly correlate with solvent's hydrophobicity. The amount of water required by chymotrypsin and subtilisin for catalysis in organic solvents is much less than needed to form a monolayer on its surface. The vastly different catalytic activities of chymotrypsin in various organic solvents are partly due to stripping of the essential water from the enzyme by more hydrophilic solvents and partly due to the solvent directly affecting the enzymatic process. The rate enhancements afforded by chymotrypsin and subtilisin in the transesterification reaction in octane are of the order of 100 billion-fold; covalent modification of the active center of the enzymes by a site-specific reagent renders them catalytically inactive in organic solvents. Upon replacement of water with octane as the reaction medium, the specificity of chymotrypsin toward competitive inhibitors reverses. Both thermal and storage stabilities of chymotrypsin are greatly enhanced in nonaqueous solvents compared to water. The phenomenon of enzymatic catalysis in organic solvents appears to be due to the structural rigidity of proteins in organic solvents resulting in high kinetic barriers that prevent the native-like conformation from unfolding.  相似文献   

20.
Unusual salt and solvent dependence of a protease from an extreme halophile   总被引:3,自引:0,他引:3  
An extracellular protease has been purified from the extreme halophile, Halobacterium halobium. The irreversible inactivation kinetics of this halophilic protease in salt concentrations below 4M consists of autolytic and nonautolytic (steady-state denaturation) components. Addition of organic solvents has a dramatic effect on enzyme stability in low salt media. For example, in 0.36M NaCl, the inactivation rate constant for the nonautolytic component in 20% (v/v) ethylene glycol is ca. 3 orders of magnitude lower than in 20% (v/v) tetrahydrofuran. Enzyme stability in different aqueous/organic solvent mixtures correlates strongly to the salting-out capacity of the solvent. Solvents that act to increase the apparent hydrophobicity of the enzyme's core stabilize the enzyme in much the same way as salting-out salts. This mechanism is not important for the nonhalophilic protease, subtilisin Carlsberg, and demonstrates that halophilic enzymes have evolved highly specialized reaction medium requirements. Moreover, through the use of organic solvents, it is shown that high concentrations of salts are not absolutely necessary for high enzyme stability, and this may have important process considerations. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 471-479, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号