首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In rat liver parenchyma, expression of the phosphoenolpyruvate carboxykinase (PEPCK) gene was studied by Northern blot analysis with a biotinylated cRNA probe and the zonal localization of PEPCK mRNA was demonstrated by in situ hybridization with a radiolabelled cRNA probe. During the feeding period at night, overall PEPCK mRNA levels were low and PEPCK mRNA was detected only in small areas of the periportal zone. At the beginning of the light period (7 am) the overall PEPCK mRNA level began increasing and the periportal areas containing PEPCK mRNA broadened. The maximum of the total abundance and of the area with high levels of PEPCK mRNA was reached at noon. Fasting for 24-72 h did not cause further significant alterations in the level or localization of PEPCK mRNA. The present data are in line with previous findings of the predominant localization of PEPCK activity and enzyme protein in periportal hepatocytes. They suggest that the heterogeneous expression of the PEPCK gene in rat liver is regulated at the pretranslational level.  相似文献   

2.
In rat, serine dehydratase (SDH) is abundant in the liver and known to be a gluconeogenic enzyme, while there is little information about the biochemical property of human liver serine dehydratase because of its low content and difficulty in obtaining fresh materials. To circumvent these problems, we purified recombinant enzyme from Escherichia coli, and compared some properties between human and rat liver serine dehydratases. Edman degradation showed that the N-terminal sequence of about 75% of human serine dehydratase starts from MetSTART-Met2-Ser3- and the rest from Ser3-, whereas the N-terminus of rat enzyme begins from the second codon of MetSTART-Ala2-. The heterogeneity of the purified preparation was totally confirmed by mass spectrometry. Accordingly, this observation in part fails to follow the general rule that the first Met is not removed when the side chain of the penultimate amino acid is bulky such as Met, Arg, Lys, etc. There existed the obvious differences in the local structures between the two enzymes as revealed by limited-proteolysis experiments using trypsin and Staphylococcus aureus V8 protease. The most prominent difference was found histochemically: expression of rat liver serine dehydratase is confined to the periportal region in which many enzymes involved in gluconeogenesis and urea cycle are known to coexist, whereas human liver serine dehydratase resides predominantly in the perivenous region. These findings provide an additional support to the previous notion suggested by physiological experiments that contribution of serine dehydratase to gluconeogenesis is negligible or little in human liver.  相似文献   

3.
Summary The zonal distribution of phosphoenolpyruvate carboxykinase (PCK) and tyrosine aminotransferase (TAT) mRNA in liver was studied by in situ hybridization with radiolabelled cRNA probes and the abundance of PCK and TAT mRNA was quantified by Northern blot analysis of total RNA with biotinylated cRNA probes. Livers were taken from rats during a normal 12 h day/night rhythm, when they had access to food only during the dark period from 7 pm to 7 am, or during refeeding, when they had access to food after having been starved for 60 h. 1. Daily feeding rhythm: High levels of PCK mRNA were distributed mainly in the periportal and intermediate zone during the fasting period at noon and 6 pm. Feeding caused a rapid decrease in PCK mRNA level and a restriction of PCK mRNA localization to the periportal area within the first 2 h. No further alterations were observed during the following hours of the feeding period. TAT mRNA was distributed also in the periportal and intermediate zone during the fasting period. Feeding first reduced the mRNA level without changing the distribution pattern. Then towards the end of the feeding period TAt mRNA increased again to half-maximal levels and became restricted mainly to the periportal area. 2. Starvation-refeeding cycle: High amounts of PCK mRNA as well as of TAT mRNA were localized predominantly in the periportal and intermediate zone after 60 h of starvation. PCK and TAT mRNA both decreased markedly during the first 2 h of refeeding and then remained almost constant. Whereas the alterations in the overall abundance of the two mRNAs were similar, the distribution patterns of both mRNAs differed. While PCK mRNA became more and more restricted to a small area of periportal cells towards the end of refeeding, TAT mRNA was first evenly distributed in the periportal and perivenous area with higher amounts in the intermediate zone and then again was predominantly located in the periportal area. The present data indicate that the predominant periportal localization of PCK and TAT activity and enzyme protein is regulated mainly at the pretranslational level.  相似文献   

4.
5.
In rat liver, serine dehydratase mRNA is undetectable in the late prenatal period, but its level increases rapidly after birth to a transient peak, and then after decrease gradually increases again to a maximum 2 weeks after birth that is slightly higher than that of adult liver. To determine whether mature quiescent hepatocytes proliferate without loss of differentiated functions, we measured the serine dehydratase mRNA contents in regenerating liver and primary cultured hepatocytes from adult rats. Partial hepatectomy resulted in a dramatic decrease in the mRNA content within 24 h and then its recovery within a week. In subconfluent cultures of adult rat hepatocytes that did not grow even in the presence of mitogens, serine dehydratase mRNA was maintained at a high level. However, when the hepatocytes were cultured at low cell density without added mitogens, their serine dehydratase mRNA content decreases to a quarter of that of subconfluent cultures. The possibility that the expression of serine dehydratase mRNA is regulated in G0/G1 transition before entry into the S phase and the relationship of the mRNA with growth are discussed.  相似文献   

6.
Serine dehydratase was induced in the kidneys of normal rats by the administration of either glucagon or dexamethasone. The increase in enzyme activity was associated with an increase in both enzyme protein and its mRNA, which were determined respectively by Western blot and RNA blot analysis. No apparent differences were observed between kidney and liver in the molecular weights of serine dehydratase proteins and the sizes of their mRNAs. Although kidney serine dehydratase was dramatically induced by either glucagon or dexamethasone, the liver enzyme was induced by glucagon but not by dexamethasone alone in the intact rat. On the other hand, liver serine dehydratase was induced in starvation, diabetes mellitus, and a high-protein diet. The kidney enzyme could not be induced under any of these conditions.  相似文献   

7.
A cDNA clone containing sequences complementary to the mRNA cording for rat hepatic serine dehydratase was isolated to study the multihormonal regulation of this enzyme. Serine dehydratase mRNA was partially purified (50-fold enrichment, 8.2% of the total mRNA activity) from the liver of rats fed high protein diet by polysome immunoadsorption followed by oligo(dT)-cellulose column chromatography. This preparation was used as template for synthesis of cDNA. Double-stranded cDNA sequences were inserted into the plasmid pBR322 and cloned in Escherichia coli DH1. Of 860 transformants screened, 6 clones containing DNA complementary to serine dehydratase mRNA were identified by differential colony hybridization and hybrid-selected translation. The length of serine dehydratase mRNA was estimated to be 1,500 bases by Northern blot analysis. One cloned cDNA comprised about 1,000 base pairs, or 65% of the length of the mRNA. The amount of the mRNA was greatly increased in the liver of rats given high protein diet.  相似文献   

8.
9.
Administration of glucagon to rats fed a protein-free diet caused a significant induction of the liver enzyme, serine dehydratase. This effect of glucagon is inhibited by the concomitant administration of fluoroorotic acid. This inhibition was enhanced by pretreatment with glucosamine or galactosamine, probably through depletion of the intracellular uridine pools. Although less than a doubling of enzyme activity was observed after glucagon plus fluoroorotic acid administration, the amount of protein precipitable by antisera specifically reactive against serine dehydratase increased 4.5 times. Ouchterlony double-diffusion analysis showed a completely cross-reacting single precipitin band from liver extracts of untreated animals and rats treated with the analog. Analysis of the antigen-antibody complex by Na dodecyl sulfate-gel electrophoresis indicated that a single protein was being immunochemically precipitated from both the glucagon- and glucagon plus fluoroorotic acid-treated rats. In the latter, the precipitated protein had a molecular weight similar to purified serine dehydratase. These results are consistent with the concept that the incorporation of fluoroorotic acid into mRNA results in the synthesis of a protein with characteristics similar to authentic serine dehydratase but without normal enzymatic activity. Other possible mechanisms to explain the production of this abnormal protein are discussed.  相似文献   

10.
The zonal distribution of phosphoenolpyruvate carboxykinase (PCK) and tyrosine aminotransferase (TAT) mRNA in liver was studied by in situ hybridization with radiolabelled cRNA probes and the abundance of PCK and TAT mRNA was quantified by Northern blot analysis of total RNA with biotinylated cRNA probes. Livers were taken from rats during a normal 12 h day/night rhythm, when they had access to food only during the dark period from 7 pm to 7 am, or during refeeding, when they had access to food after having been starved for 60 h. 1. Daily feeding rhythm: High levels of PCK mRNA were distributed mainly in the periportal and intermediate zone during the fasting period at noon and 6 pm. Feeding caused a rapid decrease in PCK mRNA level and a restriction of PCK mRNA localization to the periportal area within the first 2 h. No further alterations were observed during the following hours of the feeding period. TAT mRNA was distributed also in the periportal and intermediate zone during the fasting period. Feeding first reduced the mRNA level without changing the distribution pattern. Then towards the end of the feeding period TAT mRNA increased again to half-maximal levels and became restricted mainly to the periportal area. 2. Starvation-refeeding cycle: High amounts of PCK mRNA as well as of TAT mRNA were localized predominantly in the periportal and intermediate zone after 60 h of starvation. PCK and TAT mRNA both decreased markedly during the first 2 h of refeeding and then remained almost constant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Rat liver serine dehydratase, D site-binding protein, HMG-CoA reductase mRNA levels are known to exhibit daily rhythms which are affected by lesions of the suprachiasmatic nuclei (Ogawa and Ansai (1995) Arch. Biochem. Biophys., 316: 844-850) but not by adrenalectomy (Ansai, Y. and Ogawa, H. (1996) Biol. Rhythm Res., 27: 175-184). Autonomic nerves have been reported to be important in some metabolic processes in the liver, but little is known about the role of innervation in the generation of these rhythms. To this end, rat sympathetic hepatic nerves were destroyed by surgical and chemical procedures, and after four days the animals were killed at 6-hour intervals. Concentrations of noradrenaline, a major catecholamine in the liver, decreased to below 5% of control levels, indicating the completeness of denervation. However, the above three mRNA levels at each time point were not substantially influenced by this treatment. These findings suggest that the daily rhythms of serine dehydratase, D site-binding protein, and HMG-CoA reductase mRNA levels are not under sympathetic nervous control.  相似文献   

12.
Zonal expression of hepatocytic marker enzymes during liver repopulation   总被引:1,自引:1,他引:0  
Hepatocytes are metabolically specialised cells displaying distinctive gene expression patterns within the liver lobule. Here, we investigate whether pre-cultured adult rat hepatocytes adopt periportal and pericentral enzyme expression following their transplantation into the regenerating rat liver. Isolated primary rat hepatocytes, representing a mixture of both periportal and pericentral origin, lost expression of carbamoyl phosphate synthetase I (CPS I) and cytochrome P450 subtype 2B1 (CYP2B1) in culture as shown by immunofluorescence and Western blot analysis. Accordingly, urea synthesis and CYP2B1 enzyme activity decreased. Hepatocytes from DPPIV (CD26) wild type rats were cultured for 4 and 7 days, and then transplanted into the livers of CD26 deficient rats following prior treatment with retrorsine and partial hepatectomy to drive selective donor cell proliferation. CD26 positive donor cells engrafted in the periportal regions and grew in clusters expanding into the parenchyma as time proceeded. Ten weeks after transplantation, cells derived from donors surrounding the portal veins expressed CPS I, but not CYP2B1. The reverse was true for CD26 positive cells in close proximity to the central veins displaying immunoreactivity to CYP2B1, but no longer to CPS I. Hepatocytes lose their specific marker enzyme expression in culture. After transplantation, donor hepatocytes proliferate in the host parenchyma whilst acquiring the position-specific enzyme expression of the surrounding periportal and pericentral host hepatocytes. These results indicate the high degree of plasticity of gene expression in hepatocytes subjected to a change in microenvironment.  相似文献   

13.
Previous studies of serine dehydratase (EC 4.2.1.13) and ornithine aminotransferase (EC 2.6.1.13) adaptation in rat liver showed that in rats on a high protein diet, glucocorticoid administration increased serine dehydratase activity while simultaneously reducing the activity of ornithine aminotransferase. The present study examines the role of enzyme synthesis in the expression of these and other dissimilar adaptive characteristics of the two enzymes. Both enzymes were purified to crystallinity and used to prepare specific antibodies. Changes in the rate of synthesis of each enzyme during adaptation were then measured immunochemically. In rats fed ad libitum, the synthetic rates for both enzymes exhibited circadian rhythm, although enzyme levels remained relatively constant. The circadian cycle for ornithine aminotransferase synthesis was in phase with the cycles for body weight and relative liver weight (maxima at 9 a.m., minima at 9 p.m.) but was approximately 12 hours out of phase with the cycle for serine dehydratase synthesis. 9alpha-Fluoro-11beta, 21-dihydroxy-16alpha, 17alpha-isopted at 9 a.m., increased serine dehydratase synthesis and simultaneously decreased the synthesis of ornithine aminotransferase. When triamcinolone was injected at 9 p.m., however, serine dehydratase synthesis was not stimulated, although the reduction of ornithine aminotransferase synthesis was still produced. These results suggest that: (a) circadian cycling of synthesis may be a general phenomenon in enzyme regulation even though for enzymes with relatively long half-lives, such cycling may not be reflected as fluctuations in enzyme levels; (b) such circadian rhythmicity may also involve cyclic changes in the responsiveness of the enzyme-forming system to regulatory stimuli; (c) whereas the adaptive behavior of serine dehydratase typifies that of amino acid-catabolizing enzymes in general, the responses of ornithine aminotransferase denote a functional association of this enzyme with anabolic processes. On this basis, the possibility that ornithine aminotransferase plays a pivotal role in the regulation of urea cycle activity and nitrogen balance is discussed.  相似文献   

14.
Nagao K  Bannai M  Seki S  Mori M  Takahashi M 《Amino acids》2009,36(3):555-562
It is known that plasma serine and threonine concentrations are elevated in rats chronically fed an essential amino acid deficient diet, but the underlying mechanisms including related gene expressions or serine and threonine concentrations in liver remained to be elucidated. We fed rats lysine or valine deficient diet for 4 weeks and examined the mRNA expressions of serine synthesising (3-phosphoglycerate dehydrogenase, PHGDH) and serine/threonine degrading enzymes (serine dehydratase, SDS) in the liver. Dietary deficiency induced marked elevation of hepatic serine and threonine levels associated with enhancement of PHGDH mRNA expression and repression of SDS mRNA expression. Increases in plasma serine and threonine levels due to essential amino acid deficiency in diet were caused by marked increases in hepatic serine and threonine levels. Proteolytic responses to the amino acid deficiency may be lessened by storing amino radicals as serine and inducing anorexia through elevation of threonine.  相似文献   

15.
16.
17.
The blocked amino-terminal residue of rat liver serine dehydratase was shown to be acetylalanine by analysis of an isolated amino-terminal peptide after digestion with acylamino acid-releasing enzyme. Digestion of the borohydride-reduced, carboxymethylated enzyme with lysyl endopeptidase yielded a single epsilon-N-pyridoxyllysine-containing peptide, whose sequence is Met-Asp-Ser-Ser-Gln-Pro-Ser-Gly-Ser-Phe-Lys(Pxy)-Ile-Arg-Gly- His-Leu-Cys(Cm)-Lys. This peptide comprises residues 30-49 of the cDNA-deduced amino acid sequence. The sequence of seven amino acids around the bound pyridoxal phosphate is highly conserved in serine dehydratase from rat liver, and threonine dehydratases from yeast and Escherichia coli.  相似文献   

18.
The diurnal variation of 5'-nucleotidase activity in periportal and pericentral areas of rat liver parenchyma has been determined with quantitative histochemical means. 5'-Nucleotidase activity was estimated using microdensitometry in cryostat sections after being incubated with a medium according to Wachstein and Meisel (1957). It appeared that 5'-nucleotidase activity was significantly higher in pericentral areas than in periportal areas throughout the daily cycle and showed a maximum at the end of the light period. It was concluded that 5'-nucleotidase activity may be related with the capacity to diminish messenger RNA resulting in protein breakdown.  相似文献   

19.
R Gebhardt  A Ebert  G Bauer 《FEBS letters》1988,241(1-2):89-93
Using radiolabeled specific cDNA glutamine synthetase mRNA could be detected by in situ hybridization exclusively within those few perivenous hepatocytes which stained immunocytochemically for glutamine synthetase. This localization of glutamine synthetase mRNA was recently reported by Moorman et al. [(1988) J. Histochem. Cytochem. 36, 751-755]. Biotinylated cDNA was not suitable for mRNA detection because of a very high background staining under the conditions of in situ hybridization. Dot blot and Northern blot analysis of RNA isolated from periportal and perivenous subfractions of hepatocytes also demonstrated the exclusive perivenous localization of two hybridizable glutamine synthetase mRNAs of length 2.8 and 1.6 kilobases. These results indicate that the unique heterogeneity of glutamine synthetase in rat liver parenchyma is controlled at the pretranslational level.  相似文献   

20.
The diurnal variations of the glycogen content and of glycogen phosphorylase activity in periportal and pericentral areas of rat liver parenchyma have been analyzed in periodic acid Schiff (PAS)-stained cryostat sections using quantitative microdensitometry. Glycogen content and phosphorylase activity were always higher in periportal areas than in pericentral areas throughout the daily cycle. The glycogen content was highest at the end of the active period during darkness and lowest at the end of the resting period. Phosphorylase activity appeared to be inversely correlated with the glycogen content in both areas. It is concluded that the glycogen content is regulated by phosphorylase activity, which may be due to local cAMP concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号