首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, 1) is a yellow ingredient isolated from turmeric (curcumin longa). It has been shown to exhibit a variety of biological activities including antioxidative activity. In order to find more active antioxidants with 1 as the lead compound we synthesized curcumin analogues, i.e., 1-(3,4-dihydroxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (2), 1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)-1,6-heptadiene-3,5-dione (3), 1,7-bis-(4-hydroxyphenyl)-1,6-heptadiene-3,5-dione (4), 1-(3,4-dimethoxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (5), 1,7-bis(3,4-dimethoxyphenyl)-1,6-heptadiene-3,5-dione (6), and 1,7-diphenyl-1,6-heptadiene-3,5-dione (7), and evaluated their antioxidative activity. The in vitro oxidative damage to both lipids and proteins in rat liver mitochondria was used as a model to study the free radical-induced oxidative damage of biological lipids as well as proteins and the protective effects of these curcumin analogues. It was found that these compounds, except 6 and 7, could effectively inhibit the free radical induced lipid peroxidation and protein oxidative damage of rat liver mitochondria by H-atom abstraction from the phenolic groups. Compound 2 which bear ortho-diphenoxyl functionality exhibited remarkably higher antioxidative activity for lipids and proteins than curcumin and other analogues, and the 4-hydroxy-3-methoxyphenyl group also play an important role in the antioxidative activity.  相似文献   

2.
The reaction between 2-(benzylamino)-2-deoxy-d-glycero-l-gluco-heptose and 5,5-dimethyl-1,3-cyclohexanedione yields 1-benzyl-4,5,6,7-tetrahydro-6,6-dimethyl-2-(d-galacto-pentitol-1-yl)-indol-4-one (2). Acid-catalyzed, intramolecular dehydration of 2 under kinetically controlled conditions gives 1-benzyl-4,5,6,7-tetrahydro-2-α-d-lyxofuranosyl-6,6-dimethylindol-4-one; the anomeric configuration of this compound is only suggested. When the dehydration reaction is conducted under thermodynamically controlled conditions, it produces a 1:1 mixture of the α- and β-d-lyxopyranosyl compounds. The structures of the new compounds were elucidated by chemical and physical methods.  相似文献   

3.
Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, 1) is a yellow ingredient isolated from turmeric (Curcumin longa). It has been shown to exhibit a variety of biological activities including antioxidative activity. In order to find more active antioxidants with 1 as the lead compound we synthesized curcumin analogues, i.e., 1,7-bis(3,4-dihydroxyphenyl)-1,6-heptadiene-3,5-dione (2), 1-(3,4-dihydroxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (3), 1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)-1,6-heptadiene-3,5-dione (4), 1,7-bis (4-hydroxyphenyl)-1,6-heptadiene-3,5-dione (5), 1-(3,4-dimethoxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (6), 1,7-bis(3,4-dimethoxyphenyl)-1,6- heptadiene-3,5-dione (7), 1,7-bis(4-methoxyphenyl)-1,6-heptadiene-3,5-dione (8), and 1,7-diphenyl-1,6-heptadiene-3,5-dione (9). Antioxidative effects of curcumin and its analogues against free radical initiated peroxidation of human low density lipoprotein (LDL) were studied. The peroxidation was initiated either by a water-soluble initiator 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH), or by cupric ion (Cu2+). The reaction kinetics were monitored either by the uptake of oxygen and the depletion of alpha-tocopherol present in the native LDL, or by the formation of thiobarbituric acid reactive substances. Kinetic analysis of the antioxidation process demonstrates that these compounds, except 7, 8, and 9, are effective antioxidants against AAPH- and Cu2+ -initiated LDL peroxidation by H-atom abstraction from the phenolic groups. Compounds 2 and 3 which bear ortho-diphenoxyl functionality possess significantly higher antioxidant activity than curcumin and other analogues, and the 4-hydroxy-3-methoxyphenyl group also play an important role in the antioxidative activity.  相似文献   

4.
The synthesis and degradation of anthropogenic and natural organohalides are the basis of a global halogen cycle. Chlorinated hydroquinone metabolites (CHMs) synthesized by basidiomycete fungi and present in wetland and forest soil are constituents of that cycle. Anaerobic dehalogenating bacteria coexist with basidiomycete fungi in soils and sediments, but little is known about the fate of these halogenated fungal compounds. In sediment microcosms, the CHMs 2,3,5,6-tetrachloro-1,4-dimethoxybenzene and 2,3,5,6-tetrachloro-4-methoxyphenol (TCMP) were anaerobically demethylated to tetrachlorohydroquinone (TCHQ). Subsequently, TCHQ was converted to trichlorohydroquinone and 2,5-dichlorohydroquinone (2,5-DCHQ) in freshwater and estuarine enrichment cultures. Screening of several dehalogenating bacteria revealed that Desulfitobacterium hafniense strains DCB2 and PCP1, Desulfitobacterium chlororespirans strain Co23, and Desulfitobacterium dehalogenans JW/DU1 sequentially dechlorinate TCMP to 2,3,5-trichloro-4-methoxyphenol and 3,5-dichloro-4-methoxyphenol (3,5-DCMP). After a lag, these strains demethylate 3,5-DCMP to 2,6-DCHQ, which is then completely dechlorinated to 1,4-dihydroquinone (HQ). 2,5-DCHQ accumulated as an intermediate during the dechlorination of TCHQ to HQ by the TCMP-degrading desulfitobacteria. HQ accumulation following TCMP or TCHQ dechlorination was transient and became undetectable after 14 days, which suggests mineralization of the fungal compounds. This is the first report on the anaerobic degradation of fungal CHMs, and it establishes a fundamental role for microbial reductive degradation of natural organochlorides in the global halogen cycle.  相似文献   

5.
The degradation of a lignin substructure model compound, 5-formyl-3-hydroxymethyl-2-(4-hydroxy-3,5-dimethoxyphenyl)-7-methoxycoumaran (I), in ligninolytic culture of a white-rot wood decay fungus,Phanerochaete chrysosporium, was investigated. It was found that I was hydroxylated or dehydrogenated in its coumaran ring to give 2-(5-formyl-2-hydroxy-3-methoxyphenyl)-3-hydroxypropiosyringone (II) and two coumarones, 5-formyl-3-hydroxymethyl-2-(4-hydroxy-3,5-dimethyoxyphenyl)-7-methoxycoumarone (V) and 3,5-diformyl-2-(4-hydroxy-3,5-dimethoxyphenyl)-7-methoxycoumarone (VI), II was further converted to 2,6-dimethoxy-p-benzoquinone (IV), syringic acid (III), and 5-carboxyvanillic acid (VIII). These metabolic products were identified by mass spectrometric comparison with the authentic compounds. A proposed pathway for the degradation of I is presented on the basis of these metabolic products. The degradation could be catalyzed mainly by phenol-oxidizing enzymes.Non-Standard Abbreviations TLC thin layer chromatography  相似文献   

6.
A series of lipophilic diaromatic derivatives of the glia-selective GABA uptake inhibitor (R)-4-amino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol [(R)-exo-THPO, 4] were synthesized via reductive amination of 3-ethoxy-4,5,6,7-tetrahydrobenzo[d]isoxazol-4-one (9) or via N-alkylation of O-alkylatedracemic 4. The effects of the target compounds on GABA uptake mechanisms in vitro were measured using a rat brain synaptosomal preparation or primary cultures of mouse cortical neurons and glia cells (astrocytes), as well as HEK cells transfected with cloned mouse GABA transporter subtypes (GAT1-4). The activity against isoniazid-induced convulsions in mice after subcutaneous administration of the compounds was determined. All of the compounds were potent inhibitors of synaptosomal uptake the most potent compound being (RS)-4-[N-(1,1-diphenylbut-1-en-4-yl)amino]-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol (17a, IC50 = 0.14 microM). The majority of the compounds showed a weak preference for glial, as compared to neuronal, GABA uptake. The highest degree of selectivity was 10-fold corresponding to the glia selectivity of (R)-N-methyl-exo-THPO (5). All derivatives showed a preference for the GAT1 transporter, as compared with GAT2-4, with the exception of (RS)-4-[N-[1,1-bis(3-methyl-2-thienyl)but-1-en-4-yl]-N-methylamino]-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol (28d), which quite surprisingly turned out to be more potent than GABA at both GAT1 and GAT2 subtypes. The GAT1 activity was shown to reside in (R)-28d whereas (R)-28d and (S)-28d contributed equally to GAT2 activity. This makes (S)-28d a GAT2 selective compound, and (R)-28d equally effective in inhibition of GAT1 and GAT2 mediated GABA transport. All compounds tested were effective as anticonvulsant reflecting that these compounds have blood-brain barrier permeating ability.  相似文献   

7.

Background

Progression of age-related macular degeneration has been linked to iron dysregulation and oxidative stress that induce apoptosis of neural retinal cells. Since both antioxidants and chelating agents have been reported to reduce the progression of retinal lesions associated with AMD in experimental animals, the present study evaluates the ability of multi-functional antioxidants containing functional groups that can independently chelate redox metals and quench free radicals to protect the retina against light-induced retinal degeneration, a rat model of dry atrophic AMD.

Methods/Results

Proof of concept studies were conducted to evaluate the ability of 4-(5-hydroxypyrimidin-2-yl)-N,N-dimethyl-3,5-dioxopiperazine-1-sulfonamide (compound 4) and 4-(5-hydroxy-4,6-dimethoxypyrimidin-2-yl)-N,N-dimethyl-3,5-dioxopiperazine-1-sulfonamide (compound 8) to reduce retinal damage in 2-week dark adapted Wistar rats exposed to 1000 lx of light for 3 hours. Assessment of the oxidative stress markers 4- hydroxynonenal and nitrotyrosine modified proteins and Thioredoxin by ELISA and Western blots indicated that these compounds reduced the oxidative insult caused by light exposure. The beneficial antioxidant effects of these compounds in providing significant functional and structural protection were confirmed by electroretinography and quantitative histology of the retina.

Conclusions/Significance

The present study suggests that multi-functional compounds may be effective candidates for preventive therapy of AMD.  相似文献   

8.
Ma J  Jin X  Yang L  Liu ZL 《Phytochemistry》2004,65(8):1137-1143
Seven new diarylheptanoids, i.e., (3S,5S)-3,5-diacetoxy-1,7-bis(4-hydroxy-3-methoxyphenyl)heptane, (3R,5S)-3-acetoxy-5-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)heptane, (3R,5S)-3,5-dihydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)heptane, (5S)-5-acetoxy-1,7-bis(4-hydroxy-3-methoxyphenyl)heptan-3-one, 5-hydroxy-1-(3,4-dihydroxy-5-methoxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)heptan-3-one, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-7-(3,4-dihydroxy-5-methoxy-phenyl)heptan-3-one and 1,5-epoxy-3-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)heptane were isolated from the rhizomes of Chinese ginger (Zingiber officinale Roscoe), along with 25 known compounds, i.e., 8 diarylheptanoids, 14 gingerol analogs, a diterpene and 2 steroids. Their structures were elucidated by spectroscopic and chemical methods.  相似文献   

9.
Four new compounds, including a sesquiterpene and three aromatic compounds, and a known compound were isolated from a culture broth of the fungus Stereum sp. The novel sesquiterpene was determined to be stereumone A ((+)-2,3,4a,5,6,7,8a,9-octahydro-5-hydroxy-6,6,9-trimethyl-4,8a-epoxynaphtho[2,3-b]furan-8(8H)-one; 1), and the three new aromatic compounds were elucidated as 3,5-dihydroxy-4-(3-methylbut-2-enyl)benzene-1,2-dicarbaldehyde (2), 5,7-dihydroxy-6-(3-methylbut-2-enyl)isobenzofuran-1(3H)-one (3), butyl 2,4-dihydroxy-6-methylbenzoate (4), together with the known compound methyl 2,4-dihydroxy-6-methylbenzoate (5). The structures were established by spectroscopic methods including 2D-NMR techniques. Compounds 2 and 4 showed evident nematicidal activity against nematode Panagrellus redivivus.  相似文献   

10.
Antennal olfactory receptor neurons (ORNs) for pheromone and plant volatile compounds were identified and characterized in male and female clover root weevil, Sitona lepidus (Gyllenhal), using the single sensillum recording technique with five pheromone-related compounds, and 40 host and non-host plant volatile compounds. Overall, seven different types of olfactory sensilla containing specialized ORNs were identified in each sex of S. lepidus. Among them, three different types of sensilla in the males and two types in the females housed ORNs specialized for pheromone-related compounds. The ORNs in males were specialized for 4-methyl-3,5-heptanedione or one or more of four stereoisomers of 5-hydroxy-4-methyl-3-heptanone. In contrast, female sensilla did not contain ORNs sensitive to 4-methyl-3,5-heptanedione while they contained ORNs sensitive to and specialized for the stereoisomers of (4S,5S)-5-hydroxy-4-methyl-3-heptanone. In addition to the pheromone-related ORNs, four types of olfactory sensilla contained ORNs responsive to plant volatile compounds in male S. lepidus, and five types in females. Most of the ORNs identified in S. lepidus showed a high degree of specificity to specific volatile compounds although some of the active compounds showed overlapping response spectra in the ORNs across different types of sensilla. The most active plant volatile compounds were the four green leaf volatile compounds, (E)-2-hexenol, (Z)-2-hexenol, (Z)-3-hexenol and (E)-2-hexenal, and isomers of two monoterpenols, (±)-linalool and (±)-α-terpineol, all eliciting strong responses from relatively large numbers of ORNs in male and female S. lepidus. Our study indicates that S. lepidus has a set of highly sensitive and selective ORNs for pheromone and plant volatile compounds. Further work is needed to elucidate the behavioral implications of these findings.  相似文献   

11.
3,5-Di-t-butylhydroxytoluene (compound I) was converted into 4-hydroperoxy-4-methyl-2,6-di-t-butylcyclohexa-2,5-dienone (compound II), 4-hydroxy-4-methyl-2,6-di-t-butylcyclohexa-2,5-dienone (compound III) and 2,6-di-t-butyl-4-hydroxymethylphenol (compound IV) by rat liver microsomal preparations in the presence of NADPH and air. The oxidation of compound (I) by m-chloroperbenzoic acid also produced the same compounds. These results suggest that hydroperoxide can be an intermediate in aromatic hydroxylation and that biological oxygenations resemble per-acid reactions.  相似文献   

12.
《Phytochemistry》1986,25(6):1427-1430
1-Allyl-2,3-(methylenedioxy)-4,5-dimethoxybenzene, 4-methoxy-3,5-bis(3'-methyl-2'-butenyl)-benzoic acid, and the known compounds 5-hydroxy-7-methoxyflavanone and 2,6-dihydroxy-4-methoxydihydrochalcone have been isolated from the fruits of Jamaican Piper aduncum and Piper hispidum.  相似文献   

13.
Two new compounds, the sesquiterpene (1E,5E)-8β-acetoxy-4α-hydroxy-7βH-germacra-1(10),5-dien-14-oic acid (2), and a nor-sesquiterpene, (5E)-8β-acetoxy-4α-hydroxy-7βH-germacr-5-en-10-one (3), were isolated from Pulicaria canariensis ssp. lanata, along with ten known compounds, including the flavonoid 5,3'-dihydroxy-3,7,4'-trimethoxyflavone (4). From Pulicaria burchardii, we isolated seven known compounds; the physical and spectroscopic data of the triterpenoid 3β-hydroxytaraxaster-20-en-30-al (1) are reported. The structures of compounds 1-3 were determined on the basis of HR-MS, and 1D- and 2D-NMR studies. The structure of 2 was corroborated by X-ray crystal diffraction. Cell viability experiments revealed that the semisynthetic flavonoid 4b was the most cytotoxic compound against human leukemia cells, and the cytotoxicity was caused by induction of apoptosis, as determined by microscopy of nuclear changes.  相似文献   

14.
A series of 4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl benzenesulfonamide derivatives (compounds 18) was synthesized by reaction of benzene sulfonamides incorporating primary amino moieties with 4,5,6,7-tetrachlorophthalic anhydride. These sulfonamides were assayed as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). Some of these compounds showed very good in vitro human carbonic anhydrase (hCA) isoforms I, II and VII inhibitory properties, with affinities in the low nanomolar range. Inhibition activities against hCA I were in the range of 159–444 nM; against hCA II in the range of 2.4–4515 nM, and against hCA VII in the range of 1.3–469 nM. The structure–activity relationship (SAR) with this series of sulfonamides is straightforward, with the main features leading to good activity for each isoform being established.  相似文献   

15.
Treatment of racemic 2-hydroxy-3-(1H-indol-3yl)propionic acid methyl ester (5) with isopropyl magnesium chloride provided the title compound 1 and its isomer, 3-hydroxy-1-(indol-3-yl)-4-methylpentan-2-one (9). Both enantiomers (>96% ee) of each component were obtained via semi-preparative chiral supercritical fluid chromatography (SFC). In contrast to previous reports, these compounds, as well as their acetate derivatives, were not active or very weakly active against 16 bacterial strains, including Escherichia coli, Bacillus subtilis and Staphylococcus aureus.  相似文献   

16.
Poincianella pyramidalis (Fabaceae) is an endemic tree that grows in semiarid regions of Brazil. Phytochemical investigations on the bark roots of this plant led to the isolation of four new biflavonoids named (+)-5-hydroxy-7,4′-dimethoxyflavone-3α-2′′′-hydroxy-4′′′,4′′-dimethoxydihydrochalcone (1), (+)-5,7-dihydroxy-4′-methoxyflavone-3α-2′′′-hydroxy-4′′′,4′′-dimethoxydihydrochalcone (2), (−)-7-hydroxy-4′-methoxyflavone-3α-2′′′,4′′′-dihydroxy-4′′-methoxydihydrochalcone (3), (−)-7,4′-dihydroxy-flavanone-3,8-5′′,6′′,4′′-trihydroxy-flavone (4), and the previously identified compound 4,2′,4′,4′′,2′′′,4′′′-hexahydroxy-3,5′′′-bichalcone (rhuschalcone VI, 5). Their structures were determined by HR-ESI-MS and extensive analyses of NMR spectroscopic data.  相似文献   

17.
Phytochemical investigation of Cassia petersiana Bolle leaves afforded four new compounds, including two chromone derivatives, 7-acetonyl-5-hydroxy-2-methylchromone (petersinone 1, 1) and 7-(propan-2'-ol-l'-yl)-5-hydroxy-2-methylchromone (petersinone 2, 2), two benzoic acid derivatives, 5-methyl-3-(propan-2'-on-1'-yl) benzoic acid (petersinone 3, 3) and 5-(methoxymethyl)-3-(propan-2'-ol-1'-yl) benzoic acid (petersinone 4, 4), and glyceryl-1-tetracosanoate (6), in addition to the known compound sistosterol-3-beta-D-glycoside (5). The structures of these compounds were determined by comprehensive NMR studies, including DEPT, COSY, HMQC, HMBC, MS and IR. Compounds 1, 2, 5 and 6 were tested for antioxidant, anti-cancer and immunostimulatory properties. The biological investigations indicated that compound 6, among others, possessed the highest anti-cancer activity against hepatocellular carcinoma, immunoproliferative activity via induction of T-lymphocytes and macrophage proliferation, anti-inflammatory activity as indicated by NO inhibition, and antioxidant activity against DPPH radicals. Moreover, compound 5 was the most effective cytotoxic compound against breast carcinoma and stimulated a consistent immunoproliferative effect on lymphocytes and macrophages combined with strong NO inhibitory activity, while compound 1 was promising as immunoproliferative agent and may act as anti-inflammatory agent as a consequence of its NO inhibitory activity.  相似文献   

18.
Novel amide derivatives of trolox, 3,5-di-tert-butyl-4-hydroxybenzoic acid, (E)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)acrylic acid and cinnamic acid with cysteamine and l-cysteine ethyl ester were synthesised. In four cases, the disulfide derivatives were also isolated and tested. All compounds were examined for antioxidant activity, expressed as their ability to inhibit lipid peroxidation and to scavenge free radicals. They were found to demonstrate up to 17-fold better activity than that of the parent antioxidant acids. They could reduce acute inflammation up to 87%. The most active antioxidant compounds were further tested for their in vivo hypolipidemic effect, which ranged from 47% to 73%, and for their ability to protect the liver against oxidative toxicity caused by high paracetamol dose. The disulfide derivatives of 3,5-di-tert-butyl-4-hydroxybenzoic acid and cinnamic acid had no antioxidant activity and presented equal or lower anti-inflammatory effect than their thiol analogues, indicating that their molecular characteristics may not permit biological barrier penetration.  相似文献   

19.
In our ongoing search for new secondary metabolites from fungal strains, one novel compound (1) and nine known compounds (2-10) were isolated from the EtOAc-soluble layer of the culture broth of Panus rudis. The culture broth of P. rudis was extracted in acetone and fractionated by solvent partition; column chromatography using silica gel, Sephadex LH-20, and Sephadex G-10; MPLC; and HPLC. The structures of isolated compounds were elucidated by one- and two-dimensional NMR and LC-ESI-mass measurements. One new compound, panepoxydiol (1), and nine known compounds, (E)-3-(3-hydroxy-3-methylbut-1-en-1-yl)-7-oxabicyclo[4.1.0]hept-3-ene-2,5-diol (2), isopanepoxydone (3), neopanepoxydone (4), panepoxydone (5), panepophenanthrin (6), 4-hydroxy-2,2-dimethyl-6-methoxychromane (7), 6-hydroxy-2,2-dimethyl-3-chromen (8), 2,2-dimethyl-6-methoxychroman-4-one (9), 3,4-dihydroxy-2,2-dimethyl-6-methoxychromane (10), were isolated from the culture broth of P. rudis. This is the first report of isolation of a new compound panepoxydiol (1) and nine other chemical constituents (2-5, 7-10) from the culture broth of P. rudis.  相似文献   

20.
Glass AD 《Plant physiology》1973,51(6):1037-1041
The influence of naturally occurring phenolic acids on phosphate uptake by barley (Hordeum vulgare L. cv. Karlsberg) roots was examined using 32P-labeled phosphate. Without exception, all compounds tested, namely, benzoic, 2-hydroxybenzoic, 4-hydroxybenzoic, 3,4-dihydroxybenzoic, 3,4,5-trihydroxybenzoic, 4-hydroxy-3-methoxybenzoic, 4-hydroxy-3,5-dimethoxybenzoic, cinnamic, 2-hydroxycinnamic, 4-hydroxycinnamic, 3,4-dihydroxycinnamic, 4-hydroxy-3-methoxycinnamic, and 4-hydroxy-3,5-dimethoxycinnamic acids, inhibited uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号