首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J.C. Boothroyd  G.A.M. Cross 《Gene》1982,20(2):281-289
The nucleotide sequence of the 5′ end of the mRNA for variant surface glycoprotein (VSG) 117 has been determined and compared with the sequence of the unexpressed basic copy (BC) of the VSG 117 gene. This shows the existence of an exon 35 nucleotides long at the 5′ end of the mRNA. The evidence suggests that this ‘mini-exon’ is derived from the expression site into which the VSG 117 BC is transposed during activation. The nucleotide sequence of this mini-exon is indistinguishable from that recently found for a different VSG, 118 (Van der Ploeg et al., Nucl. Acids Res. 10 (1982) 3591–3604). Analysis of the 5′ end of the mRNA for another VSG (221) whose gene is thought to be activated by a different mechanism to that of VSGs 117 and 118 indicates that the 5′- most 35 nucleotides of the VSG 221 mRNA are identical to the 117/118 mini-exon sequence. The implications of these results for the mechanism of VSG gene expression are discussed.  相似文献   

2.
We found that the structural gene for monoamine oxidase was located at 30.9 min on the Escherichia coli chromosome. Deletion analysis showed that two amine oxidase genes are located in this region. The nucleotide sequence of one of the two genes was determined. The peptide sequence of the first 40 amino acids from the N terminus of monoamine oxidase purified from E. coli agrees with that deduced from the nucleotide sequence of the gene. The leader peptide extends over 30 amino acids. The nucleotide sequence of the gene and amino acid sequence of the predicted mature enzyme (M.W. 81,295) were highly homologous to those of the maoAK gene and monoamine oxidase from Klebsiella aerogenes, respectively. From these results and analysis of the enzyme activity, we concluded that the gene encodes for monoamine oxidase (maoAE). The tyrosyl residue, which may be converted to topa quinone in the E. coli enzyme, was located by comparison with amino acid sequences at the cofactor sites in other copper/topa quinone-containing amine oxidases.  相似文献   

3.
The amino acid sequence of a variant surface glycoprotein (VSG 117) of Trypanosoma brucei has been determined by manual sequencing of tryptic. staphylococcal protease and cyanogen bromide peptides and fragments derived from these peptides. Some overlaps needed for completion of the sequence were deduced from the nucleotide sequence of complementary DNA derived from messenger RNA coding for VSG 117. The glycoprotein consists of 470 amino acid residues with two carbohydrate chains attached at Asn420 and Asp470. No pronounced hydrophobic regions, which are characteristic of many membrane proteins, are present in the isolated glycoprotein, and the carboxy-terminal region, which is close to the membrane, is remarkably hydrophilic. These observations indicate that the molecule probably does not penetrate the lipid bilayer of the plasma membrane. The high proportion of charged residues in the carboxyterminal region is more consistent with electrostatic interaction with the polar head groups of the phospholipids.  相似文献   

4.
Digestion of native rabbit liver fructose-1,6-bisphosphatase (Fru-P2ase, EC 3.1.3.11) with a membrane-bound proteinase from rat liver lysosomes yields a fragment of Mr = 9850. This peptide contains the COOH terminus of the Fru-P2ase polypeptide chain and also the cyanogen bromide peptide (BrCN5) carrying the active site lysyl residue. The sequence of BrCN5 and its location with respect to the COOH terminus of the polypeptide chain have been determined. The active site lysyl residue is located at approximately residue ?54 from the COOH terminus. The bond hydrolyzed by the lysosomal proteinase is located between residues ?88 and ?89 from the COOH terminus.  相似文献   

5.
6.
The erythropoietin (Epo) gene from Cynomolgus monkeys has been isolated from a kidney cDNA library using mixed 20-mer oligodeoxynucleotide probes. The gene encodes a 168 amino acid (aa) mature protein with a calculated Mr of 18,490 and a presumptive signal peptide of 24 aa. The Epo gene, when transfected into Chinese hamster ovary (CHO) cells, produces a glycosylated protein with an apparent Mr of 34,000. The expressed product is biologically active in vivo. The monkey gene exhibits 92% and 94% homology to the human gene at the aa and nucleotide sequence levels, respectively. When compared with the human Epo, monkey Epo has an additional 3-aa residue at the N terminus of the mature protein and a deletion of an internal lysine residue.  相似文献   

7.
Trypanosoma brucei faces relentless immune attack in the mammalian bloodstream, where it is protected by an essential coat of Variant Surface Glycoprotein (VSG) comprising ~10% total protein. The active VSG gene is in a Pol I‐transcribed telomeric expression site (ES). We investigated factors mediating these extremely high levels of VSG expression by inserting ectopic VSG117 into VSG221 expressing T. brucei. Mutational analysis of the ectopic VSG 3′UTR demonstrated the essentiality of a conserved 16‐mer for mRNA stability. Expressing ectopic VSG117 from different genomic locations showed that functional VSG levels could be produced from a gene 60 kb upstream of its normal telomeric location. High, but very heterogeneous levels of VSG117 were obtained from the Pol I‐transcribed rDNA. Blocking VSG synthesis normally triggers a precise precytokinesis cell‐cycle checkpoint. VSG117 expression from the rDNA was not adequate for functional complementation, and the stalled cells arrested prior to cytokinesis. However, VSG levels were not consistently low enough to trigger a characteristic ‘VSG synthesis block’ cell‐cycle checkpoint, as some cells reinitiated S phase. This demonstrates the essentiality of a Pol I‐transcribed ES, as well as conserved VSG 3′UTR 16‐mer sequences for the generation of functional levels of VSG expression in bloodstream form T. brucei.  相似文献   

8.
The amino acid sequence and glycan structure of PD-L1, PD-L2 and PD-L3, type 1 ribosome-inactivating proteins isolated from Phytolacca dioica L. leaves, were determined using a combined approach based on peptide mapping, Edman degradation and ESI-Q-TOF MS in precursor ion discovery mode. The comparative analysis of the 261 amino acid residue sequences showed that PD-L1 and PD-L2 have identical primary structure, as it is the case of PD-L3 and PD-L4. Furthermore, the primary structure of PD-Ls 1–2 and PD-Ls 3–4 have 81.6% identity (85.1% similarity). The ESI-Q-TOF MS analysis confirmed that PD-Ls 1–3 were glycosylated at different sites. In particular, PD-L1 contained three glycidic chains with the well known paucidomannosidic structure (Man)3 (GlcNAc)2 (Fuc)1 (Xyl)1 linked to Asn10, Asn43 and Asn255. PD-L2 was glycosylated at Asn10 and Asn43, and PD-L3 was glycosylated only at Asn10. PD-L4 was confirmed to be not glycosylated. Despite an overall high structural similarity, the comparative modeling of PD-L1, PD-L2, PD-L3 and PD-L4 has shown potential influences of the glycidic chains on their adenine polynucleotide glycosylase activity on different substrates.  相似文献   

9.
10.
11.
Complementation analysis of a polyhydroxyalkanoate (PHA)-negative mutant of Aeromonas caviae proved that ORF3 in the pha locus (a 402-bp gene located downstream of the PHA synthase gene) participates in PHA biosynthesis on alkanoic acids, and the ORF3 gene is here referred to as phaJAc. Escherichia coli BL21(DE3) carrying phaJAc under the control of the T7 promoter overexpressed enoyl coenzyme A (enoyl-CoA) hydratase, which was purified by one-step anion-exchange chromatography. The N-terminal amino acid sequence of the purified hydratase corresponded to the amino acid sequence deduced from the nucleotide sequence of phaJAc except for the initial Met residue. The enoyl-CoA hydratase encoded by phaJAc exhibited (R)-specific hydration activity toward trans-2-enoyl-CoA with four to six carbon atoms. These results have demonstrated that (R)-specific hydration of 2-enoyl-CoA catalyzed by the translated product of phaJAc is a channeling pathway for supplying (R)-3-hydroxyacyl-CoA monomer units from fatty acid β-oxidation to poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis in A. caviae.  相似文献   

12.
Deng A  Wu J  Zhang G  Wen T 《Biochimie》2011,93(4):783-791
High-alkaline proteases are of great importance because of their proteolytic activity and stability under high-alkaline condition. We have previously isolated a new protease (AprB) which has potential industrial applications based on its high-alkaline adaptation. However, the molecular and structural basis for alkaline adaptation of this enzyme has not been fully elucidated. In the present study, AprB gene was cloned and expressed in the Bacillus subtilis WB600. This gene codes for a protein of 375 amino acids comprised with a 28-residual signal peptide, a 78-residual pro-peptide, and a 269-residual mature protein. The deduced amino acid sequence has the highest homology of 63.2% with that of the high-alkaline proteases. Recombinant AprB was purified and determined to be monomeric with molecular mass of 26.755 kDa. The NH2-terminal sequence of the purified AprB was A-Q-S-I-P-W-G-I-E-R. This enzyme exhibited high catalytic efficiencies (Kcat/Km) towards natural, modified, and synthesis substrates with optimal activity at 60 °C and pH 10. AprB was stable over a wide range of pH 5 to 11 and various surfactants, and could be activated by Mg2+, Ca2+ and Ba2+. The structural properties of AprB, like a higher ratio of R/(R + K), a larger area of hydrophobic surface, increased number of ion pairs formed by Arg residue, and the exposure of Asp active residue on the surface, might be responsible for its alkaline adaptation. In contrast with members of subtilisin family, such as M-protease and subtilisin BPN′, AprB harbored a high content of Glu and Asp residues, and a low content of Arg and Lys residues on the surface. Interestingly, these structural characters were similar with that of psychrophilic proteases, which suggested that these molecular factors were not restricted in the psychrophilic proteases, and therefore were not solely responsible for their cold-adaptation. Our results reveal a novel structural feature of AprB unique to subtilisin family and provide clues for its alkaline adaptation.  相似文献   

13.
《FEBS letters》1985,191(2):186-190
A second nonhomologous polypeptide in the thylakoid membrane cytochrome b-559 has been suggested by the finding of a smaller reading frame just slightly downstream from that corresponding to the 9 kDa cytochrome polypeptide that is dominant on a Coomassie-stained gel. This reading frame encoded a 39-residue polypeptide that was similar in having a central hydrophobic domain of 25–26 residues and a single His residue at the same position in the hydrophobic domain. The smallest polypeptide seen on SDS gels of the cytochrome was isolated by high-performance liquid chromatography (HPLC). The NH2-terminal sequence matched that of the downstream gene. The stoichiometry of the 2 gene products separated by HPLC was approx. 1:1, based on the molecular masses of 9.16 and 4.27 kDa calculated from the nucleotide sequence. It is concluded that the cytochrome contains both the 9.16 kDa (α) and 4.27 kDa (β) polypeptides. These data, the single His residue on each polypeptide, and the previous finding of a bis-histidine coordination, imply that the unit heme binding structure of the cytochrome is a heme cross-linked dimer. If the cytochrome contains a single heme, the dimer structure would be (αβ). If there are 2 hemes/cytochrome, the more likely structure would be (αβ)2, a tetramer consisting of 2 heme cross-linked hetero-dimers.  相似文献   

14.
Development of pili on cells of Arthrobacter photogonimos is induced by photo-oxidative conditions. The nucleotide sequence was determined of a light-inducible gene (lipA) that encodes the precursor of a light-inducible pilin (designated LIP), a polypeptide of 212 amino acids. The N-terminal leader peptide includes a typical signal sequence with a consensus cleavage site for signal peptidase I after residue 28, which should generate N-terminal arginine. However, the next amino acid, alanine, is the N-terminal residue of the mature protein. The abundance of charged amino acids (27% of total), a calculated pI of 9.98, and recovery of mostly monomers when cells were washed with 1 M NaCl suggest that electrostatic interactions play a dominant role in association of LIP, a novel mechanism for assembly of pili.  相似文献   

15.
《Gene》1988,67(1):117-124
The skp gene encoding the 17 K protein, a basic DNA-binding nucleoid-associated protein of Escherichia coli, was cloned as part of a 2.3-kb genomic fragment. The gene was sequenced and a polypeptide of 161 amino acids (aa) was deduced from the nucleotide sequence. The primary translation product was processed by cutting off the N-terminal 20 aa residues, yielding a mature polypeptide of 141 aa. The Mr of the mature polypeptide was 15674. An E. coli transformant containing the skp gene on the plasmid pGAH317 was shown to overproduce the gene product some 20-fold.  相似文献   

16.
Calmodulin is a eukaryotic calcium binding protein which has several calcium-dependent in vitro activities. Presented in this report is a structural characterization of calmodulin from spinach leaves (Spinacia oleracea). Spinach calmodulin may be representative of higher plant calmodulins in general since calmodulin from the monocotyledon barley (Hordeum vulgare) is indistinguishable by a variety of physical, chemical, and functional criteria (Schleicher, Lukas, Watterson 1983 Plant Physiol 73: 666-670). Spinach calmodulin is homologous to bovine brain calmodulin with only 13 identified amino acid sequence differences, excluding a blocked NH2-terminal tripeptide whose sequence has not been elucidated. Two extended regions of sequence identity are in the NH2-terminal half of the molecule, while nine of the 13 identified differences are in the COOH-terminal half of the molecule. Two of the changes, a cysteine at residue 26 and a glutamine at residue 96, require a minimum of two base changes in the nucleotide codons. Both of these changes occur in the proposed calcium binding loops of the molecule. Five additional amino acid differences found in spinach calmodulin had not been observed previously in a calmodulin. As described in an accompanying report (Roberts, Burgess, Watterson 1984 Plant Physiol 75: 796-798), these limited number of amino acid sequence variations appear to result in differential effects on the activation of calmodulin-dependent enzymes by plant and vertebrate calmodulins.  相似文献   

17.
Rise and fall of the delta globin gene   总被引:9,自引:0,他引:9  
The complete nucleotide sequence of the gene phoE, which codes for the phosphate limitation inducible outer membrane pore protein of Escherichia coli K12 was established. The results show that PhoE protein is synthesized in a precursor form with a 21 amino acid residue amino-terminal extension. This peptide has the general characteristics of a signal sequence. The promoter region of phoE has no homlogy with the consensus sequence of E. coli promoter regions, but homologous sequences with the promoter region of phoA, the structural gene for alkaline phosphatase, were observed. The deduced amino acid sequence showed that the mature PhoE protein is composed of 330 amino acid residues with a calculated molecular weight of 36,782. A number of 81 charged amino acids was found scattered throughout the protein while no large stretches of hydrophobic amino acids were observed. Hydrophobicity and hydration profiles of PhoE protein showed five pronounced hydrophilic maxima which are all located in the region from the amino terminus to residue 212.When the deduced amino acid sequence of PhoE protein was compared with the established sequence of the OmpF pore protein, a number of 210 identical residues was found. Some aspects of the structure-function relationship of PhoE protein are discussed in view of the hydrophobicity and hydration profiles, and the homology between PhoE protein and OmpF protein.  相似文献   

18.
In the mammalian host, the cell surface of Trypanosoma brucei is protected by a variant surface glycoprotein that is anchored in the plasma membrane through covalent attachment of the COOH terminus to a glycosylphosphatidylinositol. The trypanosome also contains a phospholipase C (GPI-PLC) that cleaves this anchor and could thus potentially enable the trypanosome to shed the surface coat of VSG. Indeed, release of the surface VSG can be observed within a few minutes on lysis of trypanosomes in vitro. To investigate whether the ability to cleave the membrane anchor of the VSG is an essential function of the enzyme in vivo, a GPI-PLC null mutant trypanosome has been generated by targeted gene deletion. The mutant trypanosomes are fully viable; they can go through an entire life cycle and maintain a persistent infection in mice. Thus the GPI-PLC is not an essential activity and is not necessary for antigenic variation. However, mice infected with the mutant trypanosomes have a reduced parasitemia and survive longer than those infected with control trypanosomes. This phenotype is partially alleviated when the null mutant is modified to express low levels of GPI-PLC.  相似文献   

19.
《Gene》1997,189(2):163-168
A gene (empV) encoding the extracellular metalloprotease of Vibrio vulnificus CKM-1 has been cloned and sequenced. When the empV gene was expressed in minicells, a unique peptide of approx. 46 kDa was identified. Protease activity staining experiments also indicated a similar Mr for the protease. The empV gene product (EmpV) is secreted into the periplasm of Escherichia coli, but not out of it. The crude enzyme prepared from the periplasmic fraction of recombinant E. coli was inhibited by a metalloprotease inhibitor and Zn2+ is essential for its protease activity. Nucleotide sequence analysis predicted a single open reading frame (ORF) of 1818 bp encoding a 606 amino acid (aa) polypeptide, with a potential 24 aa signal peptide followed by a long `pro' sequence consisting of 172 aa. The N-terminal 20 aa sequence for the elastolytic protease (EepV), purified from the culture supernatant of V. vulnificus ATCC 29307, completely identified the beginning of the predicted mature protein within the deduced aa sequence except for 1 aa residue difference. The estimated pI and molecular weight of the predicted mature protein were 5.86 and 44.3 kDa, respectively, which are nearly identical to those of V. vulnificus L-180 extracellular neutral metalloprotease (EnmV) and of strain ATCC 29307 EepV. The estimated molecular weight also closely matches that determined by SDS-PAGE analysis of the minicells and by protease activity staining. The deduced aa sequence of EmpV showed high homology to V. anguillarum metalloprotease (EmpA), V. cholerae HA/protease (HprC), and V. proteolyticus neutral protease (NprP), particularly with respect to active-site residues, zinc-binding residues, and cysteine residues.  相似文献   

20.
The carboxyl-terminal sequences of the two polypeptide chains of the Saccharomyces cerevisiae K1 killer toxin were determined by protein sequencing and amino acid analysis of peptide fragments generated from the mature, secreted toxin. The COOH-terminal amino acid of the beta chain is histidine 316, the final residue encoded by the precursor gene. The COOH terminus of the alpha chain is at alanine 147 of the preprotoxin. Amino acid composition data for the purified toxin are consistent with that predicted from the gene sequence of the preprotoxin where the alpha and beta subunits consist of amino acid residues 45-147 and 234-316, respectively. The molecular weight of the mature alpha beta dimer is about 20,658. The COOH-terminal sequence determination completes the location of the toxin subunits in the precursor, and its configuration may be represented as prepropeptide-Pro-Arg-alpha-Arg-Arg-gamma-Lys-Arg-beta, where gamma represents the interstitial glycosylated peptide. The COOH terminal side of the paired basic residues (Arg-148 Arg-149 and Lys-232 Arg-233 of preprotoxin) are endoproteolytic processing sites for the product of the KEX2 gene (Julius, D., Brake, A., Blair, L., Kunisawa, R., and Thorner, J. (1984) Cell 37, 1075-1089), and thus maturation of the alpha subunit of killer toxin apparently requires a carboxypeptidase B-like activity. A possible candidate for this activity is the product of the KEX1 gene (Dmochowska, A., Dignard, D., Henning, D., Thomas, D.Y., and Bussey, H. (1987) Cell, in press).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号