首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nashun B  Akiyama T  Suzuki MG  Aoki F 《Epigenetics》2011,6(12):1489-1497
The genome of differentiated somatic nuclei is remodeled to a totipotent state when they are transplanted into enucleated oocytes. To clarify the mechanism of this genome remodeling, we analyzed changes in the composition of core histone variants in nuclear-transferred embryos, since recent evidence has revealed that chromatin structure can be remodeled as a result of variant histone replacement. We found that the donor cell-derived histone H3 variants H3.1, H3.2, and H3.3, as well as H2A and H2A.Z, were rapidly eliminated from the chromatin of nuclei transplanted into enucleated oocytes. Accompanying this removal, oocyte-stored histone H3 variants and H2A.X were incorporated into the transplanted nuclei, while the incorporation of H2A and H2A.Z was minimal or not detected. The incorporation of these variant histones was DNA replication-independent. These results suggest that most core histone H2A and H3 components are dynamically exchanged between donor nuclei and recipient cytoplasm, which further suggests that replacement of donor cell histones with oocyte-stored histones may play a key role in genome remodeling in nuclear-transferred embryos. In addition, the incorporation patterns of all of the histone variants in the nuclear-transferred embryos were virtually the same as in the fertilized embryos. Only the incorporation pattern of H3.1 differed; it was incorporated into the transplanted donor nuclei, but not in the pronuclei of fertilized embryos. This result suggests that the incorporation of H3.1 has a detrimental effect on the process of genome remodeling and contributes to the low success rate of somatic nuclear cloning.  相似文献   

2.
《Epigenetics》2013,8(12):1489-1497
The genome of differentiated somatic nuclei is remodeled to a totipotent state when they are transplanted into enucleated oocytes. To clarify the mechanism of this genome remodeling, we analyzed changes in the composition of core histone variants in nuclear-transferred embryos, since recent evidence has revealed that chromatin structure can be remodeled as a result of variant histone replacement. We found that the donor cell-derived histone H3 variants H3.1, H3.2, and H3.3, as well as H2A and H2A.Z, were rapidly eliminated from the chromatin of nuclei transplanted into enucleated oocytes. Accompanying this removal, oocyte-stored histone H3 variants and H2A.X were incorporated into the transplanted nuclei, while the incorporation of H2A and H2A.Z was minimal or not detected. The incorporation of these variant histones was DNA replication-independent. These results suggest that most core histone H2A and H3 components are dynamically exchanged between donor nuclei and recipient cytoplasm, which further suggests that replacement of donor cell histones with oocyte-stored histones may play a key role in genome remodeling in nuclear-transferred embryos. In addition, the incorporation patterns of all of the histone variants in the nuclear-transferred embryos were virtually the same as in the fertilized embryos. Only the incorporation pattern of H3.1 differed; it was incorporated into the transplanted donor nuclei, but not in the pronuclei of fertilized embryos. This result suggests that the incorporation of H3.1 has a detrimental effect on the process of genome remodeling and contributes to the low success rate of somatic nuclear cloning.  相似文献   

3.
4.
The perinuclear theca is a non-ionic detergent-resistant, electron-dense layer surrounding the condensed nucleus of mammalian sperm. The known proteins originating from the perinuclear theca have implicated the structure in a variety of important cellular processes during spermiogenesis and fertilization. Nonetheless, the composition of the perinuclear theca remains largely unexplored. We have isolated a group of low molecular mass (14-19 kDa) perinuclear theca-derived proteins from acrosome-depleted bovine sperm heads by salt (1 M KCl) extraction and have identified them as core somatic histones. N-terminal sequencing and immunoblotting with anti-histone antibodies confirmed the presence of both intact and proteolytically cleaved somatic histones H3, H2B, H2A, and H4. Identical proteins were isolated using 2% SDS or 1 N HCl extractions. Subsequent acid and SDS extractions of intact bovine sperm revealed the presence of all four intact histone subtypes, with minimal proteolysis. Two-dimensional acid/urea/Triton-SDS-PAGE, coupled with immunoblotting analysis, confirmed the somatic nature of these perinuclear theca-derived histones. Estimates of the abundance of perinuclear theca-derived histones showed that up to 0.2 pg per sperm of each histone subtype was present. Immunogold labeling at the ultrastructural level localized all four core somatic histones to the post-acrosomal sheath region of bovine epididymal sperm, when probed with affinity-purified anti-histone antibodies. Little immunoreactivity was detected in residual perinuclear theca structures following the extractions. Taken together, these findings indicate the unprecedented and stable localization of non-nuclear somatic histones in bovine sperm perinuclear theca.  相似文献   

5.
Human testis was shown to contain a specific histone, TH2B, having the same electrophoretic mobility as rat TH2B. Testicular and ejaculated human sperm still possessed histones at 50% and 15% of the total basic nuclear proteins, respectively. Comparison of the electrophoretic patterns of histones from human testis, testicular sperm and ejaculated sperm implied that the histones may be removed in the order H2A and H1 before H3, H4 and H2B before TH2B. TH2B which is the major histone fraction in ejaculated sperm has no longer a strong affinity to DNA. TH2B in sperm nuclei could be separated from other basic nuclear proteins by Bio-Gel P-10 column chromatography and its amino acid composition is similar to that of rat TH2B, although no cysteine residue was found.  相似文献   

6.
Using high performance liquid chromatography we have successfully purified four core histones from mature human sperm chromatin. The H2A variants present in sperm (H2A.X and limited H2A.Z) have been shown previously to be minor variants in somatic chromatin. The histones are highly modified as evidenced by extensive acetylation and an as yet uncharacterized multicharge modification of H2B. Based on our data, we conclude that histone proteins are a minor component of each mature spermatozoa. Given the unique nature of the histone variants present in sperm, we propose that this chromatin component has a specific function and may possibly facilitate the programming of genes which will be active in early development.  相似文献   

7.
8.
K. Kurtz  J. Ausi  M. Chiva 《Tissue & cell》2009,41(5):334-344
An interesting characteristic of decapod crustacean sperm nuclei is that they do not contain highly packaged chromatin. In the present study we re-examine the presence of DNA-interacting proteins in sperm nuclei of the brachyuran Maja brachydactyla. Although previous reports have indicated that, unlike the majority of sperm cells, DNA of decapod sperm is not organized by basic proteins, in this work we show that: (1) histones are present in sperm of M. brachydactyla; (2) histones are associated with sperm DNA; (3) histone H3 appears in lower proportions than the other core histones, while histone H2B appears in higher proportions; and (4) histone H3 in sperm nuclei is acetylated. This work complements a previous study of sperm histones of Cancer pagurus and supports the suggestion that decapod crustacean sperm chromatin deserves further attention.  相似文献   

9.
Amino acid analyses of nuclear basic proteins of an anuran amphibian, Rana catesbeiana, revealed that they are comprised of a full set of core histones and three types of lysine-rich, sperm-specific proteins. On the basis of their amino-acid compositions and partial amino-acid sequences of their trypsin-resistant cores, the sperm-specific proteins could be defined as members of the histone H1 family. Both micrococcal nuclease digestion and electron microscopy indicated that sperm chromatin consists of nucleosomal and fibrillar DNA structures which are irregularly interspersed with each other. When sperm nuclei were incubated with nucleoplasmin, nuclei decondensed to some extent, and the sperm-specific H1s were removed, but not completely. The residual sperm-specific histone H1 variants were also found in reconstituted male pronuclear chromatin, comprising regularly spaced nucleosomes. We conclude that sperm-specific histone H1 variants are essential for chromatin condensation in the sperm nuclei, but that their complete removal is not necessary for the remodeling into somatic chromatin that takes place after fertilization. Mol. Reprod. Dev. 47:181–190, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
The embryonic genome is formed by fusion of a maternal and a paternal genome. To accommodate the resulting diploid genome in the fertilized oocyte dramatic global genome reorganizations must occur. The higher order structure of chromatin in vivo is critically dependent on architectural chromatin proteins, with the family of linker histone proteins among the most critical structural determinants. Although somatic cells contain numerous linker histone variants, only one, H1FOO, is present in mouse oocytes. Upon fertilization H1FOO rapidly populates the introduced paternal genome and replaces sperm-specific histone-like proteins. The same dynamic replacement occurs upon introduction of a nucleus during somatic cell nuclear transfer. To understand the molecular basis of this dynamic histone replacement process, we compared the localization and binding dynamics of somatic H1 and oocyte-specific H1FOO and identified the molecular determinants of binding to either oocyte or somatic chromatin in living cells. We find that although both histones associate readily with chromatin in nuclei of somatic cells, only H1FOO is capable of correct chromatin association in the germinal vesicle stage oocyte nuclei. This specificity is generated by the N-terminal and globular domains of H1FOO. Measurement of in vivo binding properties of the H1 variants suggest that H1FOO binds chromatin more tightly than somatic linker histones. We provide evidence that both the binding properties of linker histones as well as additional, active processes contribute to the replacement of somatic histones with H1FOO during nuclear transfer. These results provide the first mechanistic insights into the crucial step of linker histone replacement as it occurs during fertilization and somatic cell nuclear transfer.  相似文献   

11.
《Epigenetics》2013,8(4):199-209
The oocyte is remarkable in its ability to remodel parental genomes following fertilization and to reprogram somatic nuclei after nuclear transfer (NT). To characterise the patterns of histone H4 acetylation and DNA methylation during development of bovine gametogenesis and embryogenesis, specific antibodies for histone H4 acetylated at lysine 5 (K5), K8, K12 and K16 residues and for methylated cytosine of CpG dinucleotides were used. Oocytes and sperm lacked the staining for histone acetylation, when DNA methylation staining was intense. In IVF zygotes, both pronuclei were transiently hyper-acetylated. However, the male pronucleus was faster in acquiring acetylated histones, and concurrently it was rapidly demethylated. Both pronuclei were equally acetylated during the S to G2-phase transition, while methylation staining was only still observed in the female pronucleus. In parthenogenetically activated oocytes, acetylation of the female pronucleus was enriched faster, while DNA remained methylated. A transient de-acetylation was observed in NT embryos reconstructed using a non-activated ooplast of a metaphase second arrested oocyte. Remarkably, the intensity of acetylation staining of most H4 lysine residues peaked at the 8-cell stage in IVF embryos, which coincided with zygotic genome activation and with lowest DNA methylation staining. At the blastocyst stage, trophectodermal cells of IVF and parthenogenetic embryos generally demonstrated more intense staining for most acetylated H4 lysine, whilst ICM cells stained very weakly. In contrast methylation of the DNA stained more intensely in ICM. NT blastocysts showed differential acetylation of blastomeres but not methylation. The inverse association of histone lysine acetylation and DNA methylation at different vital embryo stages suggests a mechanistically significant relationship. The complexities of these epigenetic interactions are discussed.  相似文献   

12.
Oocytes and embryos of many species, including mammals, contain a unique linker (H1) histone, termed H1oo in mammals. It is uncertain, however, whether other H1 histones also contribute to the linker histone complement of these cells. Using immunofluorescence and radiolabeling, we have examined whether histone H10, which frequently accumulates in the chromatin of nondividing cells, and the somatic subtypes of H1 are present in mouse oocytes and early embryos. We report that oocytes and embryos contain mRNA encoding H10. A polymerase chain reaction-based test indicated that the poly(A) tail did not lengthen during meiotic maturation, although it did so beginning at the four-cell stage. Antibodies raised against histone H10 stained the nucleus of wild-type prophase-arrested oocytes but not of mice lacking the H10 gene. Following fertilization, H10 was detected in the nuclei of two-cell embryos and less strongly at the four-cell stage. No signal was detected in H10 -/- embryos. Radiolabeling revealed that species comigrating with the somatic H1 subtypes H1a and H1c were synthesized in maturing oocytes and in one- and two-cell embryos. Beginning at the four-cell stage in both wild-type and H10 -/- embryos, species comigrating with subtypes H1b, H1d, and H1e were additionally synthesized. These results establish that histone H10 constitutes a portion of the linker histone complement in oocytes and early embryos and that changes in the pattern of somatic H1 synthesis occur during early embryonic development. Taken together with previous results, these findings suggest that multiple H1 subtypes are present on oocyte chromatin and that following fertilization changes in the histone H1 complement accompany the establishment of regulated embryonic gene expression.  相似文献   

13.
14.
Structural organization of the meiotic prophase chromatin in the rat testis   总被引:3,自引:0,他引:3  
Pachytene nuclei were isolated from rat testes by the unit gravity sedimentation technique and contained histone variants H1a, H1t, TH2A, TH2B, and X2 in addition to the somatic histones H1bde, H1c, H2A, H2B, H3, and H4. The basic organization of the pachytene chromatin namely the nucleosome repeat length and the accessibility to micrococcal nuclease, was similar to that of rat liver interphase chromatin. However, when digested by DNase I, the susceptibility of pachytene chromatin was 25% more than liver chromatin under identical conditions. Nucleosome core particles were isolated from both liver and pachytene nuclei and were characterized for their DNA length and integrity of the nucleoprotein on low ionic strength nucleoprotein gels. While liver core particles contained all the somatic histones H2A, H2B, H3, and H4, in the pachytene core particles, histone variants TH2A, X2, and TH2B had replaced nearly 60% of the respective somatic histones. A comparison of the circular dichroism spectra obtained for pachytene and liver core particles indicated that the pachytene core particles were less compact than the liver core particles. Studies on the thermal denaturation properties of the two types of core particles revealed that the fraction of the pachytene core DNA melting at the premelting temperature region of 55-60 degrees C was significantly higher than that of the liver core DNA.  相似文献   

15.
16.
17.
We injected somatic subtypes of histone H1 into newly fertilized mouse eggs, which do not naturally contain this chromosomal protein, and examined the fate of the injected protein and its effect on preimplantation development of recipient eggs. Rhodamine-labelled H1 injected into the cytoplasm of 53 eggs was transported into the pronuclei in 51 cases, and this nuclear accumulation could be detected within 15 min of injection. Unlabelled histone H1, which was detected using immunofluorescence, was also transported following microinjection to the pronuclei, where it colocalized with the chromatin and remained associated with the nuclei following cleavage to the two-cell stage. Nuclear accumulation of injected H1 was inhibited when injected eggs were incubated in the presence of drugs that prevent mitochondrial electron transport or glycolysis, which indicates that nuclear transport occurs through an energy-dependent process, as previously observed in tissue culture cells. To determine whether the presence of somatic H1 in early embryonic nuclei would influence subsequent development, fertilized eggs were injected with an approximately physiological quantity (1–5 pg) of somatic H1 or, as controls, with another small basic protein, cytochrome c. Fifty-three eggs were injected with cytochrome c, of which 51 divided to the two-cell stage, and 32 (60%) reached the blastocyst stage, after 5 days in culture. One hundred and eleven eggs were injected with somatic H1, of which 95 divided to the two-cell stage, and 53 (48%) reached the blastocyst stage, after 5 days in culture. The two groups did not differ statistically (X2, P > 0.1) with respect to the fraction of injected embryos that developed to the blastocyst stage. These results show that, although mouse embryos lack the somatic subtypes of histone H1 until the four-cell stage of development, they are able to progress through preimplantation development when these subtypes are present beginning at the one-cell stage. This may imply that the distinctive chromatin composition that characterizes early embryos of a variety of species is not essential for early development in mammals. © 1996 Wiley-Liss, Inc.  相似文献   

18.
By means of indirect immunofluorescence microscopy, we have studied the distribution of RNA polymerase B, of the nucleosomal histones H2b, H3, and H4 and of histone H1, in nuclei of primary spermatocytes of Drosophila hydei. RNA polymerase B and histones, including H1, are found to be present on the loop structures of the Y chromosome. The nucleolus stains only for the histones, but not for RNA polymerase B. Various mutants deficient for some of the loops or altering their morphology, were used to identify the individual chromosomal segments. In growing spermatocytes of the genetic constitution X/0, autosomes and the chromosome X react strongly with antibodies against RNA polymerase B, but not with antibodies against histones.The results suggest that the autosomes, the chromosome X and the Y chromosomal loop structures, with the exception of the nucleolus, are transcribed mostly by RNA polymerase B.  相似文献   

19.
Nucleoplasmin (NP), a histone chaperone, acts as a reservoir for histones H2A-H2B in Xenopus laevis eggs and can displace sperm nuclear basic proteins and linker histones from the chromatin fiber of sperm and quiescent somatic nuclei. NP has been proposed to mediate the dynamic exchange of histones during the expression of certain genes and assists the assembly of nucleosomes by modulating the interaction between histones and DNA. Here, solution structural models of full-length NP and NP complexes with the functionally distinct nucleosomal core and linker histones are presented for the first time, providing a picture of the physical interactions between the nucleosomal and linker histones with NP core and tail domains. Small-angle X-ray scattering and isothermal titration calorimetry reveal that NP pentamer can accommodate five histones, either H2A-H2B dimers or H5, and that NP core and tail domains are intimately involved in the association with histones. The analysis of the binding events, employing a site-specific cooperative model, reveals a negative cooperativity-based regulatory mechanism for the linker histone/nucleosomal histone exchange. The two histone types bind with drastically different intrinsic affinity, and the strongest affinity is observed for the NP variant that mimicks the hyperphosphorylated active protein. The different “affinity windows” for H5 and H2A-H2B might allow NP to fulfill its histone chaperone role, simultaneously acting as a reservoir for the core histones and a chromatin decondensing factor. Our data are compatible with the previously proposed model where NP facilitates nucleosome assembly by removing the linker histones and depositing H2A-H2B dimers onto DNA.  相似文献   

20.
Histone proteins contain epigenetic information that is encoded both in the relative abundance of core histones and variants and particularly in the post-translational modification of these proteins. We determined the presence of such variants and covalent modifications in seven tissue types of the anuran Xenopus laevis, including oocyte, egg, sperm, early embryo equivalent (pronuclei incubated in egg extract), S3 neurula cells, A6 kidney cells, and erythrocytes. We first developed a new robust method for isolating the stored, predeposition histones from oocytes and eggs via chromatography on heparin-Sepharose, whereas we isolated chromatinized histones via conventional acid extraction. We identified two previously unknown H1 isoforms (H1fx and H1B.Sp) present on sperm chromatin. We immunoblotted this global collection of histones with many specific post-translational modification antibodies, including antibodies against methylated histone H3 on Lys(4), Lys(9), Lys(27), Lys(79), Arg(2), Arg(17), and Arg(26); methylated histone H4 on Lys(20); methylated H2A and H4 on Arg(3); acetylated H4 on Lys(5), Lys(8), Lys(12), and Lys(16) and H3 on Lys(9) and Lys(14); and phosphorylated H3 on Ser(10) and H2A/H4 on Ser(1). Furthermore, we subjected a subset of these histones to two-dimensional gel analysis and subsequent immunoblotting and mass spectrometry to determine the global remodeling of histone modifications that occurs as development proceeds. Overall, our observations suggest that each metazoan cell type may have a unique histone modification signature correlated with its differentiation status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号