首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Mammalian cardiac muscle contains two myosin alkali light chains which are the major isoforms present in either atrial (MLC1A) or ventricular (MLC1V) muscle, and which are different from the fast skeletal muscle isoforms (MLC1F and MLC3F). The atrial isoform is also expressed in fetal skeletal and fetal ventricular muscle, where this isoform is also described as the fetal isoform MLC1emb. We have previously isolated a cDNA clone encoding part of the mouse MLC1A/MLC1emb isoform and have used this clone to demonstrate the identity of MLC1A and MLC1emb in the mouse. To date no information on the amino acid sequence of this mammalian atrial/fetal isoform has been available. Here we present the complete structure and sequence of the mouse MLC1A/MLC1emb gene, together with the predicted amino acid sequence of this isoform. Comparison of the MLC1A/MLC1emb gene and polypeptide with those of MLC1F and MLC1V suggests that MLC1A/MLC1emb and MLC1V were generated from a common ancestral gene. The NH2-terminal region of MLC1A/MLC1emb, thought to be involved in the actomyosin interaction, shows conservation with MLC1V but not with MLC1F suggesting a shared functional domain in these cardiac isoforms. Comparison with the chicken embryonic MLC (L23) suggests that although MLC1A/MLC1emb and L23 show very different patterns of expression, both during development and in the adult, they probably represent the homologous gene in these two species.  相似文献   

2.
3.
Abstract

A cDNA coding for alkali myosin light chain 3 (MLC3F) was isolated from a porcine skeletal muscle library. This clone has an insert of 859 bp encompassing the complete CDS (coding sequence) plus the 5’ and 3’ untranslated regions. Computer analysis showed that porcine MLC3F cDNA is highly homologous to the corresponding cDNAs of human, rabbit and rat. Moreover, Northern analysis showed the presence of two bands that represent the mature mRNAs of the MLClF and MLC3F isoforms according to data observed in other species.  相似文献   

4.
5.
1. A simple method is described for the purification of the alkali and P light chains from chicken gizzard myosin. 2. The sequence of the alkali light chain has been unequivocally determined, except for the N-terminal dipeptide, by using the tryptic and CNBr peptides. 3. No evidence was obtained for any specific high-affinity Ca2+-binding sites on the alkali light chain. 4. Detailed evidence on which the sequence is based has been deposited as Supplementary Publication SUP 50120 (14 pages) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7QB, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1983) 209, 5.  相似文献   

6.
The patterns of expression of the smooth muscle regulatory proteins caldesmon and myosin light chain kinase were investigated in the developing chicken gizzard. Immunofluorescent studies revealed that both proteins were expressed as early as E5 throughout the mesodermal gizzard anlage, together with actin, -actinin and a small amount of nonmuscle myosin. These proteins appear to form the scaffold for smooth muscle development, defined by the onset of smooth muscle myosin expression. During E6, a period of extensive cell division, smooth muscle myosin begins to appear in the musculi laterales close to the serosal border and, later, also in the musculi intermedii. Until about E10, myosin reactivity expands into the pre-existing thin filament scaffold. Later in development, the contractile and regulatory proteins co-localize and show a regular uniform staining pattern comparable to that seen in adult tissue. By using immunoblotting techniques, the low-molecular mass form of caldesmon and myosin light chain kinase were detected as early as E5. During further development, the expression of caldesmon switched from the low-molecular mass to the high-molecular mass form; in neonatal and adult tissue, high-molecular mass caldesmon was the only isoform expressed. The level of expression of myosin light chain kinase increased continously during embryonic development, but no embryospecific isoform with a different molecular mass was detected.  相似文献   

7.
8.
9.
10.
Functional domains of chicken gizzard myosin light chain kinase   总被引:2,自引:0,他引:2  
The proteolytic susceptibility of chicken gizzard myosin light chain kinase, a calmodulin-dependent enzyme, has been utilized to define the relative location of the catalytic and regulatory domains of the enzyme. Myosin light chain kinase isolated from this source exhibits a Mr of 130,000 and is extremely sensitive to trypsin at 24 degrees C; however, the molecule is divided into susceptible and resistant domains such that proteolysis proceeds rapidly and at multiple sites in the sensitive regions even at 4 degrees C while the rest of the molecule remains relatively resistant to digestion. One of these sensitive areas is the calmodulin-binding domain. On the other hand, Staphylococcus aureus V8 protease digestion generates a calmodulin-binding fragment (Mr = 70,000) that retains Ca2+/calmodulin-dependent enzymatic activity and both of the phosphorylation sites recognized by cAMP-dependent protein kinase. In contrast, treatment with chymotrypsin produces a 95,000 Mr calmodulin-binding fragment that contains only the calmodulin-modulated phosphorylation site. Sequential proteolytic digestion studies demonstrated that the chymotryptic cleavage site responsible for the generation of this 95,000 Mr peptide is within 3,000 Mr of the V8 protease site which produces the 70,000 Mr fragment. Moreover, the non-calmodulin-modulated phosphorylation site must exist in this 3,000 Mr region. A calmodulin-Sepharose affinity adsorption protocol was developed for the digestion and used to isolate both the 70,000 and 95,000 Mr fragments for further study. Taken together, our results are compatible with a model for chicken gizzard myosin light chain kinase in which there is no overlap between the active site, the calmodulin-binding region, and the two sites phosphorylated by cAMP-dependent protein kinase with regard to their relative position in the primary sequence of the molecule.  相似文献   

11.
We have isolated and sequenced the gene encoding the human embryonic/atrial myosin alkali light chain isoform (MLC-1emb/A). The gene is split into seven exons by six introns; the last exon, as in all MLC isoform genes sequenced to date, is completely 3' untranslated sequence. Comparison of the MLC-1emb/A isoform gene with the other MLC-1 genes showed that the exon-intron arrangement of the human MLC-1emb/A isoform gene is analogous to that of the other MLC-1 type isoform genes. We have also mapped the human MLC-1emb/A isoform gene to the long arm of chromosome 17; the corresponding mouse gene has been mapped to chromosome 11. This gene, together with a number of others such as the collagen(I) alpha 1, galactokinase, and thymidine kinase genes, is part of the largest syntenic group between mouse and man.  相似文献   

12.
《The Journal of cell biology》1986,103(6):2153-2161
The expression of neonatal myosin heavy chain (MHC) was examined in developing embryonic chicken muscle cultures using a monoclonal antibody (2E9) that has been shown to be specific for that isoform (Bandman, E., 1985, Science (Wash. DC), 227: 780-782). After 1 wk in vitro some myotubes could be stained with the antibody, and the number of cells that reacted with 2E9 increased with time in culture. All myotubes always stained with a second monoclonal antibody that reacted with all MHC isoforms (AG19) or with a third monoclonal antibody that reacted with the embryonic but not the neonatal MHC (EB165). Quantitation by ELISA of an extract from 2-wk cultures demonstrated that the neonatal MHC represented between 10 and 15% of the total myosin. The appearance of the neonatal isoform was inhibited by switching young cultures to medium with a higher [K+] which has been shown to block spontaneous contractions of myotubes in culture. Furthermore, if mature cultures that reacted with the neonatal antibody were placed into high [K+] medium, neonatal MHC disappeared from virtually all myotubes within 3 d. The effect of high [K+] medium was reversible. When cultures maintained in high [K+] medium for 2 wk were placed in standard medium, which permitted the resumption of contractile activity, within 24 h cells began to react with the neonatal specific antibody, and by 72 h many myotubes were strongly positive. Since similar results were also obtained by inhibiting spontaneous contractions with tetrodotoxin, we suggest that the development of contractile activity is not only associated with the maturation of myotubes in culture, but may also be the signal that induces the expression of the neonatal MHC.  相似文献   

13.
The purpose of this study was to characterize myosin light chain kinase (MLCK) expression in cardiac and skeletal muscle. The only classic MLCK detected in cardiac tissue, purified cardiac myocytes, and in a cardiac myocyte cell line (AT1) was identical to the 130-kDa smooth muscle MLCK (smMLCK). A complex pattern of MLCK expression was observed during differentiation of skeletal muscle in which the 220-kDa-long or "nonmuscle" form of MLCK is expressed in undifferentiated myoblasts. Subsequently, during myoblast differentiation, expression of the 220-kDa MLCK declines and expression of this form is replaced by the 130-kDa smMLCK and a skeletal muscle-specific isoform, skMLCK in adult skeletal muscle. These results demonstrate that the skMLCK is the only tissue-specific MLCK, being expressed in adult skeletal muscle but not in cardiac, smooth, or nonmuscle tissues. In contrast, the 130-kDa smMLCK is ubiquitous in all adult tissues, including skeletal and cardiac muscle, demonstrating that, although the 130-kDa smMLCK is expressed at highest levels in smooth muscle tissues, it is not a smooth muscle-specific protein.  相似文献   

14.
Composition of the myosin light chain kinase from chicken gizzard.   总被引:8,自引:0,他引:8  
The Ca2+-dependent protein kinase (ATP:myosin light chain phosphotransferase) from chicken gizzard smooth muscle requires two proteins for enzymatic activity. These have approximate molecular weights of 105,000 and 17,000 daltons. The isolation procedure for each component is described. Neither component alone markedly alters either the actin-moderated ATPase activity or the phosphorylation of myosin. Activation of ATPase activity by a combination of the two components occurred only in the presence of Ca2+ and was always accompanied by the phosphorylation of myosin. The simultaneous activation of ATPase activity and myosin phosphorylation establishes a direct correlation between the two events.  相似文献   

15.
16.
The relative rates of synthesis and breakdown of myosin heavy and light chains were studied in primary cell cultures of embryonic chick cardiac and skeletal muscle. Measurements were made after 4 days in culture, at which time both skeletal and cardiac cultures were differentiated and contracted spontaneously. Following a 4-hr pulse of radioactive leucine, myosin and its heavy and light chains were extracted to 90% or greater purity and the specific activities of the proteins were determined. In cardiac muscle, myosin heavy chains were synthesized approximately 1.6 times the rate of myosin light chains, and in skeletal muscle, heavy chains were synthesized at approximately 1.4 times the rate of light chains. Relative rates of degradation of muscle proteins were determined using a dual-isotope technique. In general, the soluble and myofibrillar proteins of both types of muscle had decay rates proportional to their molecular weights (larger proteins generally had higher decay rates) based on analyses utilizing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A notable exception to this general rule was myosin heavy chains, which had decay rates only slightly higher than the myosin light chains. Direct measurements on purified proteins indicated that the heavy chains of myosin were turning over at a slightly greater rate (approximately 20%) than the myosin light chains in both cardiac and skeletal muscle. The reasons for the apparent discrepancy between these measurements of myosin heavy and light chain synthesis and degradation are discussed.  相似文献   

17.
Recently we have found evidence that the human embryonic myosin alkali light chain (MLC1 emb) gene has two functional promoters and that its mRNAs exhibit heterogeneity in their 3'untranslated regions (UTR). To study this more in detail we have isolated and characterized the human MLC1emb gene. We focussed in particular on 2 kilobases of 5'flanking region and the alternative 3'UTRs. RNA primer extension and S1 mapping analyses revealed that the MLC1emb gene can indeed be driven either by a proximal or a distal promoter, both in fetal and adult cardiac tissue. These MLC1emb RNAs can contain either the proximal or distal 3'UTR. In contrast to this, in fetal as well as adult masseter muscle MLC1emb mRNA is predominantly transcribed from the proximal promoter and contains mainly the distal 3'UTR. These results explain the known heterogeneity of MLC1emb mRNAs. Finally, we present evidence that the murine MLC1emb gene also contains a functional distal promoter element which has hitherto been undetected.  相似文献   

18.
When prepared under specified conditions chicken gizzard myosin was obtained which when incubated with ATP gave rise to a diphosphorylated as well as the monophosphorylated form of P light chain. Formation of the diphosphorylated light chain occurred more readily with these myosin preparations, but could also be obtained by prolonged incubation of the isolated whole light chain fraction with kinase preparations from rabbit skeletal and chicken gizzard muscles. Using isolated light chains as substrate the more readily formed monophosphorylated light chain contained serine phosphate while the diphosphorylated form contained serine and threonine phosphates.  相似文献   

19.
Conditions are described for the preparation of functional myofibrils and myosin light chains from freeze-clamped beating hearts with the state of light chain phosphorylation chemically ‘frozen’ during the extraction procedure. Myofibrils were shown to be functionally intact by measurement of Ca2+ binding and ATPase activity. Highly purified cardiac myosin light chains could be routinely isolated from myofibrillar preparations using ethanol fractionation together with ion-exchange chromotography. Analysis of light chains for covalent phosphate indicated that basal levels of phosphorylation of the 18?20 000 dalton light chain of myosin in rabbit hearts beating in situ or in a perfusion apparatus were 0.3–0.4 mol/mol. Covalent phosphate content of the light chain fraction did not change during perfusion of hearts with 10 μM epinephrine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号