首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The mechanisms by which the immune system achieves constant T cell numbers throughout life, thereby controlling autoaggressive cell expansions, are to date not completely understood. Here, we show that the CD25(+) subpopulation of naturally activated (CD45RB(low)) CD4 T cells, but not CD25(-) CD45RB(low) CD4 T cells, inhibits the accumulation of cotransferred CD45RB(high) CD4 T cells in lymphocyte-deficient mice. However, both CD25(+) and CD25(-) CD45RB(low) CD4 T cell subpopulations contain regulatory cells, since they can prevent naive CD4 T cell-induced wasting disease. In the absence of a correlation between disease and the number of recovered CD4(+) cells, we conclude that expansion control and disease prevention are largely independent processes. CD25(+) CD45RB(low) CD4 T cells from IL-10-deficient mice do not protect from disease. They accumulate to a higher cell number and cannot prevent the expansion of CD45RB(high) CD4 T cells upon transfer compared with their wild-type counterparts. Although CD25(+) CD45RB(low) CD4 T cells are capable of expanding when transferred in vivo, they reach a homeostatic equilibrium at lower cell numbers than CD25(-) CD45RB(low) or CD45RB(high) CD4 T cells. We conclude that CD25(+) CD45RB(low) CD4 T cells from nonmanipulated mice control the number of peripheral CD4 T cells through a mechanism involving the production of IL-10 by regulatory T cells.  相似文献   

3.
IL-10 producing T cells inhibit Ag-specific CD8+ T cell responses and may play a role in the immune dysregulation observed in HIV infection. We have previously observed the presence of HIV-specific IL-10-positive CD8+ T cells in advanced HIV disease. In this study, we examined the suppressive function of the Gag-specific IL-10-positive CD8+ T cells. Removal of these IL-10-positive CD8+ T cells resulted in increased cytolysis and IL-2, but not IFN-gamma, production by both HIV- and human CMV-specific CD8+ T cells. In addition, these IL-10-positive CD8+ T cells mediated suppression through direct cell-cell contact, and had a distinct immunophenotypic profile compared with other regulatory T cells. We describe a new suppressor CD8+ T cell population in advanced HIV infection that may contribute to the immune dysfunction observed in HIV infection.  相似文献   

4.
Epigenetic modifications, including DNA methylation, profoundly influence gene expression of CD4(+) Th-specific cells thereby shaping memory Th cell function. We demonstrate here a correlation between a lacking fixed potential of human memory Th cells to re-express the immunoregulatory cytokine gene IL10 and its DNA methylation status. Memory Th cells secreting IL-10 or IFN-gamma were directly isolated ex vivo from peripheral blood of healthy volunteers, and the DNA methylation status of IL10 and IFNG was assessed. Limited difference in methylation was found for the IL10 gene locus in IL-10-secreting Th cells, as compared with Th cells not secreting IL-10 isolated directly ex vivo or from in vitro-established human Th1 and Th2 clones. In contrast, in IFN-gamma(+) memory Th cells the promoter of the IFNG gene was hypomethylated, as compared with IFN-gamma-nonsecreting memory Th cells. In accordance with the lack of epigenetic memory, almost 90% of ex vivo-isolated IL-10-secreting Th cells lacked a functional memory for IL-10 re-expression after restimulation. Our data indicate that IL10 does not become epigenetically marked in human memory Th cells unlike effector cytokine genes such as IFNG. The exclusion of IL-10, but not effector cytokines, from the functional memory of human CD4(+) T lymphocytes ex vivo may reflect the need for appropriate regulation of IL-10 secretion, due to its potent immunoregulatory potential.  相似文献   

5.
Prior reports have shown that CD4(+)CD25(+) regulatory T cells suppress naive T cell responses by inhibiting IL-2 production. In this report, using an Ag-specific TCR transgenic system, we show that naive T cells stimulated with cognate Ag in the presence of preactivated CD4(+)CD25(+) T cells also become refractory to the mitogenic effects of IL-2. T cells stimulated in the presence of regulatory T cells up-regulated high affinity IL-2R, but failed to produce IL-2, express cyclins or c-Myc, or exit G(0)-G(1). Exogenous IL-2 failed to break the mitotic block, demonstrating that the IL-2 production failure was not wholly responsible for the proliferation defect. This IL-2 unresponsiveness did not require the continuous presence of CD4(+)CD25(+) regulatory T cells. The majority of responder T cells reisolated after coculture with regulatory cells failed to proliferate in response to IL-2, but were not anergic and proliferated in response to Ag. The mitotic block was also dissociated from the antiapoptotic effects of IL-2, because IL-2 still promoted the survival of T cells that had been cocultured with CD4(+)CD25(+) T cells. IL-2-induced STAT5 phosphorylation in the cocultured responder cells was intact, implying that the effects of the regulatory cells were downstream of receptor activation. Our results therefore show that T cell activation in the presence of CD4(+)CD25(+) regulatory T cells can induce an alternative stimulation program characterized by up-regulation of high affinity IL-2R, but a failure to produce IL-2, and uncoupling of the mitogenic and antiapoptotic effects of IL-2.  相似文献   

6.
High expression of IL-21 and/or IL-21R has been described in T cell-mediated inflammatory diseases characterized by defects of counterregulatory mechanisms. CD4(+)CD25(+) regulatory T cells (Treg) are a T cell subset involved in the control of the immune responses. A diminished ability of these cells to inhibit T cell activation has been documented in immune-inflammatory diseases, raising the possibility that inflammatory stimuli can block the regulatory properties of Treg. We therefore examined whether IL-21 controls CD4(+)CD25(+) T cell function. We demonstrate in this study that IL-21 markedly enhances the proliferation of human CD4(+)CD25(-) T cells and counteracts the suppressive activities of CD4(+)CD25(+) T cells on CD4(+)CD25(-) T cells without affecting the percentage of Foxp3(+) cells or survival of Treg. Additionally, CD4(+)CD25(+) T cells induced in the presence of IL-21 maintain the ability to suppress alloresponses. Notably, IL-21 enhances the growth of CD8(+)CD25(-) T cells but does not revert the CD4(+)CD25(+) T cell-mediated suppression of this cell type, indicating that IL-21 makes CD4(+) T cells resistant to suppression rather than inhibiting CD4(+)CD25(+) T cell activity. Finally, we show that IL-2, IL-7, and IL-15, but not IL-21, reverse the anergic phenotype of CD4(+)CD25(+) T cells. Data indicate that IL-21 renders human CD4(+)CD25(-) T cells resistant to Treg-mediated suppression and suggest a novel mechanism by which IL-21 could augment T cell-activated responses in human immune-inflammatory diseases.  相似文献   

7.
Although both IL-2 and IL-4 can promote the growth of activated T cells, IL-4 appears to selectively promote the growth of those helper/inducer and cytolytic T cells which have been activated via their CD3/TCR complex. The present study examines the participation of CD28 and certain other T cell-surface molecules in inducing T cell responsiveness to IL-4. Purified small high density T cells were cultured in the absence of accessory cells with various soluble anti-human T cell mAb with or without soluble anti-CD3 mAb and their responsiveness to IL-4 was studied. None of the soluble anti-T cell mAb alone was able to induce T cell proliferation in response to IL-4. A combination of soluble anti-CD3 with anti-CD28 mAb but not with mAb directed at the CD2, CD5, CD7, CD11a/CD18, or class I MHC molecules induced T cell proliferation in response to IL-4. Anti-CD2 and anti-CD5 mAb enhanced and anti-CD18 mAb inhibited this anti-CD3 + anti-CD28 mAb-induced T cell response to IL-4. In addition, anti-CD2 in combination with anti-CD3 and anti-CD28 mAb induced modest levels of T cell proliferation even in the absence of exogenous cytokines. IL-1, IL-6, and TNF were each unable to replace either anti-CD3 or anti-CD28 mAb in the induction of T cell responsiveness to IL-4, but both IL-1 and TNF enhanced this response. The anti-CD3 + anti-CD28 mAb-induced response to IL-4 was exhibited only by cells within the CD4+CD29+CD45R- memory T subpopulation, and not by CD8+ or CD4+CD45R+ naive T cells. When individually cross-linked with goat anti-mouse IgG antibody immobilized on plastic surface, only anti-CD3 and anti-CD28 mAb were able to induce T cell proliferation. These results indicate that the CD3 and CD28 molecules play a crucial role in inducing T cell responsiveness to IL-4 and that the CD2, CD5, and CD11a/CD18 molecules influence this process.  相似文献   

8.
Expression and regulation of IL-22 in the IL-17-producing CD4+ T lymphocytes   总被引:17,自引:1,他引:17  
Chung Y  Yang X  Chang SH  Ma L  Tian Q  Dong C 《Cell research》2006,16(11):902-907
IL-22 is a novel cytokine in the IL-10 family that functions to promote innate immunity of tissues against infection. Although CD4+ helper T lymphocytes (TH) were found as a source of IL-22, the regulation of this cytokine has been poorly understood. Here, we show that IL-22 is expressed at both mRNA and protein levels by a novel subset of TH cells that also makes IL-17. IL-22 and IL-17 were found to be coordinately regulated by TGFI3 and IL-6 during TH differentiation by real-time PCR as well as ELISA analysis. However, IL-22 does not regulate TH differentiation; exogenous IL-22 or an IL-22 antagonist had no effect on TH differentiation. These data demonstrate a novel cytokine expressed by IL-17-producing T cells, and suggest interaction and synergy of IL-22 and IL-l 7 signaling pathways in tissue inflammation and autoimmune diseases.  相似文献   

9.
We recently identified CD8+CD122+ regulatory T cells that directly control CD8+ and CD4+ cells without intervention of APCs. In this study, we investigated the effector mechanism of CD8+CD122+ regulatory T cells by using an in vitro regulation system. The profile of cytokine expression revealed that IL-10 was predominantly produced by CD8+CD122+ cells, whereas other cytokines were similarly expressed in CD8+CD122+ cells and CD8+CD122- cells. Suppression of both proliferation and IFN-gamma production by CD8+CD122- cells by CD8+CD122+ cells was blocked by adding anti-IL-10 Ab to the culture but not by adding anti-TGF-beta Ab. When IL-10 was removed from the conditioned medium from CD8+CD122+ cells, the conditioned medium no longer showed regulatory activity. Finally, CD8+CD122+ cells from IL-10-deficient mice had no regulatory activity in vitro and reduced regulatory activity in vivo. Our results clearly indicate that IL-10 is produced by CD8+CD122+ cells and mediates the regulatory activity of these cells.  相似文献   

10.

Background

IL-9 is a growth factor for T- and mast-cells that is secreted by human Th2 cells. We recently reported that IL-4+TGF-β directs mouse CD4+CD25CD62L+ T cells to commit to inflammatory IL-9 producing CD4+ T cells.

Methodology/Principal Findings

Here we show that human inducible regulatory T cells (iTregs) also express IL-9. IL-4+TGF-β induced higher levels of IL-9 expression in plate bound-anti-CD3 mAb (pbCD3)/soluble-anti-CD28 mAb (sCD28) activated human resting memory CD4+CD25CD45RO+ T cells as compared to naïve CD4+CD25CD45RA+ T cells. In addition, as compared to pbCD3/sCD28 plus TGF-β stimulation, IL-4+TGF-β stimulated memory CD4+CD25CD45RO+ T cells expressed reduced FOXP3 protein. As analyzed by pre-amplification boosted single-cell real-time PCR, human CD4+IL-9+ T cells expressed GATA3 and RORC, but not IL-10, IL-13, IFNγ or IL-17A/F. Attempts to optimize IL-9 production by pbCD3/sCD28 and IL-4+TGF-β stimulated resting memory CD4+ T cells demonstrated that the addition of IL-1β, IL-12, and IL-21 further enhance IL-9 production.

Conclusions/Significance

Taken together these data show both the differences and similarities between mouse and human CD4+IL9+ T cells and reaffirm the powerful influence of inflammatory cytokines to shape the response of activated CD4+ T cells to antigen.  相似文献   

11.
Diseases that affect the intestine may have hepatic manifestations, but the mechanisms involved in establishing hepatic disease secondarily remain poorly understood. We previously reported that IL-10 knockout (KO) mice developed severe necrotizing hepatitis following oral infection with Trichinella spiralis. In this study, we used this model of intestinal inflammation to further examine the role of IL-10 in regulating hepatic injury. Hepatic damage was induced by migrating newborn larvae. By delivering the parasite directly into the portal vein, we demonstrated that an ongoing intestinal immune response was necessary for the development of hepatitis. Intestinally derived CD4+ cells increased in the livers of IL-10 KO mice, and Ab-mediated blockade of MAdCAM-1 inhibited the accumulation of CD4+alpha(4)beta(7)+ cells in the liver. Moreover, adoptive transfer of intestinally primed CD4+ T cells from IL-10 KO mice caused hepatitis in infected immunodeficient animals. Conversely, transfer of wild-type donor cells reduced the severity of hepatic inflammation in IL-10 KO recipients, demonstrating regulatory activity. Our results revealed that IL-10 prevented migration of intestinal T cells to the liver and inhibited the development of hepatitis.  相似文献   

12.
CD4+CD25+ regulatory T cells can prevent and resolve intestinal inflammation in the murine T cell transfer model of colitis. Using Foxp3 as a marker of regulatory T cell activity, we now provide a comprehensive analysis of the in vivo distribution of Foxp3+CD4+CD25+ cells in wild-type mice, and during cure of experimental colitis. In both cases, Foxp3+CD4+CD25+ cells were found to accumulate in the colon and secondary lymphoid organs. Importantly, Foxp3+ cells were present at increased density in colon samples from patients with ulcerative colitis or Crohn's disease, suggesting similarities in the behavior of murine and human regulatory cells under inflammatory conditions. Cure of murine colitis was dependent on the presence of IL-10, and IL-10-producing CD4+CD25+ T cells were enriched within the colon during cure of colitis and also under steady state conditions. Our data indicate that although CD4+CD25+ T cells expressing Foxp3 are present within both lymphoid organs and the colon, subsets of IL-10-producing CD4+CD25+ T cells are present mainly within the intestinal lamina propria suggesting compartmentalization of the regulatory T cell response at effector sites.  相似文献   

13.
Regulation of CD8 T cell expansion and contraction is essential for successful immune defense against intracellular pathogens. IL-10 is a regulatory cytokine that can restrict T cell responses by inhibiting APC functions. IL-10, however, can also have direct effects on T cells. Although blockade or genetic deletion of IL-10 enhances T cell-mediated resistance to infections, the extent to which IL-10 limits in vivo APC function or T cell activation/proliferation remains unknown. Herein, we demonstrate that primary and memory CD8 T cell responses following Listeria monocytogenes infection are enhanced by the absence of IL-10. Surface expression of the IL-10R is transiently up-regulated on CD8 T cells following activation, suggesting that activated T cells can respond to IL-10 directly. Consistent with this notion, CD8 T cells lacking IL-10R2 underwent greater expansion than wild-type T cells upon L. monocytogenes infection. The absence of IL-10R2 on APCs, in contrast, did not enhance T cell responses following infection. Our studies demonstrate that IL-10 produced during bacterial infection directly limits expansion of pathogen-specific CD8 T cells and reveal an extrinsic regulatory mechanism that modulates the magnitude of memory T cell responses.  相似文献   

14.
CD4+CD8+ double-positive (DP) T cells represent a minor subpopulation of T lymphocytes found in the periphery of adult rats. In this study, we show that peripheral DP T cells appear among the first T cells that colonize the peripheral lymphoid organs during fetal life, and represent approximately 40% of peripheral T cells during the perinatal period. Later their proportion decreases to reach the low values seen in adulthood. Most DP T cells are small size lymphocytes that do not exhibit an activated phenotype, and their proliferative rate is similar to that of the other peripheral T cell subpopulations. Only 30-40% of DP T cells expresses CD8beta chain, the remaining cells expressing CD8alphaalpha homodimers. However, both DP T cell subsets have an intrathymic origin since they appear in the recent thymic emigrant population after injection of FITC intrathymically. Functionally, although DP T cells are resistant to undergo apoptosis in response to glucocorticoids, they show poor proliferative responses upon CD3/TCR stimulation due to their inability to produce IL-2. A fraction of DP T cells are not actively synthesizing the CD8 coreceptor, and they gradually differentiate to the CD4 cell lineage in reaggregation cultures. Transfer of DP T lymphocytes into thymectomized SCID mice demonstrates that these cells undergo post-thymic maturation in the peripheral lymphoid organs and that their CD4 cell progeny is fully immunocompetent, as judged by its ability to survive and expand in peripheral lymphoid organs, to proliferate in response to CD3 ligation, and to produce IL-2 upon stimulation.  相似文献   

15.
CD4+ T cells, particularly Th2 cells, play a pivotal role in allergic airway inflammation. However, the requirements for interactions between CD4+ and CD8+ T cells in airway allergic inflammation have not been delineated. Sensitized and challenged OT-1 mice in which CD8+ T cells expressing the transgene for the OVA(257-264) peptide (SIINFEKL) failed to develop airway hyperresponsiveness (AHR), airway eosinophilia, Th2 cytokine elevation, or goblet cell metaplasia. OT-1 mice that received naive CD4+IL-4+ T cells but not CD4+IL-4- T cells before sensitization developed all of these responses to the same degree as wild-type mice. Moreover, recipients of CD4+IL-4+ T cells developed significant increases in the number of CD8+IL-13+ T cells in the lung, whereas sensitized OT-1 mice that received primed CD4+ T cells just before challenge failed to develop these responses. Sensitized CD8-deficient mice that received CD8+ T cells from OT-1 mice that received naive CD4+ T cells before sensitization increased AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged with allergen. In contrast, sensitized CD8-deficient mice receiving CD8+ T cells from OT-1 mice without CD4+ T cells developed reduced AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged. These data suggest that interactions between CD4+ and CD8+ T cells, in part through IL-4 during the sensitization phase, are essential to the development of CD8+IL-13+ T cell-dependent AHR and airway allergic inflammation.  相似文献   

16.
Immune dysregulation in HIV-1 infection is associated with increased expression of inhibitory molecules such as CTLA-4, TGF-β, and IL-10. In this study we examined one potential mechanism for regulating TGF-β and IL-10 expression by HIV-specific suppressor CD8+ T cells. No overlap between TGF-β, IL-10, and IFN-γ cytokine production by HIV-specific CD8+ T cells was observed. TGF-β positive and IL-10 positive cells were FOXP3 negative, CD25 negative, and displayed a heterogeneous surface expression of CD127. TGF-β and IL-10 positive CD8+ T cells did not express CTLA-4. Nevertheless, CTLA-4 blockade resulted in a significant decrease in HIV-specific TGF-β positive and IL-10 positive CD8+ T cell responses, and a concomitant increase in HIV-specific IFN-γ positive CD8+ T cell responses. Depletion of CD4+ T cells abrogated the impact of CTLA-4 on HIV-specific TGF-β positive and IL-10 positive CD8+ T cells. Our study suggests that CTLA-4 Signaling on CD4+ T cells regulates the inhibitory functions of the HIV-specific suppressor CD8+ T cells.  相似文献   

17.
Murine CD4(+)CD25(+) T regulatory (Treg) cells were cocultured with CD4(+)CD25(-) Th cells and APCs or purified B cells and stimulated by anti-CD3 mAb. Replacement of APCs by B cells did not significantly affect the suppression of CD4(+)CD25(-) Th cells. When IL-4 was added to separate cell populations, this cytokine promoted CD4(+)CD25(-) Th and CD4(+)CD25(+) Treg cell proliferation, whereas the suppressive competence of CD4(+)CD25(+) Treg cells was preserved. Conversely, IL-4 added to coculture of APCs, CD4(+)CD25(-) Th cells, and CD4(+)CD25(+) Treg cells inhibited the suppression of CD4(+)CD25(-) Th cells by favoring their survival through the induction of Bcl-2 expression. At variance, suppression was not affected by addition of IL-13, although this cytokine shares with IL-4 a receptor chain. When naive CD4(+)CD25(-) Th cells were replaced by Th1 and Th2 cells, cell proliferation of both subsets was equally suppressed, but suppression was less pronounced compared with that of CD4(+)CD25(-) Th cells. IL-4 production by Th2 cells was also inhibited. These results indicate that although CD4(+)CD25(+) Treg cells inhibit IL-4 production, the addition of IL-4 counteracts CD4(+)CD25(+) Treg cell-mediated suppression by promoting CD4(+)CD25(-) Th cell survival and proliferation.  相似文献   

18.
Products of arachidonic acid metabolism are important for mucosal homeostasis, because blockade of this pathway with an NSAID triggers rapid onset of severe colitis in the IL-10 knockout (IL-10(-/-)) model of IBD. Rag mice do not make T or B cells. This study determined whether reconstitution of Rag mice with T cells from IL-10(-/-) mice transferred NSAID colitis susceptibility. Rag mice were reconstituted by intraperitoneal injection with splenocytes from wild-type (WT) or IL-10(-/-) animals. Colitis was induced by using piroxicam and was graded histologically. Isolated lamina propria mononuclear cells (LPMC), lamina propria T cells, and LPMC depleted of T cells from reconstituted Rag mice were studied for cytokine production. Only animals reconstituted with IL-10(-/-) CD4(+) T cells and administered piroxicam developed severe colitis. LPMC from these colitic animals made IFN-gamma, whose production was dependent on T cells. Some IL-10 was produced but only from non-T cells. LPMC from the healthy Rag mice that were reconstituted with WT T cells and were piroxicam resistant made much more IL-10. This was mostly T cell dependent. In conclusion, only CD4(+) T cells from IL-10(-/-) animals leave Rag mice susceptible to NSAID-induced, Th1 colitis. Lamina propria T cells normally make large quantities of IL-10, suggesting that IL-10 from T cells may be protective.  相似文献   

19.
In the present study, we have investigated the ability of human T cells to secrete IL-2, IL-4, and IFN-gamma. IL-4 and IFN-gamma were quantified with enzymatic immunoassays and IL-2 with a biologic assay by using the murine IL-2-dependent cell line CTLL-2. PBL, stimulated with Con A or with a combination of the phorbol ester 13-O-tetradecanoylphorbol-12-acetate and the Ca2+ ionophore A23187 secreted IL-2, IL-4, and IFN-gamma. The kinetics of the secretion of the three lymphokines was investigated with two CD4+ clones; one (GEO-2) that produced IL-2, IL-4, and IFN-gamma and another (HY640), that produced only IL-2 and IFN-gamma. Significant IL-2, IL-4, and IFN-gamma production was observed after only 8 h of activation. Maximal levels of IL-2 and IL-4 were found 20 h after the onset of the stimulation which subsequently decreased. In contrast, IFN-gamma levels continued to increase in a period up to 40 h and then leveled off. In spite of these differences in secretion, the kinetics of accumulation of mRNA did not differ. The IL-2, IL-4, and IFN-gamma mRNA were detectable 2 h after stimulation and continued to accumulate for a period up to 20 h. In a series of 22 CD4+ clones, 21 were able to secrete all three lymphokines upon stimulation. Almost all CD8+ clones were able to produce IL-2 and IFN-gamma, but only six of the 23 CD8+ T cell clones secreted IL-4. In addition, five CD4+ (allo)antigen-specific T cell clones were tested for IL-2, IL-4, and IFN-gamma secretion upon specific stimulation. Two alloantigen-specific and two tetanus toxoid-specific T cell clones secreted IL-2, IL-4, and IFN-gamma simultaneously, whereas one alloantigen-specific T cell clone secreted IL-2 and IFN-gamma, but not IL-4. A supernatant of the CD4+ T cell clone GEO-2, that contained high levels of IFN-gamma and IL-4, was unable to induce the low affinity receptor for IgE, CD23, on a Burkitt lymphoma cell line. However, after separation of IL-4 from IFN-gamma by using HPLC, the IL-4-containing fraction-induced CD23, which could be blocked by the fraction that contained IFN-gamma and by a polyclonal rabbit anti-IL-4 antiserum. Finally, the partly purified IL-4, that was devoid of IL-2, promoted the growth of the clone GEO-2.  相似文献   

20.
Despite steady progress in elimination of measles virus globally, measles infection still causes 500,000 annual deaths, mostly in developing countries where endemic measles strains still circulate. Many adults are infected every year in China, with symptoms more severe than those observed in children. In this study, we have used blood samples from adult measles patients in Shanghai and age-matched healthy controls to gain an understanding of the immune status of adult measles patients. IFN-alpha mRNA was reduced in patient PBMC compared with healthy controls. In contrast, gene expression and plasma production of IL-2, IL-10, and IFN-gamma were elevated in patient blood. A similar cytokine profile was observed at early times when cultured PBMC were infected with a clinical isolate of measles virus. In contrast to previous studies in pediatric patients, we did not find a reduction in total CD4(+) and CD8(+) T cells in patient PBMC. Interestingly, we found that CD4(+)CD25(+)CD127(low) regulatory T cells were significantly increased in patient PBMC compared with controls. Using intracellular cytokine staining we also show that the measles virus induces IL-10-producing CD14(+) and CD4(+)CD25(+) cells in PBMC. Our results show that adult measles patients in the acute phase of the disease have a mixed Th1/Th2 type response, accompanied with severe immunosuppression of both innate and adaptive responses including suppression of type I IFN. Both regulatory T cells and plasma IL-10 may contribute to the immunosuppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号