首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined in vivo capacities of two C27-steroid hormones-phytoecdysteroid ecdysterone (20-hydroxyecdysone, 10(-8)M) and calcitriol (1 alpha, 25-dihydroxyvitamin D3, 10(-12)M), as a modulators of neutral lipids hydrolysis in the brain and heart cells. Severe lines of evidence indicate that both hormones may acts as positive regulators of cholesterol esters and triacylglycerol hydrolysis in early (0.5-30 min) pregenomic phase of its actions, yielding known (DAG, free polyunsaturated fatty acids) and possible (free cholesterol) lipid second messengers.  相似文献   

2.
We have examined in vivo the capacities of two C27-steroid hormones-phytoecdysteroid ecdysterone (20-hydroxyecdysone, 10(-8) M) and calcitriol (1 alpha, 25-dihydroxyvitamin D3, 10(-12) M), as a modulators of phosphoinositide cycle in the brain and heart cells. Severe lines of evidence indicate that both hormones may acts as positive regulators of phosphoinositide hydrolysis by phospholipases C and D in membrane (0.5-30 min) pre-genomic phase of its actions. Thus, our findings identify ecdysterone, like calcitriol, as a positive regulator of [Ca2+]i, and protein kinase in the mammalian cells.  相似文献   

3.
4-Aminopyridine (10(-4)-10(-5) M) increased severalfold the release of acetylcholine from rat striatal slices superfused with an eserine-containing, choline-free medium, and caused stoichiometric decreases in the release of choline. It had no effect on tissue acetylcholine and choline levels. Electrical stimulation of the striatal slices increased acetylcholine release without affecting that of choline. Superfusion of the stimulated slices with 4-aminopyridine decreased choline release and increased the ratio of acetylcholine to choline in superfusates. As shown previously, electrical stimulation of the striatal slices decreased their contents of phospholipids, principally phosphatidylcholine; 4-aminopyridine fully protected against these membrane changes. In synaptosomal preparations, 4-aminopyridine was found to enhance the high-affinity uptake of [14C]choline and its conversion to [14C]acetylcholine. This effect on choline uptake may underlie 4-aminopyridine's ability to enhance acetylcholine release in the absence of supplemental choline while suppressing the "autocannibalism" of membrane phospholipids.  相似文献   

4.
[14C]Choline was incorporated into microsomal membranes in vivo, and from CDP-[14C]choline in vitro, and the site of incorporation determined by hydrolysis of the outer leaflet of the membrane bilayer using phospholipase C from Clostridium welchii. Labelled phosphatidylcholine was found to be concentrated in the outer leaflet of the membrane bilayer with a specific activity approximately three times that of the inner leaflet. During incorporation of CDP-choline and treatment with phospholipase C the vesicles retained labelled-protein contents indicating that they remained intact. When the microsomes were opened with taurocholate after incorporation of [14C]choline in vivo, the labelled phosphatidylcholine behaved as a single pool. Selective hydrolysis of labelled phosphatidylcholine in intact vesicles is not, therefore, a consequence of specificity of phospholipase C. These results indicate that the phosphatidylcholine of the outer leaflet of the microsomal membrane bilayer is preferentially labelled by the choline-phosphotransferase pathway and that this pool of phospholipid does not equilibrate with that of the inner leaflet.  相似文献   

5.
Increasing interest in receptor-regulated phospholipase C and phospholipase D hydrolysis of cellular phosphatidylcholine motivates the development of a sensitive and simple assay for the water-soluble hydrolytic products of these reactions, phosphocholine and choline respectively. Choline was partially purified from the methanol/water upper phase of a Bligh & Dyer extract by ion-pair extraction using sodium tetraphenylboron, and the mass of choline was determined by a radioenzymic assay using choline kinase and [32P]ATP. After removal of choline from the upper phase, the mass of residual phosphocholine was determined by converting it into choline by using alkaline phosphatase, followed by radioactive phosphorylation. In addition to excellent sensitivity (5 pmol for choline and 10 pmol for phosphocholine), these assays demonstrated little mutual interference (phosphocholine----choline = 0%; choline----phosphocholine = 5%), were extremely reproducible (average S.E.M. of 3.5% for choline and 2.9% for phosphocholine), and were simple to perform with instrumentation typically available in most laboratories. In addition, the ability to apply the extraction technique to the upper phase of Bligh & Dyer extracts permitted simple analysis not only of choline and phosphocholine, but also of phosphatidylcholine and lipid products of phospholipase C and phospholipase D activity (1,2-diacylglycerol and phosphatidic acid respectively) from the same cell or tissue sample.  相似文献   

6.
The role of phosphatidylcholine turnover during hypersaline stress is investigated in Saccharomyces cerevisiae. In the wild-type strain, 2180-1A hypersaline stress induced the rapid turnover of phosphatidylcholine, a major membrane lipid. Yeast cells were grown in the presence of [14C]-choline to label phosphatidylcholine. Upon shifting the cells to medium with 0.8 M NaCl, phosphatidylcholine levels were diminished by c. 30% within 20 min to yield glycerophosphocholine, a methylamine osmoprotectant that has been previously identified in renal cells. High-performance liquid chromatography studies showed that osmotically mediated glycerophosphocholine production was enhanced if 10 mM choline was added as a supplement to synthetic dextrose medium with 1.6 M NaCl, but glycine betaine was not detected. Enhanced glycerophosphocholine production also correlated with improved growth in media containing 1.6 M NaCl and choline. Enhanced growth is specific to methylamines: salt-stressed cells supplemented with 10 mM choline or glycine betaine showed enhanced growth relative to unsupplemented control cultures, but other additives had no effect on growth or adversely affected it. Nutritional effects are ruled out because yeast cannot use choline or glycine betaine as carbon or nitrogen sources in normal or high-salt medium. Finally, enhanced growth in hypersaline media with choline or glycine betaine is dependent on the choline permease Hnm1. These results in yeast highlight a similarity with mammalian renal cells, namely that phosphatidylcholine turnover contributes to osmotic adaptation via synthesis of the osmoprotectant glycerophosphocholine.  相似文献   

7.
N-Methyl-d-aspartate (NMDA) receptor overactivation has been proposed to induce excitotoxic neuronal death by enhancing membrane phospholipid degradation. In previous studies, we have shown that NMDA releases choline and reduces membrane phosphatidylcholine in vivo. We now observed that glutamate and NMDA induce choline release in primary neuronal cortical cell cultures. This effect is Ca(2+)-dependent and is blocked by MK-801 ((+)-5-methyl-10, 11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate). In cortical neurons, the NMDA receptor-mediated choline release precedes excitotoxic cell death but not neuronal death induced by either osmotic lysis or serum deprivation. Glutamate, at concentrations that release arachidonic acid, does not release choline in cerebellar granule cells, unless these cells are rendered susceptible to excitotoxic death by energy deprivation. The NMDA-evoked release of choline is not mediated by phospholipases A(2) or C. Moreover, NMDA does not activate phospholipase D in cortical cells. However, NMDA inhibits incorporation of [methyl-(3)H]choline into both membrane phosphatidylcholine and sphingomyelin. These results show that the increase in extracellular choline induced by NMDA receptor activation is directly related with excitotoxic cell death and indicate that choline release is an early event of the excitotoxic process produced by inhibition of phosphatidylcholine synthesis and not by activation of membrane phospholipid degradation.  相似文献   

8.
Phosphatidylcholine, in addition to the widely studied inositol phospholipids, is cleaved to produce second messengers in neuronal signal transduction processes. Because of the difficulty in labelling and measuring the metabolism of endogenous phosphatidylcholine in brain tissue, we investigated the utility of measuring the hydrolysis of exogenous labelled substrate incubated with rat cerebral cortical cytosol and membrane fractions as has been successful in studies of phosphoinositide hydrolysis. In the cytosol [3H]phosphatidylcholine was hydrolyzed at a linear rate for 60 min of incubation and GTPS stimulated hydrolysis by 63%. The products of phospholipase C and phospholipase D, phosphorylcholine and choline, contributed only 44% of the [3H]phosphatidylcholine hydrolytic products in the cytosol, with phospholipase D activity slightly predominating. GTPS stimulated cytosolic phospholipase C and reduced phospholipase D activity. [3H]Phosphatidylcholine was hydrolyzed much more slowly by membranes than by cytosol. In membranes the production of [3H]phosphorylcholine and [3H]choline were approximately equal, contributing 27% of the total [3H]phosphatidylcholine hydrolysis, and GTPS only caused a slight stimulation of phospholipase C activity. Chronic lithium treatment (4 weeks) appeared to slightly reduce [3H]phosphatidylcholine metabolism in the cytosol and in membranes, but no statistically significant reductions were achieved. Cytosol and membrane fractions from postmortem human brain metabolized [3H]phosphatidylcholine slowly, and GTPS had no effects. In summary, exogenous [3H]phosphatidylcholine was hydrolyzed by brain cytosol and membranes, and this was stimulated by GTPS, but the complex contributions of multiple metabolic pathways complicates the application of this method for studying individual pathways, such as phospholipase D which contributes only a fraction of the total processes hydrolyzing exogenous [3H]phosphatidylcholine.  相似文献   

9.
The alternate pathway of signal transduction via hydrolysis of phosphatidylcholine, the major cellular phospholipid, has been investigated in murine peritoneal macrophages. A sustained formation of diacylglycerol, is preceded by an enhanced production of phosphatidic acid, when the macrophages were given a stimulus with 12-O-tetradecanoyl phorbol-13-acetate for sixty minutes. Production of choline and choline metabolites are significantly increased too. Propranolol, which inhibits phosphatidate phosphohydrolase, the enzyme responsible for conversion of phosphatidic acid to diacylglycerol, can effectively block the formation of diacylglycerol. Inhibition of protein kinase C either by its inhibitors, staurosporine and H-7 or by depletion, apparently affect the generation of the lipid products. Moreover, based on the results of transphosphatidylation reaction, involvement of a phospholipase D in the phosphatidylcholine-hydrolytic pathway in macrophages is predicted. These observations support the view that probably the phorbol ester acting directly on protein kinase C of the macrophages activate their phosphatidylcholine-specific phospholipase D to allow a steady generation of second messengers, to enable them to participate in the cell signalling process in a more efficient manner than those generated in the phosphoinositide pathway of signal transduction. (Mol Cell Biochem 000: 000-000,1999)  相似文献   

10.
We have used pulse-chase labeling of Chinese hamster ovary cells with choline followed by plasma membrane isolation on cationic beads to study the transport of phosphatidylcholine from the endoplasmic reticulum to the plasma membrane. We have found that the process is rapid (t1/2 [25 degrees C] = 2 min) and not affected by energy poisons or by cytochalasin B, colchicine, monensin, or carbonyl cyanide p-chlorophenylhydrazone. Cooling cells to 0 degree C effectively stops the transport process. The intracellular transport of phosphatidylcholine is distinct in several ways from the intracellular transport of cholesterol (Kaplan, M. R., and R. D. Simoni, 1985, J. Cell. Biol., 101:446-453).  相似文献   

11.
Cytidine, as cytidine 5'-diphosphate choline, is a major precursor in the synthesis of phosphatidylcholine in cell membranes. In the present study, we examined the relationships between extracellular levels of cytidine, the conversion of [14C]choline to [14C]phosphatidylcholine, and the net syntheses of phosphatidylcholine and phosphatidylethanolamine by PC12 cells. The rate at which cytidine (as [3H]cytidine) was incorporated into the PC12 cells followed normal Michaelis-Menten kinetics (Km = 5 microM; Vmax = 12 x 10(-3) mmol/mg of protein/min) when the cytidine concentrations in the medium were below 50 microM; at higher concentrations, intracellular [3H]cytidine nucleotide levels increased linearly. Once inside the cell, cytidine was converted mainly into cytidine triphosphate. In pulse-chase experiments, addition of cytidine to the medium caused a time- and dose-dependent increase (by up to 30%) in the incorporation of [14C]choline into membrane [14C]-phosphatidylcholine. When the PC12 cells were supplemented with both cytidine and choline for 14 h, small but significant elevations (p less than 0.05) were observed in their absolute contents of membrane phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine, all increasing by 10-15% relative to their levels in cells incubated with choline alone. Exogenous cytidine, acting via cytidine triphosphate, can thus affect the synthesis and levels of cell membrane phospholipids.  相似文献   

12.
A choline (CHO) biosensor based on the determination of H(2)O(2) generated at the electrode surface by the enzyme choline oxidase (CHOx) was developed. The biosensor consisted of CHOx retained onto a horseradish peroxidase (HRP) immobilized solid carbon paste electrode (sCPE). The HRPsCPE contained the molecule phenothiazine as redox mediator and CHOx was physically retained on the electrode surface using a dialysis membrane. Several parameters have been studied such as, mediator amount, influence of applied potential, etc. The CHO measurements were performed in 0.1 M phosphate buffer, pH 7.4. Amperometric detection of CHO was realized at an applied potential of 0.0 mV vs Ag/AgCl. The response is linear over the concentration range 5.0x10(-7)-7.0x10(-5) M, with a detection limit of 1.0x10(-7) M. This biosensor was used to detect choline released from phosphatidylcholine (PC) by phospholipase D (PLD) in isolated rat salivary gland cells stimulated by a purinergic agonist (ATP).  相似文献   

13.
The initial rate of incorporation of methyl-labeled choline into the acid-soluble pool (phosphorylcholine) of Novikoff hepatoma cells growing in suspension culture was investigated as a function of the choline concentration in the medium. Below, but not above, 20 micro m, choline incorporation followed simple Michaelis-Menten kinetics at 24, 33, or 37 degrees C with an apparent K(m) of 4-7 micro m, and the V(max) values decreased with a Q(10) of about 2.3 with a decrease in temperature. Between 20 and 500 micro m, on the other hand, the rate of incorporation increased linearly with an increase in choline concentration in the medium, and the increase in incorporation rate with increase in choline concentration was about the same at all temperatures tested. The data suggest that at low concentrations choline is taken up mainly by a transport reaction, whereas at concentrations above 20 micro m, simple diffusion becomes the principal mode of uptake. The energy of activation for choline transport was estimated from an Arrhenius plot of the V(max) values as 67,000 J (16 kcal)/mole. At concentrations below 20 micro m, choline incorporation into membrane phosphatidylcholine also followed simple Michaelis-Menten kinetics, and the apparent K(m) was about the same as that for choline transport. The data support the conclusion that the transport of choline into the cell is the rate-limiting step in the conversion of choline to phosphorylcholine and its incorporation into phosphatidylcholine. At concentrations above 100 micro m, on the other hand, the ultimate rate of choline incorporation into phosphatidylcholine was independent of the choline concentration in the medium or the intracellular level of phosphorylcholine. Further, the rate of turnover of the choline moiety of phosphatidylcholine (half-life, 20-24 hr) either in whole cells or during incubation of isolated membrane fractions was unaffected by the presence of an excess of choline in the medium. The overall results indicate that a direct exchange between free choline and the choline moiety of phosphatidylcholine does not play a significant role in the incorporation of choline into phosphatidylcholine by Novikoff cells or in the turnover of the choline moiety of phosphatidylcholine, and that labeled choline therefore is a useful precursor in studying the synthesis and turnover of membrane phosphatidylcholine in these cells.  相似文献   

14.
The enzymatic pathways for formation of 1,2-diradylglyceride in response to epidermal growth factor in human dermal fibroblasts have been investigated. 1,2-Diradylglyceride mass was elevated 2-fold within one minute of addition of EGF. Maximal accumulation (4-fold) occurred at 5 minutes. Since both diacyl and ether-linked diglyceride species occur naturally and may accumulate following agonist activation, we developed a novel method to determine separately the alterations in diacyl and ether-linked diglycerides following stimulation of fibroblasts with EGF. Utilizing this method, it was found that approximately 80% of the total cellular 1,2-diradylglyceride was diacyl, the remaining 20% being ether-linked. Addition of EGF caused accumulation of 1,2-diacylglyceride without alteration in the level of ether-linked diglyceride. Thus, the observed induction of 1,2-diradylglyceride by EGF was due exclusively to increased formation of 1,2-diacylglyceride. In cells labelled with [3H]choline, the water soluble phosphatidylcholine hydrolysis products, phosphorylcholine and choline, were increased 2-fold within 5 minutes of addition of EGF. No hydrolysis of phosphatidylethanolamine, phosphatidylserine, or phosphatidylinositol was observed. Quantitation by radiolabel and mass revealed equivalent elevations in phosphorylcholine and choline, suggesting stimulation of both phospholipase C and phospholipase D activities. To identify the presence of EGF-induced phospholipase D activity, cells were labelled with exogenous [3H]1-0-hexadecyl, 2-acyl phosphatidylcholine and its conversion to phosphatidic acid in response to EGF determined. Radiolabelled phosphatidic acid was detectable in 15 seconds after addition of EGF and was maximal (3-fold) at 30 seconds. Consistent with the presence of EGF-induced phospholipase D activity, treatment of cells with EGF, in the presence of [14C]ethanol, resulted in the rapid formation of [14C]phosphatidylethanol, the product of phospholipase D-catalyzed transphosphatidylation. The formation of phosphatidylethanol, which competes for the formation of phosphatidic acid by phospholipase D, did not diminish the induction of 1,2-diglyceride by EGF. These data suggest that the phosphatidic acid formed by phospholipase D-catalyzed hydrolysis of phosphatidylcholine is not a major precursor of the observed increased 1,2-diglyceride. Thus, the induction of 1,2-diacylglycerol by EGF may occur primarily via phospholipase C-catalyzed hydrolysis of phosphatidylcholine.  相似文献   

15.
Previous studies suggest that the steps of the CDP- choline pathway of phosphatidylcholine synthesis are tightly linked in a so-called metabolon. Evidence has been presented that only choline that enters cells through the choline transporter, and not phosphocholine administered to cells by membrane permeabilization, is incorporated into phosphatidylcholine. Here, we show that [(14)C]phosphocholine derived from the lysosomal degradation of [(14)C]choline-labeled sphingomyelin is incorporated as such into phosphatidylcholine in human and mouse fibroblasts. Low density lipoprotein receptor-mediated endocytosis was used to specifically direct [(14)C]sphingomyelin to the lysosomal degradation pathway. Free labeled choline was not found either intracellularly or in the medium, not even when the cells were energy-depleted. Deficiency of lysosomal acid phosphatases in mouse or alkaline phosphatase in human fibroblasts did not affect the incorporation of lysosomal [(14)C]sphingomyelin-derived [(14)C]phosphocholine into phosphatidylcholine, supporting our finding that phosphocholine is not degraded to choline prior to its incorporation into phosphatidylcholine. Inhibition studies and analysis of molecular species showed that exogenous [(3)H]choline and sphingomyelin-derived [(14)C]phosphocholine are incorporated into phosphatidylcholine via a common pathway of synthesis. Our findings provide evidence that, in fibroblasts, phosphocholine derived from sphingomyelin is transported out of the lysosome and subsequently incorporated into phosphatidylcholine without prior hydrolysis of phosphocholine to choline. The findings do not support the existence of a phosphatidylcholine synthesis metabolon in fibroblasts.  相似文献   

16.
Enhancement of cellular phospholipase D (PLD)-1 and phospholipase C (PLC)-mediated hydrolysis of endogenous phosphatidylcholine (PC) during receptor-mediated cell activation has received increasing attention inasmuch as both enzymes can result in the formation of 1,2-diacylglycerol (DAG). The activities of PLD and PLC were examined in purified mast cells by quantitating the mass of the water-soluble hydrolysis products choline and phosphorylcholine, respectively. Using an assay based on choline kinase-mediated phosphorylation of choline that is capable of measuring choline and phosphorylcholine in the low picomole range, we quantitated the masses of both cell-associated and extracellular choline and phosphorylcholine. Activating mast cells by crosslinking its immunoglobulin E receptor (Fc epsilon-RI) resulted in an increase in cellular choline from 13.1 +/- 1.2 pmol/10(6) mast cells (mean +/- SE in unstimulated cells) to levels 5- to 10-fold higher, peaking 20 s after stimulation and rapidly returning toward baseline. The increase in cellular choline mass paralleled the increase in labeled phosphatidic acid accumulation detected in stimulated cells prelabeled with [3H]palmitic acid and preceded the increase in labeled DAG. Although intracellular phosphorylcholine levels were approximately 15-fold greater than choline in unstimulated cells (182 +/- 19 pmol/10(6) mast cells), stimulation resulted in a significant fall in phosphorylcholine levels shortly after stimulation. Pulse chase experiments demonstrated that the receptor-dependent increase in intracellular choline and the fall in phosphorylcholine were not due to hydrolysis of intracellular phosphorylcholine and suggested a receptor-dependent increase in PC resynthesis. When the extracellular medium was examined for the presence of water-soluble products of PC hydrolysis, receptor-dependent increases in the mass of both choline and phosphorylcholine were observed. Labeling studies demonstrated that these extracellular increases were not the result of leakage of these compounds from the cytosol. Taken together, these data lend support for a quantitatively greater role for receptor-mediated PC-PLD compared with PC-PLC during activation of mast cells.  相似文献   

17.
Progesterone is the physiological stimulus that acts at the amphibian oocyte plasma membrane to induce the meiotic divisions. Rana oocytes were preincubated with [3H]-arachidonic acid, [3H]-methionine and/or [14C]choline. Total and plasma membrane phospholipids were monitored during the first 2 h after induction with progesterone. A transient increase in methylation of phosphatidylethanolamine during the first 10 minutes coincided with an increased Ca2+ efflux and was followed by increased arachidonic acid incorporation into phosphatidylcholine during a period of increasing membrane conductance. The labeled phospholipids disappeared sequentially 5-90 min after the hormone stimulus, suggesting that activation of phospholipases A2 and/or C occur as part of a cascade of membrane events.  相似文献   

18.
Choline accumulation and phosphatidylcholine biosynthesis were investigated in the choline-requiring anaerobic protozoon Entodinium caudatum by incubating whole cells or subcellular fractions with [14C] choline, phosphoryl [14C] choline and CDP-[14C] choline. 2. All membrane fractions contained choline kinase (EC 2.7.1.32) and CDP-choline-1,2-diacylglycerol cholinephosphotransferase (EC 2.7.8.2), although the specific activities were less in the cell-envelope fraction. Choline phosphate cytidylyltransferase (EC 2.7.7.15) was limited to the supernatant, and this enzyme was rate-limiting for phosphatidylcholine synthesis in the whole cell. 3. Synthesis of phosphatidylcholine from free choline by membranes was only possible in the presence of supernatant. Such reconstituted systems required ATP (2.5 mM), CTP (1 mM) and Mg2+ (5 mM) for maximum synthesis of the phospholipid. CTP and Mg2+ were absolute requirements. 4. Hemicholinium-3 prevented choline uptake by the cells and was strongly inhibitory towards choline kinase; the other enzymes involved in phosphatidylcholine synthesis were minimally affected. 5. Ca2+ ions (0.5 mM) substantially inhibited CDP-choline-1,2-diacylglycerol cholinephosphotransferase in the presence of 15 mM-Mg2+, but choline phosphate cytidylyltransferase and choline kinase were less affected. 6. No free choline could be detected intact cells even after short (10-180s) incubations or at temperatures down to 10 degrees C. The [14C] choline entering was mainly present as phosphorylcholine and to a lesser extent as phosphatidylcholine. 7. It is suggested that choline kinase effectively traps any choline within the cell, thus ensuring a supply of the base for future growth. At low choline concentrations the activity of choline kinase is rate-limiting for choline uptake, and the enzyme might possibly play an active role in the transport phenomenon. Thus the choline uptake by intact cells and choline kinase have similar Km values and show similar responses to temperature and hemicholinium-3.  相似文献   

19.
Pretreatment of the D-deficient chick with 1,25-dihydroxyvitamin D3 increases de novo synthesis of phosphatidylcholine by a stimulation of CDP-choline: sn-1,2-diacylglycerol choline-phosphotransferase reaction. The time course of change in the incorporation of [3H]choline and [14C]ethanolamine into the brush border lipid fraction after 1,25-dihydroxyvitamin D3 treatment correlates closely with the time course of change in calcium uptake into the brush border membrane vesicles. Prior treatment with cycloheximide does not block this increase in phosphatidylcholine synthesis. In addition, 1,25-dihydroxyvitamin D3 administration increases the incorporation of [3H]arachidonic acid into the phosphatidylcholine fraction of the brush border to a great extent but does not increase the incorporation of [3H]palmitic acid into the phosphatidylcholine fraction. The incorporation of these 3H labeled fatty acids into diacylglycerol is not changed by 1,25-dihydroxyvitamin D3. These data indicate that 1,25-dihydroxyvitamin D3 enhances the synthesis of phosphatidylcholine independent of new protein synthesis, and also increases the incorporation of unsaturated fatty acids into phosphatidylcholine. From these results we suggest that changes in phospholipid metabolism in the enterocyte are the mechanisms by which 1,25-dihydroxyvitamin D3 acts to enhance calcium entry across the brush border membrane.  相似文献   

20.
Phorbol esters have been shown to stimulate phosphatidylcholine synthesis via the CDP-choline pathway. The present study compares the effects of phorbol esters and thyrotropin-releasing hormone (TRH) on phosphatidylcholine metabolism in GH3 pituitary cells. In a previous study (Kolesnick, R.N., and Paley, A.E. (1987) J. Biol. Chem. 262, 9204-9210), the potent phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA) induced time- and concentration-dependent incorporation of 32Pi and [3H]choline into phosphatidylcholine in short-term labeling experiments. In this study, TPA is shown to activate choline-phosphate cytidylyltransferase (EC 2.7.7.15), the regulatory enzyme of the CDP-choline pathway, by stimulating redistribution of the inactive cytosolic form of the enzyme to the membrane. Redistribution was quantitative. TPA reduced cytosolic activity from 3.5 +/- 0.4 to 1.5 +/- 0.3 nmol . min-1 x 10(7) cells-1 and enhanced particulate activity from 2.5 +/- 0.4 to 4.9 +/- 0.6 nmol . min-1 x 10(7) cells-1. TRH also stimulated time- and concentration-dependent 32Pi and [3H]choline incorporation into phosphatidylcholine. An increase was detectable after 5 min; and after 30 min, the levels were 164 +/- 9 and 150 +/- 11% of control, respectively; EC50 congruent to 2 X 10(-10) M TRH. These events correlated directly with TRH-induced 32Pi incorporation into phosphatidylcholine. TRH also stimulated redistribution of cytidylyl-transferase specific activity. TRH reduced cytosolic activity 45% and enhanced particulate activity 51%. Neither TRH nor TPA stimulated phosphatidylcholine degradation. In cells down-modulated for protein kinase C (Ca2+/phospholipid-dependent protein kinase), the effects of TPA and TRH on 32Pi incorporation into phosphatidylcholine were abolished. However, TRH-induced incorporation into phosphatidylinositol still occurred. These studies provide evidence that hormones may regulate phosphatidylcholine metabolism via the protein kinase C pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号