首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spermatogenesis is a complex process in which spermatogonial stem cells divide and subsequently differentiate into spermatozoa. This process requires spermatogonial stem cells to self-renew and provide a continual population of cells for differentiation. Studies on spermatogonial stem cells have been limited due to a lack of unique markers and an inability to detect the presence of these cells. The technique of germ cell transplantation provides a functional assay to identify spermatogonial stem cells in a cell population. We hypothesized that vitamin A-deficient (VAD) and hyperthermically treated testes would provide an enriched in vivo source of spermatogonial stem cells. The first model, hyperthermic treatment, depends on the sensitivity of maturing germ cells to high temperatures. Testes of adult mice were exposed to 43 degrees C for 15 min to eliminate the majority of differentiating germ cells. Treated donor testes were 50% of normal adult testis size and, when transplanted into recipients, resulted in a 5.3- and 19-fold (colonies and area, respectively) increase in colonization efficiency compared to controls. The second model, VAD animals, also lacked differentiating germ cells, and testes weights were 25% of control values. Colonization efficiency of germ cells from VAD testes resulted in a 2.5- and 6.2-fold (colonies and area, respectively) increase in colonization compared to controls. Hyperthermically treated mice represent an enriched source of spermatogonial stem cells. In contrast, the low extent of colonization with germ cells from VAD animals raises important questions regarding the competency of stem cells from this model.  相似文献   

2.
Apoptosis appears to have an essential role in the control of germ cell number in testes. During spermatogenesis germ cell deletion has been estimated to result in the loss of up to 75% of the potential number of mature sperm cells. At least three factors seem to determine the onset of apoptosis in male germ cells: (1) lack of hormones, especially gonadotropins and androgens; (2) the specific stage in the spermatogenic cycle; (3) and the developmental stage of the animal. Although male germ cell apoptosis has been well characterized in various animal models, few studies are presently available regarding germ cell apoptosis in the human testis. The first part of this review is focused on germ cell apoptosis in testes of prepubertal boys, with special emphasis on apoptosis in normal and cryptorchid testes. A higher percentage of apoptotic spermatogonia was seen in the cryptorchid testes than in the scrotal testes. The hCG-treatment increased the number of apoptotic spermatogonia. The hCG-treatment-induced apoptosis in spermatogonia had severe long-term consequences in reproductive functions in adulthood. Increased apoptosis after hCG-treatment was associated with subnormal testis volumes, subnormal sperm density and pathologically elevated serum FSH. This finding indicates that increased apoptosis in spermatogonia in prepuberty leads to disruption of testis development. To evaluate the role of apoptosis in human adult testes, apoptosis was induced in seminiferous tubules that were incubated under serum-free conditions in the absence or presence of testosterone. Most frequently apoptosis was identified in spermatocytes. Occasionally some spermatids also showed signs of apoptosis. In short term incubations apoptosis was suppressed by testosterone. Our findings lead to the conclusion that apoptosis is a normal, hormonally controlled phenomenon in the human testis. The role of apoptosis in disorders of spermatogenesis remains to be established.  相似文献   

3.
Deng S  Yang Y  Han Y  Li X  Wang X  Li X  Zhang Z  Wang Y 《PloS one》2012,7(1):e30714
The Crosstalk between a tumor and its hypoxic microenvironment has become increasingly important. However, the exact role of UCP2 function in cancer cells under hypoxia remains unknown. In this study, UCP2 showed anti-apoptotic properties in A549 cells under hypoxic conditions. Over-expression of UCP2 in A549 cells inhibited reactive oxygen species (ROS) accumulation (P<0.001) and apoptosis (P<0.001) compared to the controls when the cells were exposed to hypoxia. Moreover, over-expression of UCP2 inhibited the release of cytochrome C and reduced the activation of caspase-9. Conversely, suppression of UCP2 resulted in the ROS generation (P = 0.006), the induction of apoptosis (P<0.001), and the release of cytochrome C from mitochondria to the cytosolic fraction, thus activating caspase-9. These data suggest that over-expression of UCP2 has anti-apoptotic properties by inhibiting ROS-mediated apoptosis in A549 cells under hypoxic conditions.  相似文献   

4.
Early in postnatal life the first phase of spermatogenesis is accompanied by an initial wave of germ cell apoptosis. This wave of germ cell death is thought to reflect an adjustment of germ cell numbers that can be adequately maintained by Sertoli cells. Caspase 2 is an initiator caspase whose activation has been found to stimulate apoptosis through the mitochondria. The present study investigates if germ cell apoptosis during the first phase of spermatogenesis involves activation of caspase 2. Germ cell apoptosis was found to peak at Postnatal Days (pnds) 15 and 16 in male C57BL/6 mice. Western blot analysis revealed that caspase 2 also increased in the testes at pnd 16. Immunolocalization of total caspase 2 showed staining of germ cells in the periphery of the seminiferous tubules as well as germ cells more centrally located in an area where apoptotic germ cells were observed. Cytoplasmic as well as nuclear staining was observed. Western blot analysis of cytoplasmic and nuclear proteins from pnd 16 testis revealed pro-caspase 2 in both fractions. Further Western blot analysis for caspase 2 detected an increase in the activation of caspase 2 at pnd 16 in proteins isolated from the cytoplasm but not from the nucleus. Proteins isolated from mitochondria from pnd 16 testes revealed an increase in pro-caspase 2 as well as activated caspase 2 corresponding with an increase in cytochrome c in cytoplasmic fractions. Injection of the caspase 2-specific inhibitor z-VDVAD-fmk directly into the testis significantly reduced the observed germ cell apoptosis at pnds 15 and 16. These results suggest that caspase 2 is present in germ cells in the murine testis in early postnatal life and increases in expression in correspondence to the initial wave of germ cell apoptosis. Caspase 2 also localizes to mitochondria, where it is correlated with a release of cytochrome c and germ cell apoptosis. Blockade of caspase 2 activation reduced the number of apoptotic germ cells in the initial wave of germ cell apoptosis, indicating that caspase 2 plays an important role upstream of the mitochondria in germ cell apoptosis during the first phase of spermatogenesis.  相似文献   

5.
为了探讨HSF2 mRNA在热应激和超生理剂量睾酮诱导恒河猴生精细胞凋亡中的表达变化,我们建立了手术诱导单侧隐睾和注射大剂量11酸睾酮(TU)恒河猴动物模型,应用3′末端标记分析(TUNEL)和原位杂交方法,检测睾丸细胞的凋亡信号和HSF2的表达变化。TUNEL结果显示热应激和超生理剂量睾酮能够诱导生精细胞出现凋亡信号,它分别于处理后第5天和第30天达到最强,表明热应激和睾酮干扰精子发生可能是通过生精细胞凋亡的方式来实现的。HSF2 mRNA水平在生精细胞凋亡早期(凋亡信号达到最强以前)略有降低,而在凋亡高峰期之后其表达急剧下降。Hsf2基因与我们以前研究的Hsp70-2基因的表达具有时间上的相关性,表明HSF2蛋白可能调控Hsp70-2基因的表达,而且HSF2可能通过多种方式影响精子的发生以及抑制生精细胞的凋亡。  相似文献   

6.
7.
Deficiency of acid sphingomyelinase (ASM), an enzyme responsible for producing a pro-apoptotic second messenger ceramide, has previously been shown to promote the survival of fetal mouse oocytes in vivo and to protect oocytes from chemotherapy-induced apoptosis in vitro. Here we investigated the effects of ASM deficiency on testicular germ cell development and on the ability of germ cells to undergo apoptosis. At the age of 20 weeks, ASM knock-out (ASMKO) sperm concentrations were comparable with wild-type (WT) sperm concentrations, whereas sperm motility was seriously affected. ASMKO testes contained significantly elevated levels of sphingomyelin at the age of 8 weeks as detected by high-performance, thin-layer chromatography. Electron microscopy revealed that the testes started to accumulate pathological vesicles in Sertoli cells and in the interstitium at the age of 21 days. Irradiation of WT and ASMKO mice did not elevate intratesticular ceramide levels at 16 h after irradiation. In situ end labeling of apoptotic cells also showed a similar degree of cell death in both groups. After a 21-day recovery period, the numbers of primary spermatocytes and spermatogonia at G2 as well as spermatids were essentially the same in the WT and ASMKO testes, as detected by flow cytometry. In serum-free cultures both ASMKO and WT germ cells showed a significant increase in the level of ceramide, as well as massive apoptosis. In conclusion, ASM is required for maintenance of normal sphingomyelin levels in the testis and for normal sperm motility, but not for testicular ceramide production or for the ability of the germ cells to undergo apoptosis.  相似文献   

8.
Mammalian male germ cells should be maintained below body temperature for proper development. Here, we investigated how male germ cells respond to heat stress. A short exposure of mouse testes to core body temperature induced phosphorylation of eIF2α and the formation of stress granules (SGs) in male germ cells. We observed that DAZL, a germ cell-specific translational regulator, was translocated to SGs upon heat stress. Furthermore, SG assembly activity was significantly diminished in the early male germ cells of Dazl-knockout mice. The DAZL-containing SGs played a protective role against heat stress-induced apoptosis by the sequestration of specific signaling molecules, such as RACK1, and the subsequent blockage of the apoptotic MAPK pathway. Based on these results, we propose that DAZL is an essential component of the SGs, which prevent male germ cells from undergoing apoptosis upon heat stress.  相似文献   

9.
10.
11.
12.
Mammalian germ cell apoptosis plays a key role in controlling the correct number of germ cells supported by Sertoli cells during the first wave of spermatogenesis in mammalian puberty. However, little is known about hormonal factors that could influence the rate of germ cell apoptosis during puberty or adulthood. In this work we evaluate germ cell apoptosis under hypothyroidism induced by goitrogen propylthiouracil (PTU) during the first wave of spermatogenesis. Neonatally administered PTU promoted a delay in the differentiation of Sertoli cells as evaluated by the expression of clusterin using immunohistochemistry and RT-PCR. Clusterin had different expression levels in control and PTU-treated animals, but under both conditions the highest levels were found in 35-day-old rats. In addition, clusterin displayed a cytoplasmic localization in control testes, but appeared located in the nucleus in PTU-treated animals. The wave of apoptosis (determined by caspase activity and quantification of apoptotic cells) characteristic of the first round of spermatogenesis was delayed by at least 10 days in these animals. The expression levels of proapoptotic genes like BAX or BAD were different between control and PTU-treated rats; although in both groups the highest level was found at the same age (days). Thus our results indicate that the characteristic pubertal apoptotic wave during rat spermatogenesis is delayed in neonatal hypothyroid rats.  相似文献   

13.
The discovery of mitochondrial derive peptides (MDPs) has spotlighted mitochondria as central hubs in control and regulation of cell viability and metabolism in the testis in response to intracellular and extracellular stresses. MDPs (Humanin, MOTS-c and SHLP-2) are present in testes. Humanin, the first MDP, is predominantly expressed in Leydig cells, and moderately in germ cells and seminal plasma. The administration of synthetic humanin peptide agonist HNG protects male germ cells against apoptosis induced by intratesticular hormonal deprivation, testicular hyperthermia, and chemotherapeutic agents in rodent testes. Humanin interacting with IGFBP-3 and/or Bax (pro-apoptotic proteins) prevents the activation of germ cell apoptosis. Humanin participates in the network of IL-12/IL-27 family of cytokines to exert the immune-modulation of the testicular environment. Humanin and other MDPs may be important in the amelioration of testicular stress and prevention of cell injury with possible implications for male infertility, fertility preservation and contraceptive development.  相似文献   

14.
Apoptosis plays an important role in controlling the number of male germ cells and eliminating defective germ cells during testicular development and spermatogenesis. We show here that fibroblast growth factor-4 (HST-1/FGF-4) may play a critical role as a survival factor for germ cells, protecting them from apoptosis. Testes of adult male mice that received an adenovirus carrying human HST-1/FGF-4 (AxHST-1) or a control adenovirus (AxCAwt) were exposed to mild hyperthermia, which causes germ cell apoptosis. An in situ terminal-deoxynucleotidyl transferase-mediated deoxy-UTP nick end-labeling (TUNEL) assay characterized germ cell apoptosis. The results indicated that HST-1/FGF-4 significantly reduced the apoptotic death of germ cells and prevented testicular weight loss and sperm count reduction. We also found that Hst-1/Fgf-4 present in testes is up-regulated in vivo when the testes are exposed to mild hyperthermia, and that endogenous Hst-1/Fgf-4 mRNA expression in Sertoli cells are also induced when the cells are exposed to mild hyperthermia in vitro. In addition, the MAPK cascade, which could increase an FGF-dependent survival signal, is activated by HST-1/FGF-4 stimuli in germ cells. On the other hand, upon HST-1/FGF-4 stimulation, lactate production from Sertoli cells were induced, which is indispensable nutrient for germ cell survival. These results suggest that HST-1/FGF-4 can act as an important physiological anti-apoptotic factor for male germ cells in stimulating lactate production of Sertoli cells upon heat stress, thereby promoting germ cell survival.  相似文献   

15.
Hu JH  Jiang J  Ma YH  Yang N  Zhang MH  Wu M  Fei J  Guo LH 《Cell research》2003,13(5):361-368
It was suggested that chronic ethanol exposure could result in testicular germ cell apoptosis, but the mechanism is still unclear. In the present study, we use a model of transgenic mice ubiquitously overexpressing human FasL to investigate whether Fas ligand plays a role in ethanol-induced testicular germ cell apoptosis. Both wild-type (WT) mice and transgenic (TG) mice were treated with acute ethanol (20% v/v) by introperitoneal injection for five times. After ethanol injection, WT mice displayed up-regulation of Fas ligand in the testes, which was shown by FITCconjugated flow cytometry and western blotting. Moreover, TG mice exhibited significantly more apoptotic germcells than WT mice did after ethanol injection, which was demonstrated by DNA fragmentation, PI staining flowcytometry and TUNEL staining. In addition, histopathological examination revealed that degenerative changes ofepithelial component of the tubules occurred in FasL overexpressing transgenic mice while testicular morphologywas normal in wild-type mice after acute ethanol exposure, suggesting FasL expression determines the sensitivity of testes to ethanol in mice. In summary, we provide the direct evidences that Fas ligand mediates the apoptosis of testicular germ cells induced by acute ethanol using FasL transgenic mice.  相似文献   

16.
In germ cells, the function of which is to form the next generation, apoptotic cell death occurs during development, as in the case of somatic cells. In this study, we show that Bcl-x knockout heterozygous (Bcl-x(+/-)) mice exhibit severe defects in male germ cells during development. A substantial increase in apoptosis of male germ cells occurs at around embryonic day 13.5 (E13.5) in Bcl-x(+/-) embryos, leading to hypoplasia of postnatal testes and reduced fertility. On the other hand, female germ cells at the same stages do not show discernible differences between wild-type and Bcl-x(+/-) embryos. This phenotype of Bcl-x haploinsufficiency shows that regulation of apoptosis becomes different between the sexes at around the onset of sex differentiation. Through this study, we found that, in wild-type embryos, (1) apoptosis is much more frequent (approximately 10 times) in the male than in female germ cells, and (2) expression of Bcl-xL, but not that of Bax, is higher in female than in male germ cells, at around E13.5. Male fetal germ cells, cultured with gonadal somatic cells in vitro, showed higher frequencies of apoptosis than those cultured without gonadal somatic cells. On the other hand, in the absence of gonadal somatic cells, both male and female fetal germ cells in vitro showed similar frequencies of apoptosis to female fetal germ cells in vivo. Therefore, male germ cell apoptosis, of which the default pathway is similar to that of the female, is likely to be influenced by male gonadal environments.  相似文献   

17.
Oxidative stress and apoptosis is involved in hypoxia-reoxygenation (H/R) induced myocardial injury. Increased expression of uncoupling protein 2 (UCP2), a cationic carrier protein, has protective effect against H/R injury. The present study aimed to find candidate drugs for H/R induced cardiac damage by identifying compounds regulating UCP2 expression. Here, among six natural compounds, ursolic acid (UA) had the most significant induction effect on UCP2 expression in H9c2 cells under H/R conditions. Subsequently, we found that UA significantly attenuated cell apoptosis and Caspase 3 activity, but increased nitric oxide (NO) release under H/R conditions. Additionally, UA pretreatment also decreased reactive oxygen species (ROS) production and malondialdehyde (MDA) content, but increased superoxide dismutase (SOD) activity. H/R caused a notable increase in the phosphorylation of p38, which was weakened by UA pretreatment. Moreover, p38 inhibitor (SB203580) showed the similar effects on H/R cells as UA pretreatment, while UCP2 knockdown had the reverse biological effects. More importantly, the effects of UA or p38 inhibitor exposure were partially rescued by UCP2 knockdown. Collectively, our data suggested the functions of UA on UCP2 expression and on the protection of H/R-stimulated H9c2 cells may be attributed to p38 signaling pathway.  相似文献   

18.
Spermatogenesis, a tightly regulated developmental process of male germ cells in testis, is associated with temporal and spatial expression of gap junction proteins, such as the connexin family members. Perturbation of their expressions may lead to spermatogenic arrest as manifested by disruption of cell-cell interaction. To explore the role(s) of connexins during spermatogenesis, we utilized the small peptide antagonistic approach to specifically deplete connexin 31, connexin 33, and pan-connexin. Three connexin peptides corresponding to the extracellular binding domain of connexin 31 and connexin 33 and to the extracellular conserved domain of connexins were designed and synthesized commercially. Peptides (at single dosage of 0.5, 1, or 2 mg per animal) were injected into rat testes and testes were collected on day 0, 1, 3, 5, 10, 15, and 30 after microinjection. In situ TUNEL assay demonstrated the induction of apoptosis in the testes after pan-connexin peptide treatment in a dose-dependent manner from day 3 and onward. Unlike the pan-connexin peptide, connexin 31 and connexin 33 peptides appeared to have little effect on inducing apoptosis and germ cell loss. CD45 staining also detected the occasional presence of infiltrating lymphocytes in the seminiferous tubules. Accompanied with the apoptotic events, two apoptotic markers, NF-κB and caspase 3, demonstrated a general up-regulation in their expressions. In adjacent testis sections, eliminations of connexin 31, 32, and 43 were observed. However, an induction of connexin 33 expression was detected. This suggests the versatility and functional diversity of connexins in the testis. The expression of ZO-1, the only known adaptor of connexins in the testis, was reduced and remained in a low level in the seminiferous epithelium. As such, the alterations of connexins in seminiferous epithelium may induce apoptotic signaling in the testis via the caspase 3 and the NF-κB pathway. This demonstrates the significant role of testicular connexins to maintain the survival of germ cells by regulating inter-cellular communications among germ cells and adjacent supporting cells during spermatogenesis. In addition, the inter-relationship between connexins and other junction proteins and associated signaling protein were investigated. After pan-connexin peptide treatment, a dys-localization of N-cadherin, an adherens junction protein, and diminution of occludin, a tight junction protein, level were detected. In addition, inductions of junction regulatory protein, cathepsin L, was observed during the course of peptide-mediated germ cell loss in the testes. In summary, pan-connexin peptide treatment triggered apoptosis and germ cell loss in the testes. This event influenced the localization and expression of different junction proteins and junction-associated protein in the testes. Financial support: The work was funded by a grant from the Research Grants Council of Hong Kong (HKU 7272/01M).  相似文献   

19.
Testicular germ cell apoptosis in Bcl6-deficient mice   总被引:4,自引:0,他引:4  
Bcl6 protein has been detected in testicular germ cells, mainly spermatocytes, of normal mice, but its physiological role is largely unknown. The number of spermatozoa in the cauda epididymis of adult Bcl6-deficient (Bcl6-/-) mice is lower than that of Bcl6+/+ mice. We have found numerous apoptotic spermatocytes at the metaphase I stage with induction of Bax protein in adult Bcl6-/- testes. Developmentally, the incidence of germ cell apoptosis of Bcl6-/- mice was similar to that of Bcl6+/+ mice until six weeks of age and increased after eight weeks of age. The incidence of apoptosis in heterozygous Bcl6+/- mice was also higher than that of Bcl6+/+ mice. Since the activated form of p38 MAP kinase was detected in spermatocytes of adult Bcl6-/- mice, the germ cell apoptosis may be induced by stressors. Treatment of testes of adult Bcl6+/+ mice with a mild hyperthermia resulted in germ cell apoptosis predominantly in metaphase I spermatocytes with induction of Bax protein and activation of p38 MAP kinase and this apoptosis mimics that in adult Bcl6-/- mice. Thus, Bcl6 may play a role as a stabilizer in protecting spermatocytes from apoptosis induced by stressors.  相似文献   

20.
A mouse model of thiamin-responsive megaloblastic anemia (diabetes mellitus, deafness, megaloblastic anemia) lacking functional Slc19a2 has been generated and unexpectedly found to have a male-specific sterility phenotype. We describe here the characterization of the testis-specific effects of absence of the high-affinity thiamin transporter, Tht1. Null males were found to have hypoplastic testes secondary to germ cell depletion. Morphologic and expression analysis revealed that under conditions of standard thiamin intake, tissues affected in the syndrome (pancreatic beta-cell, hematopoietic cells, auditory nerve) maintained normal function but pachytene stage spermatocytes underwent apoptosis. Under conditions of thiamin challenge, the apoptotic cell loss extended to earlier stages of germ cells but spared Sertoli cells and Leydig cells. Injection of high-dose thiamin was effective in reversing the spermatogenic failure, suggesting that the absence of the thiamin carrier could be overcome by diffusion-mediated transport at supranormal thiamin concentrations. These observations demonstrated that male germ cells, particularly those with high thiamin transporter expression beyond the blood-testis barrier, were more susceptible to apoptosis triggered by intracellular thiamin deficiency than any other tissue type. The findings described here highlight an unexpected and critical role for thiamin transport and metabolism in spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号