共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary After application of various neuronal tracers (horseradish peroxidase, cobalt-chloride lysine, true blue) to the ganglion of the nervus terminalis a small number of neurons was retrogradely labeled in the mesencephalon. As revealed by combined horseradish peroxidase and catecholamine-fluorescence techniques these neurons are located in the isthmic area immediately rostral to, but not within the locus coeruleus. Cobalt-labeled axons of the mesencephalic neurons were traced individually in serial sections. Neurons projecting contralaterally cross in the horizontal commissure. Tracing of single fibers provided no evidence for axon collaterals within this pathway. Retrograde labeling reveals two different types of isthmic neurons afferent to the ganglion of the nervus terminalis: One smaller-sized type is located bilaterally and consists of four to six neurons; another type possessing many dendritic processes was consistently found as only one single cell located contralateral to the side of injection. The existence of two types of neurons was confirmed by their cytological differences: The small-sized type receives only sparse perisomatic input, while the large-sized type shows heavy somatic and dendritic, probably monoaminergic innervation. 相似文献
3.
Dr. Hartwig Wolburg 《Cell and tissue research》1980,210(3):517-520
Summary In the retina of the goldfish and the rainbow trout, the axons of ganglion cells belong to the unmyelinated or the myelinated types. The unmyelinated fibers are either arranged in bundles in direct contact with neighboring fibers or they are separated by intervening lamellae of oligodendroglial cytoplasm. The myelin sheaths of the myelinated fibers differ greatly in thickness. Most fibers show 3 to 5 myelin layers; single fiber elements, however, show 10 or even more layers. 相似文献
4.
Summary The terminal nerve has been described in all vertebrate classes, with the exception of cyclostomes and birds. With regard to this question, we have examined representatives of these two classes using tracer techniques, and found a terminal nerve in larval lampreys and young domestic mallards. Horseradish peroxidase or cobaltous lysine was injected into the olfactory mucosa, which is known to be innervated by peripheral branches of the terminal nerve. The brains were then searched for labeled, centrally directed fibers of the terminal nerve that project further caudally than the glomerular layer of the olfactory bulb. In larval lampreys, centrally projecting fibers of the terminal nerve were found in the tel-, diand mesencephalon. Termination of labeled fibers was observed in the hypothalamus. Some fibers of the terminal nerve cross to the contralateral side via the commissure of the posterior tuberculum. In young ducks, the terminal nerve projects ipsilaterally along the medial edge of the telencephalon. 相似文献
5.
Summary Central projections of the nervus terminalis (n.t.) in the goldfish were investigated using cobalt- and horseradish peroxidase-tracing techniques. Single n.t. fibers were identified after unilateral application of cobalt chloride-lysine to the rostral olfactory bulb. The central course and branching patterns of individual n.t. fibers were studied in serial sections. Eight types of n.t. fibers are differentiated according to pathways and projection patterns. Projection areas of the n.t. include the contralateral olfactory bulb, the ipsilateral periventricular preoptic nucleus, both retinae, the caudal zone of the periventricular hypothalamus bilaterally, and the rostral optic tectum bilaterally. N.t. fibers cross to contralateral targets in the anterior commissure, the optic chiasma, the horizontal commissure, the posterior commissure, and possibly the habenular commissure. We propose criteria that differentiate central n.t. fibers from those of the classical secondary olfactory projections. Branching patterns of eight n.t. fiber types are described. Mesencephalic projections of the n.t. and of secondary olfactory fibers are compared and discussed with regard to prior reports on the olfactory system of teleosts. Further fiber types for which the association with the n.t. could not be established with certainty were traced to the torus longitudinalis, the torus semicircularis, and to the superior reticular nucleus on the ipsilateral side. 相似文献
6.
Summary Central pathways of the nervus terminalis (n.t.) in the bichir, Polypterus palmas, were studied with the use of tracing techniques. After application of horseradish peroxidase to the unilateral olfactory mucosa labeled n.t. fibers were traced in seven distinct bundles through the subpallium. Projection areas are found in the precommissural ventral nucleus of the area ventralis telencephali ipsilaterally, the anterior commissure and commissural parts of the periventricular preoptic nucleus bilaterally; few n.t.-fibers cross via the anterior commissure to the contralateral side; no fibers were observed to turn rostrally to the contralateral olfactory bulb. Major targets of the n.t. include a restricted ventral part of the periventricular preoptic nucleus at the level of the optic chiasma bilaterally, and the periventricular nuclei located between the thalamic nuclei and the hypothalamus bilaterally. N.t. fibers continue their course through the ipsilateral hypothalamus and are traced as far as the mesencephalic tegmentum ipsilaterally. N.t. terminations are found consistently within the boundaries of periventricular cell nuclei, suggesting axosomatic synaptic contacts. We propose a differentiation of the n.t. ganglion cells into a distal (mucosal) and proximal (bulbar) type regarding the peripheral cell processes. Our findings are compared with those of other reports on the n.t. system. 相似文献
7.
Peter Bräunig 《Cell and tissue research》1990,260(1):95-108
Summary The nervus corporis cardiaci III (NCC III) of the locust Locust migratoria was investigated with intracellular and extracellular cobalt staining techniques in order to elucidate the morphology of neurons within the suboesophageal ganglion, which send axons into this nerve. Six neurons have many features in common with the dorsal, unpaired, median (DUM) neurons of thoracic and abdominal ganglia. Three other cells have cell bodies contralateral to their axons (contralateral neuron 1–3; CN 1–3). Two of these neurons (CN2 and CN3) appear to degenerate after imaginal ecdysis. CN3 innervates pharyngeal dilator muscles via its anterior axon in the NCC III, and a neck muscle via an additional posterior axon within the intersegmental nerve between the suboesophageal and prothoracic ganglia. A large cell with a ventral posterior cell body is located close to the sagittal plane of the ganglion (ventral, posterior, median neuron; VPMN). Staining of the NCC III towards the periphery reveals that the branching pattern of this nerve is extremely variable. It innervates the retrocerebral glandular complex, the antennal heart and pharyngeal dilator muscles, and has a connection to the frontal ganglion.Abbreviations
AH
antennal heart
-
AN
antennal nerves
-
AO
aorta
-
AV
antennal vessel
-
CA
corpus allatum
-
CC
corpus cardiacum
-
CN1, CN2, CN3
contralateral neuron 1–3
-
DIT
dorsal intermediate tract
-
DMT
dorsal median tract
-
DUM
dorsal, unpaired, median
-
FC
frontal connective
-
FG
frontal ganglion
-
HG
hypocerebral ganglion
-
LDT
lateral dorsal tract
-
LMN, LSN
labral motor and sensory nerves
-
LN+FC
common root of labral nerves and frontal connective
-
LO
lateral ocellus
-
MDT
median dorsal tract
-
MDVR
ventral root of mandibular nerve
-
MVT
median ventral tract
-
NCA I, II
nervus corporis allati I, II
-
NCC I, II, III
nervus corporis cardiaci I, III
-
NR
nervus recurrens
-
NTD
nervus tegumentarius dorsalis
-
N8
nerve 8 of SOG
-
OE
oesophagus
-
OEN
oesophageal nerve
-
PH
pharynx
-
SOG
suboesophageal ganglion
-
T
tentorium
-
TVN
tritocerebral ventral nerve
-
VLT
ventral lateral tract
-
VIT
ventral intermediate tract
-
VMT
ventral median tract
-
VPMN
ventral, posterior, median neuron
-
1–7
peripheral nerves of the SOG
-
36, 37, 40–45
pharyngeal dilator muscles 相似文献
8.
Celeste R. Wirsig-Wiechmann 《Cell and tissue research》1993,273(1):31-40
The peripheral projections of the nervus terminalis (NT) have been difficult to examine due to the weak immunoreactivity of the processes to various antibodies. We performed two experimental manipulations in the tiger salamander in an attempt to increase the luteinizing hormone-releasing hormone-immunoreactive (LHRH-ir) labelling in the peripheral processes of the NT: 1) the NT was sectioned centrally, or 2) a 100 mg melatonin pellet was embedded subcutaneously for 3 days prior to sacriffice. Following these manipulations, animals were sacrifficed and tissue was processed with standard immunocytochemical techniques for the analysis of the distribution of LHRH-ir processes. In the nasal cavity, LHRH-ir fibers were observed projecting 1) into the rostral olfactory epithelium, 2) to Bowman's glands in the lamina propria of the rostromedial olfactory mucosa and ventrolateral mucosa between the main nasal cavity and Jacobson's organ, 3) into the naris constrictor muscle, and 4) along the palatine nerves and ganglia. These lesion and hormone manipulations have enabled the detection of peripheral projections of the NT not observed previously with immunocytochemical procedures alone. The wide distribution of LHRH-ir NT processes in the nasal cavity and cranium suggests that this nerve may influence many different cranial structures during appropriate pheromonal or neuroendocrine events. 相似文献
9.
Andrea Schmidt Christiane Naujoks-Manteuffel Prof. Dr. Dr. Gerhard Roth 《Cell and tissue research》1988,251(1):45-50
Summary Primary olfactory and vomeronasal projections as well as the pathway of the nervus terminalis were studied in 10 representative species of salamandrid and plethodontid salamanders by means of injections of horseradish peroxidase and examination of whole-mount preparations. Olfactory projections are very similar in the different urodeles, but vomeronasal projections differ in shape and number of termination fields. Whereas the direct-developing Plethodontini and Bolitoglossini reveal only one or two fields, the salamandrid species and the members of the plethodontid tribes Desmognathinae and Hemidactyliini, all possessing an aquatic larval stage, exhibit several vomeronasal projection fields. In all species examined centrifugal axons of the nervus terminalis leave the olfactory projection area ventrocaudally and terminate in the preoptic region and the hypothalamus.Abbreviations
COM. ANT
commissura anterior
-
DGL
displaced glomeruli
-
HY
hypophysis
-
HYTH
hypothalamus
-
LF
lateral fibers of the nervus terminalis
-
ME
medulla oblongata
-
MF
medial fibers of the nervus terminalis
-
Nt
nervus terminalis
-
Npo
nucleus praeopticus 相似文献
10.
11.
Primary olfactory projections and the nervus terminalis in the African lungfish: implications for the phylogeny of cranial nerves 总被引:2,自引:0,他引:2
Primary olfactory and central projections of the nervus terminalis were investigated by injections of horseradish peroxidase into the olfactory epithelium in the African lungfish. In addition, gonadotropin-releasing hormone (GnRH) immunoreactivity of the nervus terminalis system was investigated. The primary olfactory projections are restricted to the olfactory bulb located at the rostral pole of the telencephalon; they do not extend into caudal parts of the telencephalon. A vomeronasal nerve and an accessory olfactory bulb could not be identified. The nervus terminalis courses through the dorsomedial telencephalon. Major targets include the nucleus of the anterior commissure and the nucleus praeopticus pars superior. some fibers cross to the contralateral side. A few fibers reach the diencephalon and mesencephalon. No label is present in the "posterior root of the nervus terminalis" (= "Pinkus's nerve" or "nervus praeopticus"). GnRH immunoreactivity is lacking in the "anterior root of the nervus terminalis," whereas it is abundant in nervus praeopticus (Pinkus's nerve). These findings may suggest that the nervus terminalis system originally consisted of two distinct cranial nerves, which have fused-in evolution-in most vertebrates. Theories of cranial nerve phylogeny are discussed in the light of the assumed "binerval origin" of the nervus terminalis system. 相似文献
12.
Ganglia of the nervus terminalis have been shown to contain luteinizing hormone-releasing hormone (LHRH) immunoreactive cells in several mammalian species. These cells are always accompanied by clusters of cells non-immunoreactive to antiserum to LHRH. Using immunocytochemical procedures, we found choline acetyltransferase (ChAT) and vasoactive intestinal polypeptide (VIP) present in cell bodies and in nerve processes throughout the peripheral, intracranial and central projections of the nervus terminalis. In addition, a dense plexus of substance P (SP) immunoreactive fibers was seen in the nasal mucosa surrounding the nasal glandular acini and blood vessels. A number of SP reactive fibers were traced with the olfactory nerves through the cribriform plate of the ethmoid bone and appeared to enter the brain in the area of the central roots of the nervus terminalis. 相似文献
13.
We re-investigated the occurrence of substance P-like immunoreactivity in the retina of the goldfish Carassius auratus using antisera to substance P and other tachykinins. Most antisera labelled a previously described single class of mono-stratified amacrine cells arborizing in layer 3 of the inner plexiform layer. Preabsorption experiments showed that these amacrine cells contained at least one tachykinin-like peptide. One antiserum (INC 353) to substance P labelled not only these amacrine cells but also fibres in layer 1 of the inner plexiform layer and fibres in the optic nerve. These fibres were identified as retinopetal projections of the nervus terminalis, in part because of colocalized labelling with antisera against gonadotropin-releasing hormone and FMRFamide. Preabsorption experiments showed that the substance P-immunoreactive material in the nervus terminalis was not substance P or any other typical tachykinin. Labelling of the nervus terminalis with INC 353 was blocked by preabsorption with two bovine FMRFamide-like peptides, F8Famide and A18Famide, which contain a substance P(4–7)-like region. Antisera to F8Famide and A18Famide strongly labelled ganglia of the nervus terminalis and retinopetal fibres. We suggest that labelling of the nervus terminalis by antisera to substance P and FMRFamide occurs because of homologies between these antigens and a non-tachykinin, endogenous peptide that is similar to F8Famide and A18Famide. 相似文献
14.
Summary Neurons displaying FMRFamide(Phe-Met-Arg-Phe-NH2)-like immunoreactivity have recently been implicated in neural plasticity in salmon. We now extend these findings by describing the extent of the FMRF-like immunoreactive (FMRF-IR) system in the brain, retina and olfactory system of sockeye salmon parr using the indirect peroxidase anti-peroxidase technique. FMRF-IR perikarya were found in the periventricular hypothalamus, mesencephalic laminar nucleus, nucleus nervi terminalis and retina (presumed amacrine cells), and along the olfactory nerves. FMRF-IR fibers were distributed throughout the brain with highest densities in the ventral area of the telencephalon, in the medial forebrain bundle, and at the borders between layers III/IV and IV/V in the optic tectum. High densities of immunoreactive fibers were also observed in the area around the torus semicircularis, in the medial hypothalamus, median raphe, ventromedial tegmentum, and central gray. In the retina, immunopositive fibers were localized to the inner plexiform layer, but several fiber elements were also found in the outer plexiform layer. The olfactory system displayed FMRF-IR fibers in the epithelium and along the olfactory nerves. These findings differ from those reported in other species as follows: (i) FMRF-IR cells in the retina have not previously been reported in teleosts; (ii) the presence of FMRF-IR fibers in the outer plexiform layer of the retina is a new finding for any species; (iii) the occurrence of immunopositive cells in the mesencephalic laminar nucleus has to our knowledge not been demonstrated previously. 相似文献
15.
16.
17.
18.
19.
Sly DJ McKinley MJ Oldfield BJ 《American journal of physiology. Regulatory, integrative and comparative physiology》2001,281(5):R1637-R1646
This study was undertaken to determine if neurons in the lamina terminalis, previously identified as projecting to the kidney (35), were responsive to alterations in stimuli associated with fluid balance homeostasis. Neurons in the lamina terminalis projecting to the kidney were identified by the retrograde transynaptic transport of Bartha's strain of pseudorabies virus in anesthetized rats. Rats were also exposed to 24-h water deprivation, intravenous hypertonic saline, or intracerebroventricular ANG II. To determine if "kidney-directed" neurons were activated following each stimulus, brain sections that included the lamina terminalis were examined immunohistochemically for viral antigen and Fos protein. With the exception of ANG II in the subfornical organ, all regions of the lamina terminalis contained neurons that were significantly activated by water deprivation, hypertonic saline, and ANG II. These results provide evidence for a neural substrate, which may underpin some of the effects of hypertonic saline and ANG II on renal function thought to be mediated through the lamina terminalis. 相似文献
20.
Pung-Pung Hwang 《Journal of morphology》1988,196(1):15-22
Morphology of branchial chloride cells in the freshwater teleosts Plecoglossus altivelis, Cyprinus carpio, and Oreochromis mossambicus was studied by light and transmission electron microscopy. The chloride cell has an apical membrane directly in contact with the outer medium. Generally, two or more neighboring chloride cells share an apical pit, forming a multicellular complex. The chloride cells form a multicellular complex in which cells differ in cytoplasmic electron density, development of tubular system, and in cell size. Chloride cells are linked by junctions which are shallower than the tight junctions that occur between neighboring pavement cells or between pavement and chloride cells. Multicellular complexes of chloride cells create additional paracellular pathways marked apically by the shallower junctions. Since junctional structure affects transepithelial permeability, development of multicellular complexes of chloride cells in freshwater fishes may be related to the transport of some substances as in the gills of marine fishes. 相似文献