首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A case of local feeding specialization in the European badger (Meles meles), a carnivore species with morphological, physiological and behavioural traits proper to a trophic generalist, is described. For the first time, we report a mammalian species, the European rabbit (Oryctolagus cuniculus), as the preferred prey of badgers. Secondary prey are consumed according to their availability, compensating for temporal fluctuations in the abundance of rabbit kittens. We discuss how both predator (little ability to hunt) and prey (profitability and predictability) features, may favour the observed specialization, as predicted by foraging theory. Badgers show a trend to specialize on different prey in different areas throughout the species range. It is suggested that changes in prey features can reverse the badger feeding strategy at the population level. Such dynamic behavioural responses make difficult to label badgers as generalists or specialists at the species level.  相似文献   

2.
Road mortality of freshwater turtles can be high enough to imperil populations near roads, thus there is a need to efficiently and accurately locate regions of excessive road-kill along road networks for mitigation. Weekly over 2?years, we drove a 160?km highway circuit in northeastern New York State, USA and recorded the location of all detected road-kill of three freshwater turtle species (Chelydra serpentina, Chrysemys picta, Emydoidea blandingii). We then analyzed the spatial dispersion of road-kill and the road and landscape features associated with road-kill locations. Road-kill was most prevalent at a limited number of short road segments, termed ‘hotspots’. The locations of hotspots, as indicated by kernel density analysis, and the peak spatial extent of hotspots (250?m), as indicated by Ripley’s?K, corresponded to the locations and average lengths of causeways (road segments with wetlands within 100?m on both sides). Hotspots were located at causeways that were greater than 200?m length and characterized by high traffic volumes, close proximity to water, and high forest coverage. We conclude that freshwater turtle road mortality is spatially aggregated at short, severe hotspots, and hotspot locations can be predicted when the locations of wetlands, traffic volumes, and the land-uses bordering roads are known. Hotspot models using these predictors can locate sites along a road network that are the most promising for mitigation to reduce excessive road mortality and maintain connectivity.  相似文献   

3.
The behaviour and activities of 6 458 raptors (Accipitridae and Falconidae) and 1 947 Corvidae in the Karoo, South Africa, were recorded during the period January 1988 to June 2000 (n = 208 surveys) over a total distance of 90 012km. A significantly larger proportion of raptors and corvids were recorded foraging in road verges, or flying along roads than foraging or flying over rangelands. About 21% of all observations of crows feeding or foraging were associated with road-kills, whereas less than 2% of observations of feeding and foraging Accipitridae and Falconidae were associated with road-kills. The most frequent Accipitridae feeding on road-kills were Pale Chanting Goshawk (Melierax canorus), Yellow-billed Kite (Milvus migrans parasitus) and Jackal Buzzard (Buteo rufofuscus). There was no seasonal pattern in the number of crows feeding on roadkills, although there was a trend for more mammals to be killed on the roads, and thus more available food, in winter (June). It is likely that Accipitridae and Falconidae are attracted to roads by the availability of perches and the relatively productive road verges rather than the availability of road-killed animals, whereas crows may be attracted by road-kills as well.  相似文献   

4.
Roads have many effects on the mammal populations of their surroundings. Prey species are thought to establish dense populations in road verges due to a predation release effect, which arise as a side-effect of roadside avoidance by predators and/or predator roadkill. A species that has been suggested to benefit from predation release and attain high densities near roads is the European rabbit, a keystone species in Mediterranean ecosystems. We monitored rabbit relative abundance at three distances from a motorway (50, 450 and 850 m) during a 6 month period, as well as hunting and predator pressures, in a suitable area for rabbits. The lowest rabbit abundance was found next to the motorway (6.76 ± 8.87 pellets/m2 per month) and the highest abundance at an intermediate distance (17.65 ± 23.11 pellets/m2 per month). Hunting and carnivore pressures were highest at the sampling transect located farthest from the infrastructure. Thus, variability in rabbit abundance did not match the predation release effect found close to the motorway, and some sort of road avoidance or other process must underlie the observed abundance pattern. We advocate for a formal measurement of prey populations response to roads prior to any generalization as, in the case of rabbit, the response to roads and the potential cascading effects on other species may depend on landscape characteristics.  相似文献   

5.
European rabbits (Oryctolagus cuniculus), a keystone species in the Iberian Mediterranean ecosystem, are the staple prey of the Iberian lynx (Lynx pardinus) and the Spanish imperial eagle (Aquila adalberti). These predators require medium to high rabbit densities and a low degree of human disturbance. We compared rabbit abundances in areas of central-southern Spain under three levels of protection and management: protected areas, intensively managed (nonprotected) hunting estates, and other nonprotected areas. We used pellet abundance indices to estimate rabbit density in 118 surveys conducted during the summers of 2002 and 2003. We observed greater rabbit abundance in intensively managed hunting estates compared to protected areas and other nonprotected areas, perhaps because policy makers did not consider rabbit numbers when selecting priority areas. Alternatively, differences in game management practices (e.g., predator control or habitat management) may explain the higher rabbit densities observed in managed hunting estates. Our results suggest that the best feeding conditions for the Iberian lynx and the Spanish imperial eagle occur in intensively managed hunting areas, where such predators are frequently persecuted. The conservation of these endangered predators may require efforts to increase rabbit densities in protected areas.  相似文献   

6.
Roads generate a variety of influences on wildlife populations; however, little is known about the effects of roads on endemic wildlife on islands. Specifically, road-kills of island foxes (Urocyon littoralis) on San Clemente Island (SCI), Channel Islands, California, USA are a concern for resource managers. To determine the effects of roads on island foxes, we radiocollared foxes using a 3-tiered sampling design to represent the entire population in the study area, a sub-population near roads, and a sub-population away from roads on SCI. We examined annual survival rates using nest-survival models, causes of mortalities, and movements for each sample. We found the population had high annual survival (0.90), although survival declined with use of road habitat, particularly for intermediate-aged foxes. Foxes living near roads suffered lower annual survival (0.76), resulting from high frequencies of road-kills (7 of 11 mortalities). Foxes living away from roads had the highest annual survival (0.97). Road-kill was the most prominent cause of mortality detected on SCI, which we estimated as killing 3–8% of the population in the study area annually. Based on movements, we were unable to detect any responses by foxes that minimized their risks from roads. The probabilities of road-kills increased with use of the road habitat, volume of traffic, and decreasing road sinuosity. We recommend that managers should attempt to reduce road-kills by deterring or excluding foxes from entering roads, and attempting to modify behaviors of motorists to be vigilant for foxes. © 2011 The Wildlife Society.  相似文献   

7.
Human disturbance is widespread across landscapes in the form of roads that alter wildlife populations. Knowing which road features are responsible for the species response and their relevance in comparison with environmental variables will provide useful information for effective conservation measures. We sampled relative abundance of European rabbits, a very widespread species, in motorway verges at regional scale, in an area with large variability in environmental and infrastructure conditions. Environmental variables included vegetation structure, plant productivity, distance to water sources, and altitude. Infrastructure characteristics were the type of vegetation in verges, verge width, traffic volume, and the presence of embankments. We performed a variance partitioning analysis to determine the relative importance of two sets of variables on rabbit abundance. Additionally, we identified the most important variables and their effects model averaging after model selection by AICc on hypothesis‐based models. As a group, infrastructure features explained four times more variability in rabbit abundance than environmental variables, being the effects of the former critical in motorway stretches located in altered landscapes with no available habitat for rabbits, such as agricultural fields. Model selection and Akaike weights showed that verge width and traffic volume are the most important variables explaining rabbit abundance index, with positive and negative effects, respectively. In the light of these results, the response of species to the infrastructure can be modulated through the modification of motorway features, being some of them manageable in the design phase. The identification of such features leads to suggestions for improvement through low‐cost corrective measures and conservation plans. As a general indication, keeping motorway verges less than 10 m wide will prevent high densities of rabbits and avoid the unwanted effects that rabbit populations can generate in some areas.  相似文献   

8.
Reptiles are an understudied group in road ecology, despite evidence of their high vulnerability to road mortality. Recently, trait-based models have been demonstrated to be valuable tools for explaining and predicting road mortality risks for birds and mammals. The present study aimed to apply such models to reptiles for the first time. We fitted eight random forest regression models, controlling for different survey design variables, to explain 782 empirical road-kill rates for Brazilian reptiles and selected the best-performing model to predict road mortality risks for 572 continental species. The results showed that species that are habitat generalists, omnivorous, viviparous, cathemeral, and have intermediate clutch or litter sizes are at a higher risk of being road-killed. The relationships for other traits included in our models were uncertain, but our findings suggest that population density and species-specific behavioural responses to roads and traffic may play an important role in road mortality risks. Geographical location and survey design variables (especially sampling speed and sampling time) were more important in explaining the variance of the empirical road-kill rates than any of the tested ecological and functional traits. Besides adding evidence of the vulnerability of the Amazon region to vertebrate road-kills, this study highlights some similarities between the relationships identified here and those found for birds and mammals (such as with body mass and habitat breadth). We also corroborate that trait-based models are useful tools to aid in conservation efforts but indicate that they can be biased by the methodologies used to collect empirical data. Future road-kill surveys should therefore use methods specifically designed for reptiles and estimate both observer efficiency and carcass removal rates.  相似文献   

9.
Santos SM  Carvalho F  Mira A 《PloS one》2011,6(9):e25383

Background

Road mortality is probably the best-known and visible impact of roads upon wildlife. Although several factors influence road-kill counts, carcass persistence time is considered the most important determinant underlying underestimates of road mortality. The present study aims to describe and model carcass persistence variability on the road for different taxonomic groups under different environmental conditions throughout the year; and also to assess the effect of sampling frequency on the relative variation in road-kill estimates registered within a survey.

Methodology/Principal Findings

Daily surveys of road-killed vertebrates were conducted over one year along four road sections with different traffic volumes. Survival analysis was then used to i) describe carcass persistence timings for overall and for specific animal groups; ii) assess optimal sampling designs according to research objectives; and iii) model the influence of road, animal and weather factors on carcass persistence probabilities. Most animal carcasses persisted on the road for the first day only, with some groups disappearing at very high rates. The advisable periodicity of road monitoring that minimizes bias in road mortality estimates is daily monitoring for bats (in the morning) and lizards (in the afternoon), daily monitoring for toads, small birds, small mammals, snakes, salamanders, and lagomorphs; 1 day-interval (alternate days) for large birds, birds of prey, hedgehogs, and freshwater turtles; and 2 day-interval for carnivores. Multiple factors influenced the persistence probabilities of vertebrate carcasses on the road. Overall, the persistence was much lower for small animals, on roads with lower traffic volumes, for carcasses located on road lanes, and during humid conditions and high temperatures during the wet season and dry seasons, respectively.

Conclusion/Significance

The guidance given here on monitoring frequencies is particularly relevant to provide conservation and transportation agencies with accurate numbers of road-kills, realistic mitigation measures, and detailed designs for road monitoring programs.  相似文献   

10.
The foraging efficiency of juvenile perch (Perca fluviatilis), feeding on two types of prey, was studied in laboratory experiments. Waterfleas (Daphnia magna) and phantom midge larvae (Chaoborus flavicans) were offered in a range of densities, either separately or combined. Perch fed more efficiently on each prey type separately than when both were mixed. Foraging efficiency decreased with an increase of mixed prey density with both prey types present in equal numbers, but also when the proportion of Chaoborus increased. This could be caused by the existence of different hunting techniques, each of which is fully efficient in the presence of one prey type only. In the presence of two prey types, the predator constantly has to switch from one hunting technique to another.  相似文献   

11.
12.
Differences in habitat use by prey and predator may lead to a shift of occupied niches and affect dynamics of their populations. The weasel Mustela nivalis specializes in hunting rodents, therefore habitat preferences of this predator may have important consequences for the population dynamics of its prey. We investigated habitat selection by weasels in the Bia?owie?a Forest in different seasons at the landscape and local scales, and evaluated possible consequences for the population dynamics of their prey. At the landscape scale, weasels preferred open habitats (both dry and wet) and avoided forest. In open areas they selected habitats with higher prey abundance, except during the low-density phase of the vole cycle, when the distribution of these predators was more uniform. Also in winter, the distribution of weasels at the landscape scale was proportional to available resources. In summer, within open dry and wet habitats, weasels preferred areas characterised by dense vegetation, but avoided poor plant cover. In winter, weasels used wet open areas proportionally to availability of habitats when hunting, but in contrast to summer, they rested only in habitats characterized by a lower water level, which offered better thermal conditions. At the local scale, the abundance of voles was a less important factor affecting the distribution of these predators. Although we were not able to provide direct evidence for the existence of refuges for voles, our results show that they may be located within habitat patches, where availability of dense plant cover and physiological constraints limit the activity of weasels. Our results indicate that in complex ecosystems of the temperate zone, characterized by a mosaic pattern of vegetation types and habitat specific dynamics of rodents, impact of weasels on prey populations might be limited.  相似文献   

13.
Spatial variation in habitat riskiness has a major influence on the predator–prey space race. However, the outcome of this race can be modulated if prey shares enemies with fellow prey (i.e., another prey species). Sharing of natural enemies may result in apparent competition, and its implications for prey space use remain poorly studied. Our objective was to test how prey species spend time among habitats that differ in riskiness, and how shared predation modulates the space use by prey species. We studied a one‐predator, two‐prey system in a coastal dune landscape in the Netherlands with the European hare (Lepus europaeus) and European rabbit (Oryctolagus cuniculus) as sympatric prey species and red fox (Vulpes vulpes) as their main predator. The fine‐scale space use by each species was quantified using camera traps. We quantified residence time as an index of space use. Hares and rabbits spent time differently among habitats that differ in riskiness. Space use by predators and habitat riskiness affected space use by hares more strongly than space use by rabbits. Residence time of hare was shorter in habitats in which the predator was efficient in searching or capturing prey species. However, hares spent more time in edge habitat when foxes were present, even though foxes are considered ambush predators. Shared predation affected the predator–prey space race for hares positively, and more strongly than the predator–prey space race for rabbits, which were not affected. Shared predation reversed the predator–prey space race between foxes and hares, whereas shared predation possibly also released a negative association and promoted a positive association between our two sympatric prey species. Habitat riskiness, species presence, and prey species’ escape mode and foraging mode (i.e., central‐place vs. noncentral‐place forager) affected the prey space race under shared predation.  相似文献   

14.
In choice test experiments on strawberry leaf disc arenas the phytoseiid mites Neoseiulus californicus and N. cucumeris were more effective than Typhlodromus pyri as predators of the phytophagous mites Tetranychus urticae and Phytonemus pallidus. There were no preferences shown for either prey by any of these predators. In multiple predator leaf disc experiments both Phytoseiulus persimilis and N. cucumeris significantly reduced numbers of T. urticae eggs and active stages; this effect was seen when the two species were present alone or in combination with other predator species. Neoseiulus californicus was less effective at reducing T. urticae numbers, and T. pyri was not effective; no interaction between predator species was detected in these experiments. When T. urticae alone was present as prey on potted plants, P. persimilis and N. californicus were the only phytoseiids to significantly reduce T. urticae numbers. These two predator species provided effective control of T. urticae when P. pallidus was also present; however, none of the predators reduced numbers of P. pallidus. There were no significant negative interactions when different species of predators were present together on these potted plants. In field experiments, releases of both P. persimilis and N. cucumeris significantly reduced T. urticae numbers. However, there was a significant interaction between these predator species, leading to poorer control of T. urticae when both species were released together. These results show the importance of conducting predator/prey feeding tests at different spatial scales.  相似文献   

15.
Kruse  Inken  Buhs  Frank 《Hydrobiologia》2000,426(1):43-55
In the European Wadden Sea, the nemertine Tetrastemma melanocephalumoccurs together with its prey, the amphipod Corophium arenarium, in the upper intertidal zone. T. melanocephalumleaves the sediment when the tide has receded and captures C. arenarium in its U-shaped burrow. Highest abundances of T. melanocephalumon the sediment surface were found on summer evenings, 2–4 h after high tide, when just a thin film of water was left on the flats. Laboratory Y-maze experiments indicated that gradients of substances produced by C. arenarium in this film of water play a role in tracking the prey. In the field, T. melanocephalum appeared in significantly higher numbers on experimental high density patches of C. arenarium. The amphipod in turn is able to recognize the nemertine. In aquarium experiments, significantly more amphipods escaped from the sediment into the water column when the predator was present. In the field, both predator and prey showed a high mobility by drifting in tidal waters. Benthic abundance maxima of T. melanocephalum and C. arenariumusually did not coincide spatially. It is assumed that the nemertines avoid tidal flats that dry out quickly leaving too little time for prey capture. T. melanocephalum is not able to dig into the sediment, but lives in burrows of Nereis diversicolor. The abundance of this polychaete was inversely related to C. arenarium, presenting a dilemma for T. melanocephalum: the spatial overlap of food and accommodation was rather small.  相似文献   

16.
Clerid beetles are common natural enemies of bark beetles, and could potentially be used as biological control agents if they could be reared in sufficient numbers. We developed an artificial diet devoid of insect components for rearing Thanasimus dubius (Fabricius), a clerid that attacks several economically important bark beetles in eastern North America. We reared larvae of this predator using the artificial diet, and then used either natural or factitious prey to feed the adults so produced. Two different methods of presenting the diet were also examined. We then compared the performance of T. dubius reared on the artificial diet with newly-emerged wild individuals collected from the field. Our results suggest that adult predators reared on the diet are near in quality to wild ones, and high R0 values can be obtained. No difference in prey preference was found between wild and diet-reared individuals after five generations in the laboratory. Sufficient numbers of predators could be generated using these techniques to permit limited field trials of augmentative biological control.  相似文献   

17.
In recent decades in the UK, there has been an increasing trend in numbers of the European wild rabbit, a significant agricultural pest typically associated with grassland habitats. However, the relationship between rabbit abundance and grassland management, in particular grazing, has not been sufficiently explained. We studied rabbit densities in seven pasture-dominated sites in north-east England between autumn and spring in two consecutive years, and used generalised linear mixed models and generalised additive models to explore relationships between habitat and management variables and rabbit abundance at local (field) and landscape scales. At the local scale high rabbit densities were significantly associated with small fields and the very short, homogeneous swards created by intensive sheep grazing during autumn and winter. At the landscape scale, high rabbit numbers were associated with sites with most field margins and a predator removal policy. Our results indicate that landscape management may play a central role in explaining rabbit abundance and distribution in grasslands. We suggest that current pasture management may create favourable conditions for high rabbit densities, and consequently boost numbers of this significant pest species.  相似文献   

18.
We applied time series analysis and a mechanistic predator-prey model to long-term data of monthly population counts of the herbivorous pest mite Mononychellus tanajoa and its introduced phytoseiid predator Typhlodromalus aripo from a cassava field in Benin, West Africa. In this approach, we determined the extent to which the main features of the observed predator-prey fluctuations in cassava fields can be explained from biotic traits inherent to the biology of predator and prey, and the extent of the significance of abiotic factors in determining population levels. The time series analyses with cross-correlation showed that the period of predator-prey fluctuations coincided with the annual pattern of intense rainfall and onset of dry season. A pronounced M. tanajoa peak followed after a short lag (2 weeks) by a T. aripo peak coincided with a trough in rainfall intensity. Both the prey and predator had local and lower peaks that coincided with high rainfall intensity, but with a considerably longer lag (ca. 3 months) compared with the high peaks occurring at the onset of the dry season. Regression of log-transformed data series (over a 7-year period) showed that—except for the first year after predator release—M. tanajoa fluctuated around an almost time-invariant mean population density, while T. aripo densities showed a consistent decline over the full observation period. To explain observed trends and periodic components in the data-series of predator and prey densities, we review hypotheses that are based on (1) the annual patterns and trends in abiotic factors, (2) mechanisms endogenous to the predator-prey system and (3) a combination of exogenous and endogenous factors.  相似文献   

19.
A central issue in predator–prey interactions is how predator associated chemical cues affect the behaviour and life history of prey. In this study, we investigated how growth and behaviour during ontogeny of a damselfly larva (Coenagrion hastulatum) in high and low food environments was affected by the diet of a predator (Aeshna juncea). We reared larvae in three different predator treatments; no predator, predator feeding on conspecifics and predator feeding on heterospecifics. We found that, independent of food availability, larvae displayed the strongest anti-predator behaviours where predators consumed prey conspecifics. Interestingly, the effect of predator diet on prey activity was only present early in ontogeny, whereas late in ontogeny no difference in prey activity between treatments could be found. In contrast, the significant effect of predator diet on prey spatial distribution was unaffected by time. Larval size was affected by both food availability and predator diet. Larvae reared in the high food treatment grew larger than larvae in the low food treatment. Mean larval size was smallest in the treatment where predators consumed prey conspecifics, intermediate where predators consumed heterospecifics and largest in the treatment without predators. The difference in mean larval size between treatments is probably an effect of reduced larval feeding, due to behavioural responses to chemical cues associated with predator diet. Our study suggests that anti-predator responses can be specific for certain stages in ontogeny. This finding shows the importance of considering where in its ontogeny a study organism is before results are interpreted and generalisations are made. Furthermore, this finding accentuates the importance of long-term studies and may have implications for how results generated by short-term studies can be used.  相似文献   

20.
Subterranean termites provide a major potential food source for forest-dwelling ants, yet the interactions between ants and termites are seldom investigated largely due to the cryptic nature of both the predator and the prey. We used protein marking (rabbit immunoglobin protein, IgG) and double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) to examine the trophic interactions between the woodland ant, Aphaenogaster rudis (Emery) and the eastern subterranean termite, Reticulitermes flavipes (Kollar). We marked the prey by feeding the termites paper treated with a solution of rabbit immunoglobin protein (IgG). Subsequently, we offered live, IgG-fed termites to ant colonies and monitored the intracolony distribution of IgG-marked prey. Laboratory experiments on the distribution of protein-marked termite prey in colonies of A. rudis revealed that all castes and developmental stages receive termite prey within 24 h. In field experiments, live, protein-marked termites were offered to foraging ants. Following predation, the marker was recovered from the ants, demonstrating that A. rudis preys on R. flavipes under field conditions. Our results provide a unique picture of the trophic-level interactions between predatory ants and subterranean termites. Furthermore, we show that protein markers are highly suitable to track trophic interactions between predators and prey, especially when observing elusive animals with cryptic food-web ecology. Received 19 January 2007; revised 23 March 2007; accepted 26 March 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号