共查询到20条相似文献,搜索用时 15 毫秒
1.
The chlorophyll a/b-binding protein inserts into the thylakoids independent of its cognate transit peptide 总被引:11,自引:0,他引:11
G K Lamppa 《The Journal of biological chemistry》1988,263(29):14996-14999
In order to determine if the cognate transit peptide of the light-harvesting chlorophyll a/b-binding protein (LHCP) is essential for LHCP import into the chloroplast and proper localization to the thylakoids, it was replaced with the transit peptide of the small subunit (S) of ribulose-1,5-bisphosphate carboxylase/oxygenase, a stromal protein. Wheat LHCP and S genes were fused to make a chimeric gene coding for the hybrid precursor, which was synthesized in vitro and incubated with purified pea chloroplasts. My results show that LHCP is translocated into chloroplasts by the S transit peptide. The hybrid precursor was processed; and most importantly, mature LHCP did not remain in the stroma, but was inserted into thylakoid membranes, where it normally functions. Density gradient centrifugation showed no LHCP in the envelope fraction. Hence, the transit peptide of LHCP is not required for intraorganellar routing, and LHCP itself contains an internal signal for localization to the correct membrane compartment. 相似文献
2.
Structure and expression of three light-harvesting chlorophyll a/b-binding protein genes in Arabidopsis thaliana. 总被引:36,自引:4,他引:36 下载免费PDF全文
The genome of Arabidopsis thaliana is exceedingly small, in part because it lacks the large middle repetitive DNA component characteristic of other plants. In this paper we have characterized a member of the low copy DNA component: the gene family for the light-harvesting chlorophyll a/b-protein. This gene family is unusual in that it contains far fewer members than the 7-16 coding sequences for this protein found in other plants. We used cross-hybridization with a Lemna gene encoding a light-harvesting chlorophyll a/b-protein to isolate 3 genes from Arabidopsis, all of which are clustered on an 11-kb genomic clone. Southern blot analysis suggests that there is a fourth related gene in Arabidopsis. Sequence analysis of the three genes demonstrates that within the translated region the nucleic acid sequence homology is 96%, the deduced amino acid sequence of the mature proteins is identical for the three genes, and two of the genes have a high degree of sequence homology in both their 5' and 3' immediate flanking regions. The genes have regulatory sequences typical of eukaryotic genes upstream of the translation start sites. However, not all of these genes are equally expressed in plants grown under normal light-dark conditions. 相似文献
3.
The N-terminal domain of the light-harvesting chlorophyll a/b-binding protein complex (LHCII) is essential for its acclimative proteolysis 总被引:1,自引:0,他引:1
Variations in the amount of the light-harvesting chlorophyll a/b-binding protein complex (LHCII) is essential for regulation of the uptake of light into photosystem II. An endogenous proteolytic system was found to be involved in the degradation of LHCII in response to elevated light intensities and the proteolysis was shown to be under tight regulation [Yang, D.-H. et al. (1998) Plant Physiol. 118, 827-834]. In this study, the substrate specificity and recognition site towards the protease were examined using reconstituted wild-type and mutant recombinant LHCII. The results show that the LHCII apoprotein and the monomeric form of the holoprotein are targeted for proteolysis while the trimeric form is not. The N-terminal domain of LHCII was found to be essential for recognition by the regulatory protease and the involvement of the N-end rule pathway is discussed. 相似文献
4.
5.
Monoclonal antibodies have been raised against the light-harvesting chlorophyll a/b-binding proteins of photosystem I (LHCI) using a photosystem (PS) I preparation (PSI-200) wild-type from barley (Hordeum vulgare L. cv. Svaløf's Bonus) as the antigen. These antibodies cross-reacted with a minor light-harvesting chlorophyll a/b-protein of PSII (Chla/b-P1=CP29), but not with the major one, LHCII (=Chla/b-P2**). Similarly, a monoclonal antibody to Chla/b-P1, elicited by a PSII preparation as the antigen, cross-reacted with LHCI, but not LHCII. This explains why an antigen consisting of LHCII, free of LHCI, but contaminated with Chla/b-P1, can elicit antibodies which cross-react with LHCI. Immunoblot assays showed that LHCI and Chla/b-P1 have at least two epitopes in common. Immunogold labelling of thin-sectioned wild-type thylakoids confirmed a preferential localisation of Chla/b-P1 in grana partition membranes and LHCI in stroma lamellae. The presence of LHCI was demonstrated in barley mutants lacking the PSI reaction centre (viridis-zb
63) and chlorophyll b (chlorina-f2), and was correlated with the presence of long-wavelength (730 nm) fluorescence emission at 77 K. The mutant viridis-k
23, which has a 77 K long-wavelength fluorescence peak at 720 nm, was shown by immune-blot assay to lack LHCI, although Chla/b-P1 was present.Abbreviations Chl-P
chlorophyll-protein
- CM
Carlsberg Monoclonal
- Da
dalton
- LHC
light-harvesting complex
- PAGE
polyacrylamide gel electrophoresis
- PSI, II
photosystem I, II
- PSI-200
PSI containing LHCI polypeptides
- SDS
sodium dodecyl sulphate 相似文献
6.
A gene for a light-harvesting chlorophyll (Chl) a/b-binding protein (LHCP) from pea (Pisum sativum L.) has been cloned in a bacterial expression vector. Bacteria (Escherichia coli) transformed with this construct produced up to 20% of their protein as pLHCP, a derivative of the authentic precursor protein
coded for by the pea gene with three amino-terminal amino acids added and-or exchanged, or as a truncated LHCP carrying a
short amino-terminal deletion into the mature protein sequence. Following the procedure of Plumley and Schmidt (1987, Proc.
Natl. Acad. Sci. USA84, 146–150), all bacteria-produced LHCP derivatives can be reconstituted with acetone extracts from pea thylakoids or with
isolated pigments to yield pigment-protein complexes that are stable during partially denaturing polyacrylamide-gel electrophoresis.
The spectroscopic properties of these complexes closely resemble those of the light-harvesting complex associated with photosystem
II (LHCII) isolated from pea thylakoids. The pigment requirement for the reconstitution is highly specific for the pigments
found in native LHCII: Chl a and b as well as at least two out of three xanthophylls are necessary. Varying the Chl a:Chl
b ratios in the reconstitution mixtures changes the yields of complex formed but not the Chl a:Chl b ratio in the complex.
We conclude that LHCP-pigment assembly in vitro is highly specific and that the complexes formed are structurally similar
to LHCII. The N-terminal region of the protein can be varied without affecting complex formation and therefore does not seem
to be involved in pigment binding.
Dedicated to Professor Hans Mohr on the occasion of his 60th birthday 相似文献
7.
8.
Zavaleta-Mancera H; Franklin K; Ougham H; Thomas H; Scott I 《Journal of experimental botany》1999,50(340):1677-1682
Decapitation of Nicotiana rustica L. plants above a
single senescent leaf induced regreening, which was promoted by cytokinin
treatment. Regreening required low light. The decline in leaf protein
content and increase in protease activity seen during senescence were
reversed on regreening. Western blotting showed that light-harvesting
chlorophyll a/b-binding protein declined considerably
during senescence, but on regreening it increased back to the levels seen
in green leaves. NADPH-protochlorophyllide oxidoreductase (POR) was found
by Western blotting at high levels in etiolated cotyledons, but at low
levels in green leaves and not at all in senescent leaves. However, POR
reappeared in regreening leaves, and cytokinin accelerated its
increase. 相似文献
9.
《BBA》1987,893(2):333-341
The level of phosphorylation of the 24 kDa and the 25 kDa light-harvesting chlorophyll a/b binding protein complex (LHC) II polypeptides in isolated spinach thylakoids has been determined by quantitative SDS-polyacrylamide gel electrophoresis. The time-course of phosphorylation, after correction for the molar abundance of these two polypeptides, shows that (a) the rate of phosphorylation of the 24 kDa polypeptide is at least 3-fold faster compared with the 25 kDa polypeptide, (b) the final extent of phosphorylation for both the polypeptides is very similar, and (c) the final extent of phosphorylation is typically between 0.15 and 0.25 mol phosphate per mol polypeptide. The low extent of phosphorylation is not simply a consequence of inactivation of the kinase and / or LHC II substrate or ATP depletion. These observations suggest that there are at least three different sub-populations of LHC II in isolated thylakoids: (i) phosphorylated ‘mobile’, (ii) phosphorylated ‘PS II-coupled’ and (iii) non-phosphorylated. Furthermore, the reported differences in the specific activity of phosphorylation for the ‘mobile’ and the ‘PS II-coupled’ LHC II sub-populations (Kyle, D.J. et al. (1984) Biochim. Biophys. Acta 765, 89–96) are no longer observed following correction for the non-phosphorylated LHC-II population. 相似文献
10.
Light-dependent chloroplast development and expression of a light-harvesting chlorophyll a/b-binding protein gene in the gymnosperm Ginkgo biloba. 总被引:3,自引:2,他引:3 下载免费PDF全文
Unlike conifers, the gymnosperm Ginkgo biloba is dependent on light for chlorophyll (Chl) synthesis and initiation of chloroplast development. Dark-grown seedlings show complete etiolation, including no detectable Chl accumulation, no leaf expansion, and increased hypocotyl elongation. When dark-grown seedlings are placed in white light, Chl synthesis and leaf expansion are initiated, but unlike angiosperms, which initiate rapid photomorphogenesis, Ginkgo takes at least 1 week to change to a normal light-regulated pattern of growth. A cDNA clone (pLhcb*Gb1) encoding a Chl a/b-binding protein of light-harvesting complex II from Ginkgo mRNA has been used as a probe for the expression of this family of mRNAs. We have found that, in common with angiosperms but in marked contrast to pines, Lhcb mRNA is expressed in a highly light-dependent manner. In addition to being expressed in light-grown leaves, this sequence is also expressed in the green tissues of immature seeds. The Lhcb mRNA appears during greening in parallel with the onset of Chl synthesis. The complete sequence of pLhcb*Gb1 has been determined and the deduced amino acid sequence was found to be of type I based on comparison with signature sequences of angiosperm and gymnosperm sequences. 相似文献
11.
Jakob Brandt Vibeke Skovgaard Nielsen Hans Thordal-Christensen David John Simpson Jens Sigurd Okkers 《Plant molecular biology》1992,19(4):699-703
The nucleotide sequence of a leaf cDNA clone encoding a Type III chlorophyll a/b-binding (CAB) protein of light-harvesting complex II (LHCII) in barley is reported. Sequence comparisons and results from in vitro import into chloroplasts demonstrate that the cDNA clone encodes a functional transit peptide of 45 amino acid residues and a mature polypeptide of 223 residues with a predicted molecular mass of 24.3 kDa. After insertion into thylakoids, the mature protein is resistant to protease attack. Hybridization analysis using a gene-specific probe shows that the gene is expressed in dark-grown seedlings and that the amount of mRNA increases during illumination. 相似文献
12.
13.
Light-harvesting chlorophyll-a/b-binding protein (LHCP), overexpressed in Escherichia coli, can be reconstituted with pigments to yield complexes that are structurally very similar to light-harvesting complex II (LHCII) isolated from thylakoids [Paulsen, H., Rümler, U. & Rüdiger, W. (1990) Planta 181, 204-211]. In order to analyze which domains of the protein are involved in pigment binding, we reconstituted deletion mutants of LHCP with pigments and characterized the resulting complexes regarding their pigment composition and spectroscopic properties. Series of progressive deletions from either end of the protein revealed that most of the N-terminal and part of the C-terminal hydrophilic regions of LHCP are dispensible for pigment binding. In either deletion series, the deletions that completely abolished reconstitution could be narrowed down to segments of five amino acids that do not contain histidine, asparagine, or glutamine. All mutants either formed complexes with both pigment composition and spectroscopic properties very similar to those of light-harvesting complex II isolated from thylakoids, or they did not form any stable complexes at all. There is no indication of a segment of LHCP binding a subset of LHCII pigments. We conclude that the stabilization of LHCP-pigment complexes is highly synergetic rather than based on individual pigment-binding sites provided by the protein. 相似文献
14.
Summary Irradiation of the principal photosystem II light-harvesting chlorophyll-protein antenna complex, LHC II, with high light intensities brings about a pronounced quenching of the chlorophyll fluorescence. Illumination of isolated thylakoids with high light intensities generates the formation of quenching centres within LHC II in vivo, as demonstrated by fluorescence excitation spectroscopy. In the isolated complex it is demonstrated that the light-induced fluorescence quenching: a) shows a partial, biphasic reversibility in the dark; b) is approximately proportional to the light intensity; c) is almost independent of temperature in the range 0–30°C; d) is substantially insensitive to protein modifying reagents and treatments; e) occurs in the absence of oxygen. A possible physiological importance of the phenomenon is discussed in terms of a mechanism capable of dissipating excess excitation energy within the photosystem II antenna.Abbreviations chla
chlorophyll a
- chlb
chlorophyll b
- F0
fluorescence yield with reaction centers open
- Fm
fluorescence yield with reaction centres closed
- Fi
fluorescence at the plateau level of the fast induction phase
- LHC II
light-harvesting chlorophyll a/b protein complex II
- PS II
photosystem II
- PSI
photosystem I
- Tricine
N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine 相似文献
15.
The major light-harvesting chlorophyll a/b-binding protein (Lhcb1,2) of photosystem II is inserted into the thylakoid via the signal recognition particle dependent pathway. However, the mechanism by which the protein enters the membrane is at this time unknown. In order to define some topographical restrictions for this process, we constructed several recombinant derivatives of Lhcb1 carrying hexahistidine tags at either protein terminus or in the stromal loop domain. Additionally, green fluorescent protein (GFP) was fused to either terminus. None of the modifications significantly impair the pigment-binding properties of the protein in the in vitro reconstitution of LHCII. With the exception of the C-terminal GFP fusion, all mutants stably insert into isolated thylakoids in the absence of Ni2+ ions. The addition of low concentrations of Ni2+ ions abolishes the thylakoid insertion of C-terminally His-tagged mutants whereas the other His-tagged proteins fail to insert only at higher Ni2+ concentrations. The C-terminus of Lhcb1 must cross the membrane during protein insertion whereas the other sites of Lhcb1 modification are positioned on the stromal side of LHCII. We conclude that a Ni2+-complexed His tag and fusion to GFP inhibit translocation of the protein C-terminus across the thylakoid. Our observations indicate that the N-terminal and stromal domain of Lhcb1 need not traverse the thylakoid during protein insertion and are consistent with a loop mechanism in which only the C-terminus and the lumenal loop of Lhcb1 are translocated across the thylakoid. 相似文献
16.
Assembly of the precursor and processed light-harvesting chlorophyll a/b protein of Lemna into the light-harvesting complex II of barley etiochloroplasts 总被引:14,自引:2,他引:14 下载免费PDF全文
P R Chitnis E Harel B D Kohorn E M Tobin J P Thornber 《The Journal of cell biology》1986,102(3):982-988
When the in vitro synthesized precursor of a light-harvesting chlorophyll a/b binding protein (LHCP) from Lemna gibba is imported into barley etiochloroplasts, it is processed to a single form. Both the processed form and the precursor are found in the thylakoid membranes, assembled into the light-harvesting complex of photosystem II. Neither form can be detected in the stromal fraction. The relative amounts of precursor and processed forms observed in the thylakoids are dependent on the developmental stage of the plastids used for uptake. The precursor as well as the processed form can also be detected in thylakoids of greening maize plastids used in similar uptake experiments. This detection of a precursor in the thylakoids, which has not been previously reported, could be a result of using rapidly developing plastids and/or using an heterologous system. Our results demonstrate that the extent of processing of LHCP precursor is not a prerequisite for its inclusion in the complex. They are also consistent with the possibility that the processing step can occur after insertion of the protein into the thylakoid membrane. 相似文献
17.
The amino acid sequences of more than 40 apoproteins of the light-harvesting complex associated with Photosystem II (LHC II) of various plants have been deduced by sequencing their corresponding genes. These highly conserved sequences fall into two major categories, type 1 and type 2, that differ mainly in a small number of domains close to the N-terminus. We have made polyclonal, monospecific antibodies against synthetic peptides corresponding to the most unique sequence domains of the N-terminal regions of type 1 and type 2 LHC II apoproteins, using sequences derived from petunia genes. On Western blots our anti-type 1 and 2 antibodies crossreact with light-harvesting proteins of petunia, tomato, spinach and several other plants. By using a new gel-system based on ammediol (2-amino-2-methyl-1,3-propanediol), we are able to resolve up to eight LHC II apoproteins. On petunia, tomato and spinach blots the anti type 1 antibodies bind to two or more of the higher molecular weight LHC II polypeptides, whereas the anti type 2 antibodies recognize very specifically only one or two of the lower molecular weight LHC-proteins. In all plants studied, the type 1 LHC II apoproteins are more numerous and span a greater size range than the type 2 apoproteins. This is consistent with the smaller number of type 2 LHC II CAB genes that have been discovered to date. 相似文献
18.
The major light-harvesting chlorophyll a/b complex (LHCIIb) of photosystem (PS) II functions by harvesting light energy and by limiting and balancing the energy flow directed towards the PSI and PSII reaction centers. The complex is predominantly trimeric; however, the monomeric form may play a role in one or several of the regulatory functions of LHCIIb. In this work the dissociation temperature was measured of trimeric LHCIIb isolated from Pisum thylakoids and inserted into liposomes made of various combinations of thylakoid lipids at various protein densities. Dissociation was measured by monitoring a trimer-specific circular dichroism signal in the visible range. The LHCIIb density in the membrane significantly affected the trimer dissociation temperature ranging from 70 degrees C at an LHCIIb concentration comparable to or higher than the one in thylakoid grana, to 65 degrees C at the density estimated in stromal lamellae. Omitting one thylakoid lipid from the liposomes had virtually no effect on the thermal trimer stability in most cases except when digalactosyl diacylglycerol (DGDG) was omitted which caused a drop in the apparent dissociation temperature by 2 degrees C. In liposomes containing only one lipid species, DGDG and, even more so, monogalactosyl diacylglycerol (MGDG) increased the thermal stability of LHCIIb trimers whereas phosphatidyl diacylglycerol (PG) significantly decreased it. The lateral pressure exerted by the non-bilayer lipid MGDG did not significantly influence LHCII trimer stability. 相似文献
19.
Trimerization and crystallization of reconstituted light-harvesting chlorophyll a/b complex. 总被引:6,自引:0,他引:6 下载免费PDF全文
The major light-harvesting complex (LHCII) of photosystem II, the most abundant chlorophyll-containing complex in higher plants, is organized in trimers. In this paper we show that the trimerization of LHCII occurs spontaneously and is dependent on the presence of lipids. LHCII monomers were reconstituted from the purified apoprotein (LHCP), overexpressed in Escherichia coli, and pigments, purified from chloroplast membranes. These synthetic LHCII monomers trimerize in vitro in the presence of a lipid fraction isolated from pea thylakoids. The reconstituted LHCII trimers are very similar to native LHCII trimers in that they are stable in the presence of mild detergents and can be isolated by partially denaturing gel electrophoresis or by centrifugation in sucrose density gradients. Moreover, both native and reconstituted LHCII trimers exhibit signals in circular dichroism in the visible range that are not seen in native or reconstituted LHCII monomers, indicating that trimer formation either establishes additional pigment-pigment interactions or alters pre-existing interactions. Reconstituted LHCII trimers readily form two-dimensional crystals that appear to be identical to crystals of the native complex. 相似文献