首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Proteins synthesized as soluble precursors in the cytoplasm of eukaryotic cells often cross organellar membrane barriers and then insert into lipid bilayers. One such polypeptide, the light-harvesting chlorophyll a/b-binding protein (LHCP), must also associate with pigment molecules and be assembled into the photosystem II light-harvesting complex in the chloroplast thylakoid membrane. A study of the import of mutant LHCPs into isolated chloroplasts has shown that a putative alpha-helical membrane-spanning domain near the carboxy terminus (helix 3) is essential for the stable insertion of LHCP in the thylakoid. Protease digestion experiments are consistent with the carboxy terminus of the protein being in the lumen. This report also shows that helix 3, when fused to a soluble protein, can target it to the thylakoids of isolated, intact chloroplasts. Although helix 3 is required for the insertion of LHCP and mutant derivatives into the thylakoid, the full insertion of helix 3 itself requires additionally the presence of other regions of LHCP. Thus, LHCP targeting and integration into thylakoid membranes requires a complex interaction involving a number of different domains of the LHCP polypeptide.  相似文献   

2.
S Hobe  S Prytulla  W Kühlbrandt    H Paulsen 《The EMBO journal》1994,13(15):3423-3429
The major light-harvesting complex (LHCII) of photosystem II, the most abundant chlorophyll-containing complex in higher plants, is organized in trimers. In this paper we show that the trimerization of LHCII occurs spontaneously and is dependent on the presence of lipids. LHCII monomers were reconstituted from the purified apoprotein (LHCP), overexpressed in Escherichia coli, and pigments, purified from chloroplast membranes. These synthetic LHCII monomers trimerize in vitro in the presence of a lipid fraction isolated from pea thylakoids. The reconstituted LHCII trimers are very similar to native LHCII trimers in that they are stable in the presence of mild detergents and can be isolated by partially denaturing gel electrophoresis or by centrifugation in sucrose density gradients. Moreover, both native and reconstituted LHCII trimers exhibit signals in circular dichroism in the visible range that are not seen in native or reconstituted LHCII monomers, indicating that trimer formation either establishes additional pigment-pigment interactions or alters pre-existing interactions. Reconstituted LHCII trimers readily form two-dimensional crystals that appear to be identical to crystals of the native complex.  相似文献   

3.
The insertion of a protein into a lipid bilayer usually involves a short signal sequence and can occur either during or after translation. A light-harvesting chlorophyll a/b-binding protein (LHCP) is synthesized in the cytoplasm of plant cells as a precursor and is post-translationally imported into chloroplasts where it subsequently inserts into the thylakoid membrane. Only mature LHCP is required for insertion into the thylakoid. To define which sequences of the mature protein are necessary and sufficient for thylakoid integration, fusion and deletion proteins and proteins with internal rearrangements were synthesized and incubated with isolated thylakoids and stroma. No evidence is found for the existence of a short signal sequence within LHCP, and, with the exception of the amino terminus and a short lumenal loop, the entire mature protein with consecutively ordered alpha-helices is required for insertion into thylakoid membranes. The addition of positive charges into stromal but not lumenal segments permits the insertion of mutant LHCPs into isolated thylakoids. Replacement of the LHCP transit peptide with the transit peptide from plastocyanin has no effect on LHCP insertion and does not restore insertion of the lumenal charge addition mutants.  相似文献   

4.
The light-harvesting chlorophyll a/b protein (LHCP) is synthesized in the cytosol as a precursor (pLHCP) that is imported into chloroplasts and assembled into thylakoid membranes. Under appropriate conditions, either pLHCP or LHCP will integrate into isolated thylakoids. We have identified two situations that inhibit integration in this assay. Ionophores and uncouplers inhibited integration up to 70%. Carboxyl-terminal truncations of pLHCP also interfered with integration. A 22-residue truncation reduced integration to about 25% of control, whereas a 93 residue truncation completely abolished it. When pLHCP was imported into chloroplasts in the presence of uncouplers or when truncated forms of pLHCP were used, significant amounts of the imported proteins failed to insert into thylakoids and instead accumulated in the aqueous stroma. Accumulation of stromal LHCP occurred at uncoupler concentrations required to dissipate the trans-thylakoid proton electrochemical gradient and was enhanced at reduced levels of ATP. The latter effect may be a secondary consequence of a reduction in ATP-dependent degradation within the stroma. These results indicate that the stroma is an intermediate location in the LHCP assembly pathway and provide the first evidence for a soluble intermediate during biogenesis of a chloroplast membrane protein.  相似文献   

5.
Cline K 《Plant physiology》1988,86(4):1120-1126
The apoprotein of the light-harvesting chlorophyll a/b protein (LHCP) is a major integral thylakoid membrane protein that is normally complexed with chlorophyll and xanthophylls and serves as the antenna complex of photosystem II. LHCP is encoded in the nucleus and synthesized in the cytosol as a higher molecular weight precursor that is subsequently imported into chloroplasts and assembled into thylakoids. In a previous study it was established that the LHCP precursor can integrate into isolated thylakoid membranes. The present study demonstrates that under conditions designed to preserve thylakoid structure, the inserted LHCP precursor is processed to mature size, assembled into the LHC II chlorophyll-protein complex, and localized to the appressed thylakoid membranes. Under these conditions, light can partially replace exogenous ATP in the membrane integration process.  相似文献   

6.
The light-harvesting chlorophyll a/b protein (LHCP) is an approximately 25,000-D thylakoid membrane protein. LHCP is synthesized in the cytosol as a precursor and must translocate across the chloroplast envelope before becoming integrally associated with the thylakoid bilayer. Previous studies demonstrated that imported LHCP traverses the chloroplast stroma as a soluble intermediate before thylakoid insertion. Here, examination of this intermediate revealed that it is a stable, discrete approximately 120,000-D species and thus either an LHCP oligomer or a complex with another component. In vitro-synthesized LHCP can be converted to a similar form by incubation with a stromal extract. The stromal component responsible for this conversion is proteinaceous as evidenced by its inactivation by heat, protease, and NEM. Furthermore, the conversion activity coelutes from a gel filtration column with a stromal protein factor(s) previously shown to be necessary for LHCP integration into isolated thylakoids. Conversion of LHCP to the 120-kD form prevents aggregation and maintains its competence for thylakoid insertion. However, conversion to this form is apparently not sufficient for membrane insertion because the isolated 120-kD LHCP still requires stroma to complete the integration process. This suggests a need for at least one more stroma-mediated reaction. Our results explain how a hydrophobic thylakoid protein remains soluble as it traverses the aqueous stroma. Moreover, they describe in part the function of the stromal requirement for insertion into the thylakoid membrane.  相似文献   

7.
When the in vitro synthesized precursor of a light-harvesting chlorophyll a/b binding protein (LHCP) from Lemna gibba is imported into barley etiochloroplasts, it is processed to a single form. Both the processed form and the precursor are found in the thylakoid membranes, assembled into the light-harvesting complex of photosystem II. Neither form can be detected in the stromal fraction. The relative amounts of precursor and processed forms observed in the thylakoids are dependent on the developmental stage of the plastids used for uptake. The precursor as well as the processed form can also be detected in thylakoids of greening maize plastids used in similar uptake experiments. This detection of a precursor in the thylakoids, which has not been previously reported, could be a result of using rapidly developing plastids and/or using an heterologous system. Our results demonstrate that the extent of processing of LHCP precursor is not a prerequisite for its inclusion in the complex. They are also consistent with the possibility that the processing step can occur after insertion of the protein into the thylakoid membrane.  相似文献   

8.
Photosystem I (PSI) holocomplexes were fractionated to study the organization of the light-harvesting complex I (LHC I) pigment-proteins in barley (Hordeum vulgare) plastids. LHC Ia and LHC Ib can be isolated as oligomeric, presumably trimeric, pigment-protein complexes. The LHC Ia oligomeric complex contains both the 24- and the 21.5-kD apoproteins encoded by the Lhca3 and Lhca2 genes and is slightly larger than the oligomeric LHC Ib complex containing the Lhca1 and Lhca4 gene products of 21 and 20 kD. The synthesis and assembly of LHC I during light-driven development of intermittent light-grown plants occurs rapidly upon exposure to continuous illumination. Complete PSI complexes are detected by nondenaturing Deriphat (disodium N-dodecyl-[beta]-iminodipropionate-160)-PAGE after 2 h of illumination, and their appearance correlates with that of the 730- to 740-nm emission characteristic of assembled LHC I. However, the majority of the newly synthesized LHC I apoproteins are present as monomeric complexes in the thylakoids during the early hours of greening. We propose that during development of the protochloroplast the LHC I apoproteins are first assembled into monomeric pigmented complexes that then aggregate into trimers before becoming attached to the pre-existing core complex to form a complete PSI holocomplex.  相似文献   

9.
The in vitro membrane integration of the light-harvesting protein of photosystem II (LHCP), the Rieske FeS protein of the cytochrome (Cyt) blf-complex, and the NADPH:protochlorophyllide oxidoreductase (Pchlide reductase) into pea thylakoids with different pigment composition was studied. Pea plants (Pisum sativum L. cv. Kelvedon Wonder) with different contents of chlorophyll (Chl) and carotenoids were obtained by growing the seedlings in a greenhouse or in weak red light with or without the herbicide Norflurazon, an inhibitor of carotenoid biosynthesis. Chloroplasts from untreated and Norflurazon-treated plants grown in weak red light contained approximately 29 and 14% of Chl compared to chloroplasts from untreated plants grown in the greenhouse. The corresponding carotenoid contents were 66 and 5%. Following an integration reaction using LHCP precursor protein and chloroplast lysate, thylakoids from untreated and Norflurazon-treated plants grown in weak red light contained approximately 30 and 5% of protease-protected LHCP, respectively, compared to thylakoids of untreated plants grown in a greenhouse. In contrast to LHCP, the in vitro assembly of the Pchlide reductase was only sligthly reduced in chloroplast lysates of plants grown in weak red light compared to greenhouse-grown plants. In chloroplast lysates of Norflurazon-treated plants, however, the amount of membrane associated, protease-protected Pchlide reductase was reduced to 32% of the amount in untreated plants grown under the same light conditions. In contrast, the integration of the Rieske FeS protein occurred to almost similar levels irrespective of light conditions and herbicide treatments. Reconstitution assays where stroma from Norflurazon-treated plants was added to thylakoids from untreated plants, showed that the herbicide did not affect any stromal component(s) vital for the insertion reaction. Removal of samples during the integration reaction of LHCP showed that no degradation of the protein occurred during the assay. Neither was the assembled protein degraded up to 24 h after the termination of the assay. This indicates that growing plants in weak red light, with or without Norflurazon treatment, mainly affected the primary step in thylakoid assembly of LHCP, i.e. the insertion reaction into the membrane. The results further indicate that proteins normally bound to pigments also require pigments for membrane recognition or integration.  相似文献   

10.
The major light-harvesting chlorophyll a/b-binding protein (Lhcb1,2) of photosystem II is inserted into the thylakoid via the signal recognition particle dependent pathway. However, the mechanism by which the protein enters the membrane is at this time unknown. In order to define some topographical restrictions for this process, we constructed several recombinant derivatives of Lhcb1 carrying hexahistidine tags at either protein terminus or in the stromal loop domain. Additionally, green fluorescent protein (GFP) was fused to either terminus. None of the modifications significantly impair the pigment-binding properties of the protein in the in vitro reconstitution of LHCII. With the exception of the C-terminal GFP fusion, all mutants stably insert into isolated thylakoids in the absence of Ni2+ ions. The addition of low concentrations of Ni2+ ions abolishes the thylakoid insertion of C-terminally His-tagged mutants whereas the other His-tagged proteins fail to insert only at higher Ni2+ concentrations. The C-terminus of Lhcb1 must cross the membrane during protein insertion whereas the other sites of Lhcb1 modification are positioned on the stromal side of LHCII. We conclude that a Ni2+-complexed His tag and fusion to GFP inhibit translocation of the protein C-terminus across the thylakoid. Our observations indicate that the N-terminal and stromal domain of Lhcb1 need not traverse the thylakoid during protein insertion and are consistent with a loop mechanism in which only the C-terminus and the lumenal loop of Lhcb1 are translocated across the thylakoid.  相似文献   

11.
The light-harvesting complex II of thylakoid membranes channels light energy into the photosynthetic reaction center II. The major apoproteins of this complex are the nuclear encoded light-harvesting chlorophyll a/b-proteins (LHCP). A model for the arrangement of LHCP in the thylakoid membrane predicts three alpha-helical membrane-spanning regions. The first and third putative membrane-spanning regions include oppositely charged amino acid residues. When the first and third helices are altered to carry only positive charges, the in vitro accumulation of LHCP in the complex is reduced. This mutation is partially rescued by the introduction of a new negative charge in the third helix, an arrangement that is reversed from the wild type. An arginine in the first helix is also important in some aspect of the process leading to the successful accumulation of the LHCP in thylakoids.  相似文献   

12.
《Biophysical journal》2022,121(3):396-409
The xanthophyll cycle in the antenna of photosynthetic organisms under light stress is one of the most well-known processes in photosynthesis, but its role is not well understood. In the xanthophyll cycle, violaxanthin (Vio) is reversibly transformed to zeaxanthin (Zea) that occupies Vio binding sites of light-harvesting antenna proteins. Higher monomer/trimer ratios of the most abundant light-harvesting protein, the light-harvesting complex II (LHCII), usually occur in Zea accumulating membranes and have been observed in plants after prolonged illumination and during high-light acclimation. We present a combined NMR and coarse-grained simulation study on monomeric LHCII from the npq2 mutant that constitutively binds Zea in the Vio binding pocket. LHCII was isolated from 13C-enriched npq2 Chlamydomonas reinhardtii (Cr) cells and reconstituted in thylakoid lipid membranes. NMR results reveal selective changes in the fold and dynamics of npq2 LHCII compared with the trimeric, wild-type and show that npq2 LHCII contains multiple mono- or digalactosyl diacylglycerol lipids (MGDG and DGDG) that are strongly protein bound. Coarse-grained simulations on npq2 LHCII embedded in a thylakoid lipid membrane agree with these observations. The simulations show that LHCII monomers have more extensive lipid contacts than LHCII trimers and that protein-lipid contacts are influenced by Zea. We propose that both monomerization and Zea binding could have a functional role in modulating membrane fluidity and influence the aggregation and conformational dynamics of LHCII with a likely impact on photoprotection ability.  相似文献   

13.
Cytosolically synthesized thylakoid proteins must be translocated across the chloroplast envelope membranes, traverse the stroma, and then be translocated into or across the thylakoid membrane. Protein transport across the envelope requires ATP hydrolysis but not electrical or proton gradients. The energy requirements for the thylakoid translocation step were studied here for the light-harvesting chlorophyll a/b protein (LHCP), an integral membrane protein, and for several thylakoid lumen-resident proteins: plastocyanin and OE33, OE23, and OE17 (the 33-, 23-, and 17-kDa subunits of the oxygen-evolving complex, respectively). Dissipation of the thylakoid protonmotive force during an in organello protein import assay partially inhibited the thylakoid localization of LHCP and OE33, totally inhibited localization of OE23 and OE17, and had no effect on localization of plastocyanin. We used reconstitution assays for LHCP insertion and for OE23 and OE17 transport into isolated thylakoids to investigate the energy requirements in detail. The results indicated that LHCP insertion absolutely requires ATP hydrolysis and is enhanced by a transthylakoid delta pH and that transport of OE23 and OE17 is absolutely dependent upon a delta pH. Surprisingly, OE23 and OE17 transport occurred maximally in the complete absence of ATP. These results establish the thylakoid membrane as the only membrane system in which a delta pH can provide all of the energy required to translocate proteins across the bilayer. They also demonstrate that the energy requirements for integration into or translocation across the thylakoid membranes are protein-specific.  相似文献   

14.
Light-harvesting chlorophyll-a/b-binding protein (LHCP), overexpressed in Escherichia coli, can be reconstituted with pigments to yield complexes that are structurally very similar to light-harvesting complex II (LHCII) isolated from thylakoids [Paulsen, H., Rümler, U. & Rüdiger, W. (1990) Planta 181, 204-211]. In order to analyze which domains of the protein are involved in pigment binding, we reconstituted deletion mutants of LHCP with pigments and characterized the resulting complexes regarding their pigment composition and spectroscopic properties. Series of progressive deletions from either end of the protein revealed that most of the N-terminal and part of the C-terminal hydrophilic regions of LHCP are dispensible for pigment binding. In either deletion series, the deletions that completely abolished reconstitution could be narrowed down to segments of five amino acids that do not contain histidine, asparagine, or glutamine. All mutants either formed complexes with both pigment composition and spectroscopic properties very similar to those of light-harvesting complex II isolated from thylakoids, or they did not form any stable complexes at all. There is no indication of a segment of LHCP binding a subset of LHCII pigments. We conclude that the stabilization of LHCP-pigment complexes is highly synergetic rather than based on individual pigment-binding sites provided by the protein.  相似文献   

15.
The structure of the major light-harvesting chlorophyll a/b complex (LHCII) was analyzed by pulsed EPR measurements and compared with the crystal structure. Site-specific spin labeling of the recombinant protein allowed the measurement of distance distributions over several intra- and intermolecular distances in monomeric and trimeric LHCII, yielding information on the protein structure and its local flexibility. A spin label rotamer library based on a molecular dynamics simulation was used to take the local mobility of spin labels into account. The core of LHCII in solution adopts a structure very similar or identical to the one seen in crystallized LHCII trimers with little motional freedom as indicated by narrow distance distributions along and between α helices. However, distances comprising the lumenal loop domain show broader distance distributions, indicating some mobility of this loop structure. Positions in the hydrophilic N-terminal domain, upstream of the first trans-membrane α helix, exhibit more and more mobility the closer they are to the N terminus. The nine amino acids at the very N terminus that have not been resolved in any of the crystal structure analyses give rise to very broad and possibly bimodal distance distributions, which may represent two families of preferred conformations.  相似文献   

16.
The major light-harvesting chlorophyll a/b complex (LHCIIb) of photosystem (PS) II functions by harvesting light energy and by limiting and balancing the energy flow directed towards the PSI and PSII reaction centers. The complex is predominantly trimeric; however, the monomeric form may play a role in one or several of the regulatory functions of LHCIIb. In this work the dissociation temperature was measured of trimeric LHCIIb isolated from Pisum thylakoids and inserted into liposomes made of various combinations of thylakoid lipids at various protein densities. Dissociation was measured by monitoring a trimer-specific circular dichroism signal in the visible range. The LHCIIb density in the membrane significantly affected the trimer dissociation temperature ranging from 70 degrees C at an LHCIIb concentration comparable to or higher than the one in thylakoid grana, to 65 degrees C at the density estimated in stromal lamellae. Omitting one thylakoid lipid from the liposomes had virtually no effect on the thermal trimer stability in most cases except when digalactosyl diacylglycerol (DGDG) was omitted which caused a drop in the apparent dissociation temperature by 2 degrees C. In liposomes containing only one lipid species, DGDG and, even more so, monogalactosyl diacylglycerol (MGDG) increased the thermal stability of LHCIIb trimers whereas phosphatidyl diacylglycerol (PG) significantly decreased it. The lateral pressure exerted by the non-bilayer lipid MGDG did not significantly influence LHCII trimer stability.  相似文献   

17.
C-terminally truncated precursors of wheat light-harvesting chlorophyll a/b binding protein (LHCP) were synthesized to investigate the origin of the two forms (about 25 kD and 26 kD) of the mature protein observed upon in vitro import into the chloroplast. Precursors p delta 13 and p delta 27, lacking 13 and 27 amino acids, respectively, were successfully imported, and both gave rise to two smaller forms proportional to the size of their deletions. These results demonstrate that there are two N-terminal sites that are cleaved during import of the LHCP precursor, undoubtedly contributing to the heterogeneity of LHCP found in vivo. Significantly, p delta 27 yielded only 50% of mature LHCP when compared with wild type. Although the products of p delta 27 import were localized to the thylakoids, in contrast to p delta 13 they were not correctly inserted into the membranes, indicating that residues essential for this step are missing. p delta 27 is distinguished from p delta 13 by lacking the carboxy end of a domain highly conserved between LHCP of photosystems II and I. Other specific precursor mutants with larger C-terminal deletions were not efficiently transported into the organelle in time course experiments, nor did they insert directly into the thylakoids using chloroplast lysates, in an assay independent of translocation across the envelope. In addition, the mutant p delta 18n, lacking the first 18 amino acids of mature LHCP, was only found bound to the chloroplast envelope. However, both p delta 18n and the mature protein, i.e., LHCP, synthesized in vitro without its 34-amino acid transit peptide inserted into the thylakoids in chloroplast lysates. The overall conformation of the mutant precursor polypeptides was probed using the chloroplast soluble processing enzyme in an organelle-free reaction optimized for the LHCP precursor and the more general protease trypsin. A tightly folded, protease-resistant conformation was not apparent to explain the loss of efficient import.  相似文献   

18.
H. Paulsen  U. Rümler  W. Rüdiger 《Planta》1990,181(2):204-211
A gene for a light-harvesting chlorophyll (Chl) a/b-binding protein (LHCP) from pea (Pisum sativum L.) has been cloned in a bacterial expression vector. Bacteria (Escherichia coli) transformed with this construct produced up to 20% of their protein as pLHCP, a derivative of the authentic precursor protein coded for by the pea gene with three amino-terminal amino acids added and-or exchanged, or as a truncated LHCP carrying a short amino-terminal deletion into the mature protein sequence. Following the procedure of Plumley and Schmidt (1987, Proc. Natl. Acad. Sci. USA84, 146–150), all bacteria-produced LHCP derivatives can be reconstituted with acetone extracts from pea thylakoids or with isolated pigments to yield pigment-protein complexes that are stable during partially denaturing polyacrylamide-gel electrophoresis. The spectroscopic properties of these complexes closely resemble those of the light-harvesting complex associated with photosystem II (LHCII) isolated from pea thylakoids. The pigment requirement for the reconstitution is highly specific for the pigments found in native LHCII: Chl a and b as well as at least two out of three xanthophylls are necessary. Varying the Chl a:Chl b ratios in the reconstitution mixtures changes the yields of complex formed but not the Chl a:Chl b ratio in the complex. We conclude that LHCP-pigment assembly in vitro is highly specific and that the complexes formed are structurally similar to LHCII. The N-terminal region of the protein can be varied without affecting complex formation and therefore does not seem to be involved in pigment binding. Dedicated to Professor Hans Mohr on the occasion of his 60th birthday  相似文献   

19.
《The Journal of cell biology》1987,105(6):2641-2648
A processing activity has been identified in higher plant chloroplasts that cleaves the precursor of the light-harvesting chlorophyll a/b- binding protein (LHCP). A wheat LHCP gene previously characterized (Lamppa, G.K., G. Morelli, and N.-H. Chua, 1985. Mol. Cell Biol. 5:1370- 1378) was used to synthesize RNA and subsequently the labeled precursor polypeptide in vitro. Incubation of the LHCP precursors with a soluble extract from lysed chloroplasts, after removal of the thylakoids and membrane vesicles, resulted in the release of a single 25-kD peptide. In contrast, when the LHCP precursors were used in an import reaction with intact pea or wheat chloroplasts, two forms (25 and 26 kD) of mature LHCP were found. The peptide released by the processing activity in the organelle-free assay comigrated with the lower molecular mass form of mature LHCP produced during import. Properties of the processing activity suggest that it is an endopeptidase. Chloroplasts from both pea and wheat, two divergent higher plants, contain the processing enzyme, suggesting its physiological importance in LHCP assembly into the thylakoids. We discuss the implications of LHCP precursor processing by a soluble enzyme that may be in the stromal compartment.  相似文献   

20.
Yang DH  Paulsen H  Andersson B 《FEBS letters》2000,466(2-3):385-388
Variations in the amount of the light-harvesting chlorophyll a/b-binding protein complex (LHCII) is essential for regulation of the uptake of light into photosystem II. An endogenous proteolytic system was found to be involved in the degradation of LHCII in response to elevated light intensities and the proteolysis was shown to be under tight regulation [Yang, D.-H. et al. (1998) Plant Physiol. 118, 827-834]. In this study, the substrate specificity and recognition site towards the protease were examined using reconstituted wild-type and mutant recombinant LHCII. The results show that the LHCII apoprotein and the monomeric form of the holoprotein are targeted for proteolysis while the trimeric form is not. The N-terminal domain of LHCII was found to be essential for recognition by the regulatory protease and the involvement of the N-end rule pathway is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号