首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We assessed the consequences of respiratory unloading associated with tracheostomy breathing (TBr). Three normal and three carotid body-denervated (CBD) ponies were prepared with chronic tracheostomies that at rest reduced physiological dead space (VD) from 483 +/- 60 to 255 +/- 30 ml and lung resistance from 1.5 +/- 0.14 to 0.5 +/- 0.07 cmH2O . l-1 . s. At rest and during steady-state mild-to-heavy exercise arterial PCO2 (PaCO2) was approximately 1 Torr higher during nares breathing (NBr) than during TBr. Pulmonary ventilation and tidal volume (VT) were greater and alveolar ventilation was less during NBr than TBr. Breathing frequency (f) did not differ between NBr and TBr at rest, but f during exercise was greater during TBr than during NBr. These responses did not differ between normal and CBD ponies. We also assessed the consequences of increasing external VD (300 ml) and resistance (R, 0.3 cmH2O . l-1 . s) by breathing through a tube. At rest and during mild exercise tube breathing caused PaCO2 to transiently increase 2-3 Torr, but 3-5 min later PaCO2 usually was within 1 Torr of control. Tube breathing did not cause f to change. When external R was increased 1 cmH2O . l-1 . s by breathing through a conventional air collection system, f did not change at rest, but during exercise f was lower than during unencumbered breathing. These responses did not differ between normal, CBD, and hilar nerve-denervated ponies, and they did not differ when external VD or R were added at either the nares or tracheostomy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We determined the effects of denervating the hilar branches (HND) of the vagus nerves on breathing and arterial PCO2 (PaCO2) in awake ponies during eupnea and when inspired PCO2 (PICO2) was increased to 14, 28, and 42 Torr. In five carotid chemoreceptor-intact ponies, breathing frequency (f) was less, whereas tidal volume (VT), inspiratory time (TI), and ratio of TI to total cycle time (TT) were greater 2-4 wk after HND than before HND. HND per se did not significantly affect PaCO2 at any level of PICO2, and the minute ventilation (VE)-PaCO2 response curve was not significantly altered by HND. Finally, the attenuation of a thermal tachypnea by elevated PICO2 was not altered by HND. Accordingly, in carotid chemoreceptor-intact ponies, the only HND effect on breathing was the change in pattern classically observed with attenuated lung volume feedback. There was no evidence suggestive of a PCO2-H+ sensory mechanism influencing VE, f, VT, or PaCO2. In ponies that had the carotid chemoreceptors denervated (CBD) 3 yr earlier, HND also decreased f, increased VT, TI, and TT, but did not alter the slope of the VE-PaCO2 response curve. However, at all levels of elevated PICO2, the arterial hypercapnia that had persistently been attenuated, since CBD was restored to normal by HND. The data suggest that during CO2 inhalation in CBD ponies a hilar-innervated mechanism influences PaCO2 by reducing physiological dead space to increase alveolar ventilation.  相似文献   

3.
The objective of the present study was to determine the effect of elevated inspired CO2 on respiratory dead space (VD) of 12 normal, 8 carotid body-denervated (CBD), 7 hilar nerve-denervated (HND), and 6 CBD+HND ponies. The Fowler technique was used to determine VD on a breath-by-breath basis while the ponies breathed room air and inspired CO2 at 3 and 6%. During room air breathing, tidal volume (VT) and VD were greater in HND ponies than in normal and CBD ponies (P less than 0.05), and VT was less and VD/VT was greater after CBD than before CBD. For all groups. VD, VT, and breathing frequency (f) increased and VD/VT decreased significantly (P less than 0.01) with increasing inspired CO2. During CO2 breathing, VT and VD were higher (P less than 0.05) in the HND ponies than in all other groups, the decrease (P less than 0.05) in VD/VT was greatest in the CBD+HND group, and f was lower in the HND and HND+CBD than in the normal and CBD ponies. In addition, when inspired CO2 was increased from 0 to 6%, the decrease in VD/VT was greater and the increase in arterial PCO2 was less (P less than 0.05) after CBD than before CBD. For 70% of the ponies in all groups, VD increased linearly with increases in VT; for most of the remainder, VD tended to plateau at higher values of VT.  相似文献   

4.
We determined whether the [CO2] in the upper airways (UA) can influence breathing in ponies and whether UA [CO2] contributes to the attenuation of a thermal tachypnea during periods of elevated inspired CO2. Six ponies were studied 1 mo after chronic tracheostomies were created. For one protocol the ponies were breathing room air through a cuffed endotracheal tube. Another smaller tube was placed in the tracheostomy and directed up the airway. By use of this tube, a pump, and prepared gas mixtures, UA [CO2] was altered without affecting alveolar or arterial PCO2. When the ponies were at a neutral environmental temperature (TA) and breathing frequency (f) was 8 breaths X min-1, increasing UA [CO2] up to 18-20% had no effect on f. However, when TA was increased 20 degrees C to increase f to 50 breaths X min-1, then increasing UA [CO2] to 6% or to 18-20% reduced f by 5 +/- 1.7 (SE) and 12 +/- 1.6 breaths X min-1, respectively (t = 3.3, P less than 0.01). These data suggest that in the pony there exists a UA CO2-H+ sensory mechanism. For a second protocol the ponies were breathing a 6% CO2 gas mixture for 15 min in the normal fashion over the entire airway (nares breathing, NBr) or they were breathing this gas mixture for 15 min through the cuffed endotracheal tube (TBr). At a neutral TA, increasing inspired [CO2] to 6% resulted in a 6-breaths X min-1 increase in f during both NBr and TBr.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Our purpose was to assess compensatory breathing responses to airway resistance unloading in ponies. We hypothesized that the carotid bodies and hilar nerve afferents, respectively, sense chemical and mechanical changes caused by unloading, hence carotid body-denervated (CBD) and hilar nerve-denervated ponies (HND) might demonstrate greater ventilatory responses when decreasing resistance. At rest and during treadmill exercise, resistance was transiently reduced approximately 40% in five normal, seven CBD, and five HND ponies by breathing gas of 79% He-21% O2 (He-O2). In all groups at rest, He-O2 breathing did not consistently change ventilation (VE), breathing frequency (f), tidal volume (VT), or arterial PCO2 (PaCO2) from room air-breathing levels. During treadmill exercise at 1.8 mph-5% grade in normal and HND ponies, He-O2 breathing did not change PaCO2 but at moderate (6 mph-5% grade), and heavy (8 mph-8% grade) work loads, absolute PaCO2 tended to decrease by 1 min of resistance unloading. delta PaCO2 calculated as room air minus He-O2 breathing levels at 1 min demonstrated significant changes in PaCO2 during exercise resistance unloading (P less than 0.05). No difference between normal and HND ponies was found in exercise delta PaCO2 responses (P greater than 0.10); however, in CBD ponies, the delta PaCO2 during unloading was greater at any given work load (P less than 0.05), suggesting finer regulation of PaCO2 in ponies with intact carotid bodies. During heavy exercise VE and f increased during He-O2 breathing in all three groups of ponies (P less than 0.05), although there were no significant differences between groups (P greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We studied blood gases in ponies to assess the relationship of alveolar ventilation (VA) to pulmonary CO2 delivery during moderate treadmill exercise. In normal ponies for 1.8, 3, or 6 mph, respectively, partial pressure of CO2 in arterial blood (PaCO2) decreased maximally by 3.1, 4.4, and 5.7 Torr at 30-90 s of exercise and remained below rest by 1.4, 2.3, and 4.5 Torr during steady-state (4-8 min) exercise (P less than 0.01). Partial pressure of O2 in arterial blood (PaO2) and arterial pH, (pHa) also reflected hyperventilation. Mixed venus CO2 partial pressure (PVCO2) decreased 2.3 and 2.9 Torr by 30 s for 3 and 6 mph, respectively (P less than 0.05). In work transitions either from 1.8 to 6 mph or from 6 mph to 1.8 mph, respectively, PaCO2 either decreased 3.8 Torr or increased 3.3 Torr by 45 s of the second work load (P less than 0.01). During exercise in acute (2-4 wk) carotid body denervated (CBD) ponies at 1.8, 3, or 6 mph, respectively, PaCO2 decreased maximally below rest by 9.0, 7.6, and 13.2 Torr at 30-45 s of exercise and remained below rest by 1.3, 2.3, and 7.8 Torr during steady-state (4-8 min) exercise (P less than 0.1). In the chronic (1-2 yr) CBD ponies, the hypocapnia was generally greater than normal but less than in the acute CBD ponies. We conclude that in the pony 1) VA is not tightly matched to pulmonary CO2 delivery during exercise, particularly during transitional states, 2) the exercise hyperpnea is not mediated by PaCO2 or PVCO2, and 3) during transitional states in the normal pony, the carotid bodies attenuate VA drive thereby reducing arterial hypocapnia.  相似文献   

7.
We investigated arterial PCO2 (PaCO2) and pH (pHa) responses in ponies during 6-min periods of high-intensity treadmill exercise. Seven normal, seven carotid body-denervated (2 wk-4 yr) (CBD), and five chronic (1-2 yr) lung (hilar nerve)-denervated (HND) ponies were studied during three levels of constant load exercise (7 mph-11%, 7 mph-16%, and 7 mph-22% grade). Mean pHa for each group of ponies became alkaline in the first 60 s (between 7.45 and 7.52) (P less than 0.05) at all work loads. At 6 min pHa was at or above rest at 7 mph-11%, moderately acidic at 7 mph-16% (7.32-7.35), and markedly acidic at 7 mph-22% (7.20-7.27) for all groups of ponies. Yet with no arterial acidosis at 7 mph 11%, normal ponies decreased PaCO2 below rest (delta PaCO2) by 5.9 Torr at 90 s and 7.8 Torr by 6 min of exercise (P less than 0.05). With a progressively more acid pHa at the two higher work loads in normal ponies, delta PaCO2 was 7.3 and 7.8 Torr by 90 s and 9.9 and 11.4 Torr by 6 min, respectively (P less than 0.05). CBD ponies became more hypocapnic than the normal group at 90 s (P less than 0.01) and tended to have greater delta PaCO2 at 6 min. The delta PaCO2 responses in normal and HND ponies were not significantly different (P greater than 0.1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We determined the effect of acute hypoxia on the ventilatory (VE) and electromyogram (EMG) responses of inspiratory (diaphragm) and expiratory (transversus abdominis) muscles in awake spontaneously breathing ponies. Eleven carotid body-intact (CBI) and six chronic carotid body-denervated (CBD) ponies were studied during normoxia (fractional inspired O2 concn [FIO2] = 0.21) and two levels of hypoxia (FIO2 approximately 0.15 and 0.12; 6-10 min/period). Four CBI and five CBD ponies were also hilar nerve (pulmonary vagal) denervated. Mean VE responses to hypoxia were greater in CBI ponies (delta arterial PCO2 = -4 and -7 Torr in CBI during hypoxic periods; -1 and -2 Torr in CBD). Hypoxia increased the rate of rise and mean activity of integrated diaphragm EMG in CBI (P less than 0.05) and CBD (P greater than 0.05) ponies relative to normoxia. Duration of diaphragm activity was reduced in CBI (P less than 0.05) but unchanged in CBD ponies. During hypoxia in both groups of ponies, total and mean activities per breath of transversus abdominis were reduced (P less than 0.05) without a decrease in rate of rise in activity. Time to peak and total duration of transversus abdominis activity were markedly reduced by hypoxia in CBI and CBD ponies (P less than 0.05). Hilar nerve denervation did not alter the EMG responses to hypoxia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The primary purpose of this study was to determine the effect of acute (20-30 min) elevations of inspired CO2 partial pressure (PICO2) on whole-body O2 consumption (VO2). In human subjects, VO2 increased approximately 15 ml.min-1.m-2 with each 7-Torr increment in PICO2 from 0.4 to 28 Torr (P less than 0.05), but VO2 did not change significantly when PICO2 was increased from 28 to 35 and 42 Torr (P greater than 0.05). In ponies, VO2 did not change when PICO2 was increased from 0.7 to 7 Torr (P greater than 0.05), but it increased about 6 ml.min-1.m-2 with each 7-Torr increment in PICO2 from 7 to 28 Torr, and it increased 18 ml.min-1.m-2 when PICO2 was increased from 28 to 42 Torr (P less than 0.05). At low PICO2 the delta VO2/ delta VE was 25 and 7 ml/l for humans and ponies, respectively, where VE is pulmonary ventilation. These values exceeded the expected O2 cost of breathing; hence, some factor, such as shivering or nonshivering thermogenesis, contributed to the elevated VO2. At high PICO2, VE increased without a proportional increase in VO2; thus the delta VO2/ delta VE decreased to about 2.5 ml/l in ponies and to near 0.0 in humans. Accordingly, at high PICO2 some VO2-suppressing factor partially counteracted those factors stimulating VO2. The maximum decrease from control pHa was 0.061 and 0.038 in humans and ponies, respectively. It is questionable whether this mild acidosis was sufficient to suppress VO2. In both species, pulmonary excretion of metabolic CO2 and the respiratory exchange ratio were below control during CO2 inhalation (P less than 0.01), which suggested an increased tissue storage of CO2.  相似文献   

10.
Breathing, diaphragmatic and transversus abdominis electromyograms (EMGdi and EMGta, respectively), and arterial blood gases were studied during normoxia (arterial PO2 = 95 Torr) and 48 h of hypoxia (arterial PO2 = 40-50 Torr) in intact (n = 11) and carotid body-denervated (CBD, n = 9) awake ponies. In intact ponies, arterial PCO2 was 7, 5, 9, and 11 Torr below control (P less than 0.01) at 1 and 10 min and 5 and 24-48 h of hypoxia, respectively. In CBD ponies, arterial PCO2 was 3-4 Torr below control (P less than 0.01) at 4, 5, 6, and 24 h of hypoxia. In intact ponies, pulmonary ventilation, mean inspiratory flow rate, and rate of rise of EMGdi and EMGta changed in a multi-phasic fashion during hypoxia; each reached a maximum during the 1st h (P less than 0.05), declined between 1 and 5 h (P less than 0.05), and increased between 5 and 24-48 h of hypoxia. As a result of the increased drive to the diaphragm, the mean EMGdi was above control throughout hypoxia (P less than 0.05). In contrast, as a result of a sustained reduction in duration of the EMGta, the mean EMGta was below control for most of the hypoxic period. In CBD ponies, pulmonary ventilation and mean inspiratory flow rate did not change during chronic hypoxia (P greater than 0.10). In these ponies, the rate of rise of the EMGdi was less than control (P less than 0.05) for most of the hypoxic period, which resulted in the mean EMGdi to also be less than control (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Carbon dioxide concentrations were increased during expiration in the upper one-half of the trachea, pharynx, and nasal sinuses to determine if elevation of upper airway CO2 would alter breathing or arterial blood gases in the awake pony. Carbon dioxide (100%) was injected into the midcervical trachea via a chronically implanted transcutaneous cannula during the first part of the animal's expiration. This maneuver elevated upper airway expiratory CO2 concentrations but prevented any exogenous CO2 from entering the lung and being absorbed into the arterial blood. Twelve experiments were performed on six ponies in which upper airway CO2 was elevated 2, 4, and 6% above the normal expired CO2 concentrations. Tidal volume increased in a dose dependent manner during upper airway CO2 exposure, but total ventilation was unchanged from base-line measurements made while the animal breathed room air. Arterial Po2 also increased during upper airway CO2 administration, reaching a mean value 6 Torr (1 Torr = 133.322 Pa) greater than the base-line values at the +6% CO2 exposure. We conclude that upper airway CO2 exposure alters breathing pattern slightly (increases tidal volume) and increases arterial PO2 in the awake pony.  相似文献   

12.
We studied the changes in breathing and respiratory muscle electromyograms (EMG) during passively induced increases in end-expiratory lung volume (EELV) in awake normal (N), hilar nerve-denervated (HND), carotid body-denervated (CBD), and HND + CBD ponies. EELV was increased by applying continuous negative pressure (-10 and -20 cmH2O) around the torso of the standing pony. In all groups, negative pressure produced sustained increases in EELV that were linearly related to the degree of negative pressure. Elevated EELV decreased breathing frequency (f) in N and CBD ponies but increased f in HND and HND + CBD ponies. When EELV was increased, tidal volume was unchanged or above control in N ponies but was below or near control in the other groups. In all groups during elevated EELV, arterial PCO2 initially decreased but then increased relative to control with isocapnia achieved after approximately 1.5 min. In all groups, the elevated EELV was accompanied by increased stimulation of the diaphragm as indicated by increased rate of rise of the integrated EMG (P less than 0.05). During elevated EELV, the duration of diaphragm EMG was reduced, but only in HND ponies was this reduction significant (P less than 0.05). In N ponies, the major effect of elevated EELV on the expiratory transversus abdominis (TA) muscle was an increase (P less than 0.05) in duration of activity and therefore total activity. The work of breathing was thus presumably shifted more to this muscle during elevated EELV. These changes in TA timing were not observed in HND and HND + CBD ponies during elevated EELV. We conclude that elevation of EELV, which presumably places the diaphragm on a less favorable portion of its length-tension relationship, results in compensatory increased stimulation of the diaphragm that is not critically dependent on hilar and carotid chemoreceptor afferents. However, hilar afferents do contribute to the changes in diaphragm and TA duration of activity during elevated EELV.  相似文献   

13.
Arterial CO2 partial pressure affects diaphragmatic function   总被引:3,自引:0,他引:3  
The purpose of this study was to examine in an in vivo preparation acute variations of PCO2 on diaphragmatic contractility. Plaster casts were snugly fit around the abdomen of six open-chested dogs, moving the abdominal contents rostrally. Diaphragmatic contractions against this very fixed load in response to phrenic nerve stimulation (supramaximal voltage at 1, 20, 50, and 80 Hz) or during spontaneous inspiratory efforts were virtually isometric (quasi-isometric). Transdiaphragmatic pressure (Pdi) measured by an abdominal balloon was used as an index of diaphragmatic contractility. Arterial PCO2 (PaCO2) was reduced by hyperventilation and raised by increasing PICO2. Pdi values in response to stimulation at 1, 20, 50, and 80 Hz in ranges I (PaCO2 = 0-19 Torr) and II (PaCO2 = 20-34 Torr) did not differ statistically from the control Pdi values (range III; PaCO2 = 35-45 Torr). In range IV (PaCO2 = 46-70 Torr) Pdi values for stimulations of 20, 50, and 80 Hz were significantly lower than control. In range V (PaCO2 = 71-90 Torr), VI (PaCO2 = 91-101 Torr), and VII (PaCO2 greater than or equal to 102 Torr) Pdi values were significantly less than those in range IV at all frequencies of stimulation. In the four dogs measured during spontaneous inspiratory efforts the integrated diaphragmatic electromyogram (Edi) was correlated with the Pdi. As PaCO2 rose (range III to VII), the Pdi values observed at 25, 50, 75, 100% of the maximum Edi (of range III) were significantly lower than the Pdi value of range III.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We measured the PCO2 apneic threshold in preterm and term infants. We hypothesized that, compared with adult subjects, the PCO2 apneic threshold in neonates is very close to the eupneic PCO2, likely facilitating the appearance of periodic breathing and apnea. In contrast with adults, who need to be artificially hyperventilated to switch from regular to periodic breathing, neonates do this spontaneously. We therefore measured the apneic threshold as the average alveolar PCO2 (PaCO2) of the last three breaths of regular breathing preceding the first apnea of an epoch of periodic breathing. We also measured the PaCO2 of the first three breaths of regular breathing after the last apnea of the same periodic breathing epoch. In preterm infants, eupneic PaCO2 was 38.6 +/- 1.4 Torr, the preperiodic PaCO2 apneic threshold was 37.3 +/- 1.4 Torr, and the postperiodic PaCO2 was 37.2 +/- 1.4 Torr. In term infants, the eupneic PaCO2 was 39.7 +/- 1.1 Torr, the preperiodic PaCO2 apneic threshold was 38.7 +/- 1.0 Torr, and the postperiodic value was 37.9 +/- 1.2 Torr. This means that the PaCO2 apneic thresholds were 1.3 +/- 0.1 and 1.0 +/- 0.2 Torr below eupneic PaCO2 in preterm and term infants, respectively. The transition from eupneic PaCO2 to PaCO2 apneic threshold preceding periodic breathing was accompanied by a minor and nonsignificant increase in ventilation, primarily related to a slight increase in frequency. The findings suggest that neonates breathe very close to their PCO2 apneic threshold, the overall average eupneic PCO2 being only 1.15 +/- 0.2 Torr (0.95-1.79, 95% confidence interval) above the apneic threshold. This value is much lower than that reported for adult subjects (3.5 +/- 0.4 Torr). We speculate that this closeness of eupneic and apneic PCO2 thresholds confers great vulnerability to the respiratory control system in neonates, because minor oscillations in breathing may bring eupneic PCO2 below threshold, causing apnea.  相似文献   

15.
We hypothesized that a sleep-induced increase in mechanical impedance contributes to CO2 retention and respiratory muscle recruitment during non-rapid-eye-movement (NREM) sleep. The effect NREM sleep on respiratory muscle activity and CO2 retention was measured in healthy subjects who increased maximum total pulmonary resistance (RLmax, 1-81 cmH2O.l-1.s) from awake to NREM sleep. We determined the effects of this sleep-induced increase in airway impedance by steady-state inhalation of a reduced-density gas mixture (79% He-21% O2, He-O2). Both arterialized blood PCO2 (PaCO2) and end-tidal PCO2 (PETCO2) were measured. Inspiratory (EMGinsp) and expiratory (EMGexp) respiratory muscle electromyogram activity was measured. NREM sleep caused 1) RLmax to increase (7 +/- 3 vs. 39 +/- 28 cmH2O.l-1.s), 2) PaCO2 and/or PETCO2 to increase in all subjects (40 +/- 2 vs. 44 +/- 3 Torr), and 3) EMGinsp to increase in 8 of 9 subjects and EMGexp to increase in 9 of 17 subjects. Compared with steady-state air breathing during NREM sleep, steady-state He-O2 breathing 1) reduced RLmax by 38%, 2) decreased PaCO2 and PETCO2 by 2 Torr, and 3) decreased both EMGinsp (-20%) and EMGexp (-54%). We concluded that the sleep-induced increase in upper airway resistance accompanied by the absence of immediate load compensation is an important determinant of CO2 retention, which, in turn, may cause augmentation of inspiratory and expiratory muscle activity above waking levels during NREM sleep.  相似文献   

16.
We investigated changes in arterial PCO2 (PaCO2) and pulmonary ventilation (VE) in normal, carotid chemoreceptor-denervated, and hilar nerve-denervated ponies during intravenous lactic acid infusion at rest and treadmill exercise at 1.8 mph-5% grade (mild) and 1.8 mph-15% grade (moderate). Lactic acid, (0.5 M) infusion of 0.10, 0.13, and 0.20 ml.min-1.kg-1 at rest and mild and moderate exercise increased arterial [H+] linearly throughout the 10 min of acid infusion. At 10 min of infusion, arterial [H+] had increased approximately 20 nmol/l (0.2 pH units) for each condition and group. Under most conditions, the temporal pattern of PaCO2 during acid infusion was biphasic. At rest and during mild exercise in all groups, and in carotid chemoreceptor-denervated ponies during moderate exercise, PaCO2 increased approximately 2 Torr (P less than 0.05) during the first 2 min of acid infusion. However, in normal ponies during moderate exercise, PaCO2 was not changed from control in the first 2 min of infusion. Between 2 and 10 min of infusion at rest and mild and moderate exercise in all groups, there was a 5-Torr significant decrease in PaCO2, which did not differ (P greater than 0.10) between groups. VE increased between 15-30 s and 2 min of infusion, but VE changed minimally between 2 and 10 min of infusion at rest and exercise in all groups of ponies. We conclude that lactacidosis does increase VE at rest and submaximal exercise in the pony.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Eight anesthetized tracheostomized cats were placed in an 8.2-liter airtight chamber with the trachea connected to the exterior. Thirty-two combinations of high-frequency oscillations (HFO) (0.5-30 Hz; 25-100 ml) were delivered for 10 min each in random order into the chamber. Arterial blood gas tensions during oscillation were compared with control measurements made after 10 min of spontaneous breathing without oscillation when the mean arterial PCO2 (PaCO2) was 30.1 Torr. Ventilation due to spontaneous breathing (Vs) and oscillation (Vo) were derived from the chamber pressure trace and a pneumotachograph, respectively. As the oscillation frequency increased, oscillated tidal volume (Vo) decreased from a mean of 39 (0.5 Hz) to 3.3 ml (30 Hz) when 100 ml was delivered to the chamber. From 6-25 Hz, apnea occurred with Vo less than estimated respiratory dead space (VD); the minimum effective Vo/VD ratio was 0.37 +/- 0.05. Although Vo was maximal at 10 Hz at each oscillation volume, the lowest PaCO2 occurred at 2-6 Hz, and arterial PO2 rose as expected during hypocapnia. Above 10 Hz, PaCO2 was determined by Vo and was independent of frequency, whereas at lower frequencies, PaCO2 was related to Vo; below 6 Hz, PaCO2 varied inversely with the calculated alveolar ventilation. As oscillations became more effective, both PaCO2 and Vs fell progressively and were highly correlated; apnea occurred when PaCO2 was reduced by a mean of 4.5 Torr. Mean chamber pressure remained near zero up to 15 Hz, indicating functional residual capacity did not change. We conclude that externally applied HFO can readily maintain gas exchange in vivo, with Vo less than VD at frequencies over 2 Hz.  相似文献   

18.
Diaphragmatic O2 and lactate extraction were examined in seven healthy ponies during maximal exercise (ME) carried out without, as well as with, inspiratory resistive breathing. Arterial and diaphragmatic venous blood were sampled simultaneously at rest and at 30-s intervals during the 4 min of ME. Experiments were carried out before and after left laryngeal hemiplegia (LH) was produced. During ME, normal ponies exhibited hypocapnia, hemoconcentration, and a decrease in arterial PO2 (PaO2) with insignificant change in O2 saturation. In LH ponies, PaO2 and O2 saturation decreased well below that in normal ponies, but because of higher hemoglobin concentration, arterial O2 content exceeded that in normal ponies. Because of their high PaCO2 during ME, acidosis was more pronounced in LH animals despite similar lactate values. Diaphragmatic venous PO2 and O2 saturation decreased with ME to 15.5 +/- 0.9 Torr and 18 +/- 0.5%, respectively, at 120 s of exercise in normal ponies. In LH ponies, corresponding values were significantly less: 12.4 +/- 1.3 Torr and 15.5 +/- 0.7% at 120 s and 9.8 +/- 1.4 Torr and 14.3 +/- 0.6% at 240 s of ME. Mean phrenic O2 extraction plateaued at 81 and 83% in normal and LH animals, respectively. Significant differences in lactate concentration between arterial and phrenic-venous blood were not observed during ME. It is concluded that PO2 and O2 saturation in the phrenic-venous blood of normal ponies do not reach their lowest possible values even during ME. Also, the healthy equine diaphragm, even with the added stress of inspiratory resistive breathing, did not engage in net lactate production.  相似文献   

19.
The purpose of these experiments was to examine the temporal pattern of arterial carbon dioxide tension (PaCO2) to assess the relationship between alveolar ventilation (VA) and CO2 return to the lung at the onset and offset of submaximal treadmill exercise. Five healthy ponies exercised for 8 min at two work rates: 50 m/min 6% grade and 70 m/min 12% grade. PaCO2 decreased (P less than 0.05) below resting values within 1 min after commencement of exercise at both work rates and reached a nadir at 90 s. PaCO2 decreased maximally by 2.5 and 3.5 Torr at the low and moderate rate, respectively. After the nadir, PaCO2 increased across time during both work rates and reached values that were not significantly different (P greater than 0.05) from rest at minute 4 of exercise. Partial pressure of O2 in arterial blood and arterial pH reflected hyperventilation during the first 3 min of exercise. At the termination of exercise PaCO2 increased (1.5 Torr) above rest (P less than 0.05), reaching a zenith at 2-3 min of recovery. These data suggest that VA and CO2 flow to the lung are not tightly matched at the onset and offset of exercise in the pony and thus challenges the traditional concept of blood gas homeostasis during muscular exercise.  相似文献   

20.
Goats were prepared so that one carotid body (CB) could be perfused with blood in which the gas tensions could be controlled independently from the blood perfusing the systemic arterial system, including the brain. Since one CB is functionally adequate, the nonperfused CB was excised. To determine whether systemic arterial hypoxemia is necessary for ventilatory acclimatization to hypoxia (VAH), the CB was perfused with hypoxic normocapnic blood for 6 h [means +/- SE: partial pressure of carotid body O2 (PcbO2), 40.6 +/- 0.3 Torr; partial pressure of carotid body CO2 (PcbCO2), 38.8 +/- 0.2 Torr] while the awake goat breathed room air to maintain systemic arterial normoxia. In control periods before and after CB hypoxia the CB was perfused with hyperoxic normocapnic blood. Changes in arterial PCO2 (PaCO2) were used as an index of changes in ventilation. Acute hypoxia (0.5 h of hypoxic perfusion) resulted in hyperventilation sufficient to reduce average PaCO2 by 6.7 Torr from control (P less than 0.05). Over the subsequent 5.5 h of hypoxic perfusion, average PaCO2 decreased further, reaching 4.8 Torr below that observed acutely (P less than 0.05). Acute CB hyperoxic perfusion (20 min) following 6 h of hypoxia resulted in only partial restoration of PaCO2 toward control values; PaCO2 remained 7.9 Torr below control (P less than 0.05). The progressive hyperventilation that occurred during and after 6 h of CB hypoxia with concomitant systemic normoxia is similar to that occurring with total body hypoxia. We conclude that systemic (and probably brain) hypoxia is not a necessary requisite for VAH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号