首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The light/dark cycle to which animals, and possibly humans, are exposed has a major impact on their physiology. The mechanisms whereby specific tissues respond to the light/dark cycle involve the pineal hormone melatonin. The pineal gland, an end organ of the visual system in mammals, produces the hormone melatonin only at night, at which time it is released into the blood. The duration of elevated nightly melatonin provides every tissue with information about the time of day and time of year (in animals that are kept under naturally changing photoperiods). Besides its release in a circadian mode, melatonin is also discharged in a pulsatile manner; the physiological significance, if any, of pulsatile melatonin release remains unknown. The exposure of animals including man to light at night rapidly depresses pineal melatonin synthesis and, therefore, blood melatonin levels drop precipitously. The brightness of light at night required to depress melatonin production is highly species specific. In general, the pineal gland of nocturnally active mammals, which possess rod-dominated retinas, is more sensitive to inhibition by light than is the pineal gland of diurnally active animals (with cone-dominated retinas). Because of the ability of the light/dark cycle to determine melatonin production, the photoperiod is capable of influencing the function of a variety of endocrine and non-endocrine organs. Indeed, melatonin is a ubiquitously acting pineal hormone with its effects on the neuroendocrine system having been most thoroughly investigated. Thus, in nonhuman photoperiodic mammals melatonin regulates seasonal reproduction; in humans also, the indole has been implicated in the control of reproductive physiology.Summary of a Plenary Lecture presented by the author in Vienna, August, 1990  相似文献   

2.
The pineal gland of vertebrates produces and secretes the hormone melatonin in response to changes in the light-dark cycle, with high production at night and low production during the day. Melatonin is thought to play an important role in synchronizing daily and/or seasonal physiological, behavioral, and developmental rhythms in vertebrates. In this study, the functional development of the pineal melatonin-generating system was examined in the mummichog, Fundulus heteroclitus, an euryhaline teleost. In this species, the pineal gland contains an endogenous oscillator, ultimately responsible for timing the melatonin rhythm. Oocytes from gravid females were collected and fertilized in vitro from sperm collected from mature males. Skull caps containing attached pineal glands were obtained from F. heteroclitus embryos at different embryonic stages and placed in static or perfusion culture under various photoperiodic regimes. Rhythmic melatonin secretion from pineal glands of embryonic F. heteroclitus embryos exposed to a 12L:12D cycle in static culture was observed at five days post-fertilization. The ontogeny of circadian-controlled melatonin production from F. heteroclitus pineal glands exposed to constant darkness for five days was also seen at day five post-fertilization. These data show that early development of the pineal melatonin-generating system in this teleost occurs prior to hatching. Pre-hatching development of the melatonin-generating system may confer some selective advantage in this species in its interactions with the environment.  相似文献   

3.
New actions of melatonin and their relevance to biometeorology   总被引:6,自引:0,他引:6  
 Melatonin is not only produced by the pineal gland, retina and parietal but also by various other tissues and cells from vertebrates, invertebrates, fungi, plants, multicellular algae and by unicells. In plants, many invertebrates and unicells, its concentration often exceeds that found in vertebrate blood by several orders of magnitude. The action of melatonin is highly pleiotropic. It involves firstly, direct effects, via specific binding sites in various peripheral tissues and cells of vertebrates, including immunomodulation; secondly, systemic influences on the cytoskeleton and nitric oxide formation, mediated by calmodulin; and thirdly, antioxidative protection, perhaps also in the context of photoprotection in plants and unicells. In some dinoflagellates, melatonin conveys temperature signals. On the basis of these comparisons, melatonin appears to mediate and modulate influences from several major environmental factors, such as the photoperiod, radiation intensity and temperature. Received: 18 March 1997 / Accepted: 16 July 1997  相似文献   

4.
Pineal bodies, and other associated parietal structures, areremarkably varied among vertebrates These organs apparentlyassumed, in the primitive vertebrates, a principal role in integrationof photic information. The pineal photoreceptor cell seems tohave evolved into the secretory pinealocyte that is found inmost of the higher vertebrates. Along with the evolution ofthe photoreceptor element into the pinealocyte, there is a concomitantshift in the neural connection of the pineal organ. The pinealo-fugal,sensory innervation gives way to an autonomic, pinealo-petalmotor innervation. Thus, direct photosensitivity was supercededby indirect, optically-mediated control of the now secretorypineal gland. Even though pineal organs display such unusual plasticity anddiversity across groups, responsivenses to light remains a constantfeature. Photoperiod may modify the diurnallyrhythmic patternsof melatonin secretion across seasons and invoke appropriate"programs" which permit an animal to anticipate seasonal changes.Thus, melatonin may be a key molecule, attuned to photoperiodicity,which has been selected through evolution to effect adaptationto annual events.  相似文献   

5.
Abstract

Melatonin (N-acetyl-5-methoxy tryptamine), following discovery from the extracts of bovine pineal gland, has been detected in the pineal as well as several extra-pineal tissues/organs of different vertebrates including fish. The unique feature of melatonin in the pineal gland is its rhythmic biosynthesis and release in blood in synchronization with the environmental light-–dark cycle. Accordingly, melatonin produced in the pineal of an animal living in a changing environment is implicated to the regulation of seasonal reproduction by acting as a hormone at one or more levels of hypothalamo-hypophyseal-gonadal axis. Additionally, melatonin is known to act as a potent free-radical scavenger or antioxidant to influence maturation of oocytes. However, possible relationship between extra-pineal melatonin and seasonality of reproduction in any animal remains enigmatic. Perhaps, carp is the only known animal in which temporal patterns of melatonin levels in the serum as well as in the extracts of pineal, retina, ovary, gut, and liver have been studied in relation to the reproductive events in an annual cycle. The purpose of current review is to bring those fascinating, and arguably most important data together to underline their significance in the control of seasonal reproduction in subtropical fish in general and in carp in particular.  相似文献   

6.
Photoperiodism is a process whereby organisms are able to use both absolute measures of day length and the direction of day length change as a basis for regulating seasonal changes in physiology and behavior. The use of day length cues allows organisms to essentially track time-of-year and to "anticipate" relatively predictable annual variations in important environmental parameters. Thus, adaptive types of seasonal biological changes can be molded through evolution to fit annual environmental cycles. Studies of the formal properties of photoperiodic mechanisms have revealed that most organisms use circadian oscillators to measure day length. Two types of paradigms, designated as the external and internal coincidence models, have been proposed to account for photoperiodic time measurement by a circadian mechanism. Both models postulate that the timing of light exposure, rather than the total amount of light, is critical to the organism's perception of day length. In mammals, a circadian oscillator(s) in the suprachiasmatic nucleus of the hypothalamus receives photic stimuli via the retinohypothalamic tract. The circadian system regulates the rhythmic secretion of the pineal hormone, melatonin. Melatonin is secreted at night, and the duration of secretion varies in inverse relation to day length; thus, photoperiod information is "encoded" in the melatonin signal. The melatonin signal is presumably "decoded" in melatonin target tissues that are involved in the regulation of a variety of seasonal responses. Variations in photoperiodic response are seen not only between species but also between breeding populations within a species and between individuals within single breeding populations. Sometimes these variations appear to be the result of differences in responsiveness to melatonin; in other cases, variations in photoperiod responsiveness may depend on differences in patterns of melatonin secretion related to circadian variation. Sites of action for melatonin in mammals are not yet well characterized, but potential targets of particular interest include the pars tuberalis of the pituitary gland and the suprachiasmatic nuclei. Both these sites exhibit uptake of radiolabeled melatonin in various species, and there is some evidence for direct action of melatonin at these sites. However, it appears that there are species differences with respect to the importance and specific functions of various melatonin target sites.  相似文献   

7.
Melatonin, which is able to enter all tissues and all compartments of the cell, acts in a highly pleiotropic fashion. Some melatonin effects are mediated by membrane receptors, others are receptor independent. Melatonin is produced in the pineal gland and various extrapineal organs of vertebrates, but is also found in invertebrates, angiosperms, and unicells. In mammals, melatonin elicits various secondary humoral responses, e.g., in the immune system via interleukin-4 and other cytokines and in the brain by modulation of NO formation. Melatonin is also a powerful radical scavenger, terminating free radical reaction chains initiated by photooxidants, hydroxyl or peroxyl radicals. The protective potency of this indoleamine is demonstrated by various experiments.  相似文献   

8.
Melatonin, which is able to enter all tissues and all compartments of the cell, acts in a highly pleiotropic fashion. Some melatonin effects are mediated by membrane receptors, others are receptor independent. Melatonin is produced in the pineal gland and various extrapineal organs of vertebrates, but is also found in invertebrates, angiosperms, and unicells. In mammals, melatonin elicits various secondary humoral responses, e.g., in the immune system via interleukin-4 and other cytokines and in the brain by modulation of NO formation. Melatonin is also a powerful radical scavenger, terminating free radical reaction chains initiated by photooxidants, hydroxyl or peroxyl radicals. The protective potency of this indoleamine is demonstrated by various experiments.  相似文献   

9.
The circadian rhythm of melatonin production (high melatonin levels at night and low during the day) in the mammalian pineal gland is modified by visible portions of the electromagnetic spectrum, i.e., light, and reportedly by extremely low frequency (ELF) electromagnetic fields as well as by static magnetic field exposure. Both light and non-visible electromagnetic field exposure at night depress the conversion of serotonin (5HT) to melatonin within the pineal gland. Several reports over the last decade showed that the chronic exposure of rats to a 60 Hz electric field, over a range of field strengths, severely attenuated the nighttime rise in pineal melatonin production; however, more recent studies have not confirmed this initial observation. Sinusoidal magnetic field exposure also has been shown to interfere with the nocturnal melatonin forming ability of the pineal gland although the number of studies using these field exposures is small. On the other hand, static magnetic fields have been repeatedly shown to perturb the circadian melatonin rhythm. The field strengths in these studies were almost always in the geomagnetic range (0.2 to 0.7 Gauss or 20 to 70 μtesla) and most often the experimental animals were subjected either to a partial rotation or to a total inversion of the horizontal component of the geomagnetic field. These experiments showed that several parameters in the indole cascade in the pineal gland are modified by these field exposures; thus, pineal cyclic AMP levels, N-acetyltransferase (NAT) activity (the rate limiting enzyme in pineal melatonin production), hydroxyindole-O-methyltransferase (HIOMT) activity (the melatonin forming enzyme), and pineal and blood melatonin concentrations were depressed in various studies. Likewise, increases in pineal levels of 5HT and 5-hydroxyindole acetic acid (5HIAA) were also seen in these glands; these increases are consistent with a depressed melatonin synthesis. The mechanisms whereby non-visible electromagnetic fields influence the melatonin forming ability of the pineal gland remain unknown; however, the retinas in particular have been theorized to serve as magnetoreceptors with the altered melatonin cycle being a consequence of a disturbance in the neural biological clock, i.e., the suprachiasmatic nuclei (SCN) of the hypothalamus, which generates the circadian melatonin rhythm. The disturbances in pineal melatonin production induced by either light exposure or non-visible electromagnetic field exposure at night appear to be the same but whether the underlying mechanisms are similar remains unknown.  相似文献   

10.
The authors examined levels of melatonin in the plasma and various tissues in intact, pinealectomized, and pineal stalk-deflected zebra finches kept under 12:12 LD to determine if the melatonin found in the gastrointestinal tract is secreted in a circadian manner. In intact and pineal stalk-deflected birds, there is a clear day-night rhythm in melatonin content of the plasma, pineal gland, eyes, proventriculus, crop, duodenum, jejunum/ileum, colon, heart, and liver. In contrast, pinealectomy abolished the day-night rhythm. These results indicate that most of the melatonin present in the gastrointestinal tract of zebra finches is of pineal origin. However, some melatonin remained. This suggests that this melatonin may be locally synthesized and has paracrine and/or autocrine functions. Nonetheless, the results do not lend support to the contention that this putative melatonin secretion by the gastrointestinal tract is circadian.  相似文献   

11.
The circadian secretion of melatonin by the pineal gland and retinae is a direct output of circadian oscillators and of the circadian system in many species of vertebrates. This signal affects a broad array of physiological and behavioral processes, making a generalized hypothesis for melatonin function an elusive objective. Still, there are some common features of melatonin function. First, melatonin biosynthesis is always associated with photoreceptors and/or cells that are embryonically derived from photoreceptors. Second, melatonin frequently affects the perception of the photic environment and has as its site of action structures involved in vision. Finally, melatonin affects overt circadian function at least partially via regulation of the hypothalamic suprachiasmatic nucleus (SCN) or its hofnologues. The mechanisms by which melatonin affects circadian rhythms and other downstream processes are unknown, but they include interaction with a class of membrane-bound receptors that affect intracellular processes through guanosine triphosphate (GTP)-binding protein second messenger systems. Investigation of mechanisms by which melatonin affects its target tissues may unveil basic concepts of neuromodulation, visual system function, and the circadian clock.  相似文献   

12.
N-acetyl-5-methoxytryptamine (melatonin) is an endogenous indoleamine produced by all vertebrate organisms. Its production in the pineal gland has been extensively investigated but other organs also synthesize this important amine. Melatonin's functions in organisms are diverse. The actions considered in the current review relate to its ability to function in the reduction of oxidative stress, i.e., molecular damage produced by reactive oxygen and reactive nitrogen species. Numerous publications have now shown that not only is melatonin itself an efficient scavenger of free radicals and related reactants, but so are its by-products cyclic 3-hydroxymelatonin, N1-acetyl-N2-formyl-5-methoxykynuramine, and others. These derivatives are produced sequentially when each functions in the capacity of a free radical scavenger. These successive reactions are referred to as the antioxidant cascade of melatonin. That melatonin has this function within cells has been observed in studies employing time lapse conventional, confocal and multiphoton fluorescent microscopy coupled with the use of appropriate mitochondrial-targeted fluorescent probes. The benefits of melatonin and its metabolites have been described in the brain where they are found to be protective in models of Parkinson's disease, Alzheimer's disease and spinal cord injury. The reader is reminded, however, that data not covered in this review has documented beneficial actions of these amines in every organ where they have been tested. The outlook for the use of melatonin in clinical trials looks encouraging given its low toxicity and high efficacy.  相似文献   

13.
Experiments were conducted to examine whether the refractoriness of the Suffolk ewe to the reproductive effects of day length is associated with a deficit in the generation of the circadian rhythm of melatonin secretion or in the postpineal processing of this photoperiodic message. Using serum luteinizing hormone (LH) concentrations in ovariectomized ewes bearing constant-release estradiol implants as a marker of reproductive induction, ewes with intact pineal glands were found to become unresponsive to fixed artificial photoperiods that initially had been either inductive (short days) or inhibitory (long days). The loss of the photoperiodic response was not associated with notable changes in the 24-h secretory pattern of melatonin, which remained characteristically low throughout the day and rose at night. In pinealectomized ewes, nightly infusion of a stimulatory pattern of melatonin (simulating that seen on short days) initially provoked reproductive induction; this response then lessened over much the same time course that pineal intact ewes became refractory to short days. These results support the hypothesis that photorefractoriness reflects a deficit in the postpineal processing of the photoperiodic message. Further, in view of recent evidence that photorefractoriness normally leads to both onset and cessation of the breeding season in Suffolk ewes maintained outdoors, these findings suggest that the loss of response to the melatonin signal contributes to at least one of these reproductive transitions, the cessation of the breeding season, under natural environmental conditions.  相似文献   

14.
New insights into ancient seasonal life timers   总被引:2,自引:0,他引:2  
Organisms must adapt to seasonal changes in the environment and time their physiology accordingly. In vertebrates, the annual change in photoperiod is often critical for entraining the neuroendocrine pathways, which drive seasonal metabolic and reproductive cycles. These cycles depend on thyroid hormone (TH), reflecting its ancestral role in metabolic control. Recent studies reveal that - in mammals and birds - TH effects are mediated by the hypothalamus. Photoperiodic manipulations alter hypothalamic TH availability by regulating the expression of TH deiodinases (DIO). In non-mammalian vertebrates, light acts through extraretinal, 'deep brain' photoreceptors, and the eyes are not involved in seasonal photoperiodic responses. In mammals, extraretinal photoreceptors have been lost, and the nocturnal melatonin signal generated from the pineal gland has been co-opted to provide the photoperiodic message. Pineal function is phased to the light-dark cycle by retinal input, and photoperiodic changes in melatonin secretion control neuroendocrine pathway function. New evidence indicates that these comparatively divergent photosensensory mechanisms re-converge in the pars tuberalis of the pituitary, lying beneath the hypothalamus. In all vertebrates studied, the pars tuberalis secretes thyrotrophin in a light- or melatonin-sensitive manner, to act on neighbouring hypothalamic DIO expressing cells. Hence, an ancient and fundamentally conserved brain thyroid signalling system governs seasonal biology in vertebrates.  相似文献   

15.
The defining feature of the pineal gland is the capacity to function as a melatonin factory that operates on a ~24 h schedule, reflecting the unique synthetic capacities of the pinealocyte. Melatonin synthesis is typically elevated at night and serves to provide the organism with a signal of nighttime. Melatonin levels can be viewed as hands of the clock. Issues relating to the evolutionary events leading up to the immergence of this system have not received significant attention. When did melatonin synthesis appear in the evolutionary line leading to vertebrates? When did a distinct pineal gland first appear? What were the forces driving this evolutionary trend? As more knowledge has grown about the pinealocyte and the relationship it has to retinal photoreceptors, it has become possible to generate a plausible hypothesis to explain how the pineal gland and the melatonin rhythm evolved. At the heart of the hypothesis is the melatonin rhythm enzyme arylalkylamine N‐acetyltransferase (AANAT). The advances supporting the hypothesis will be reviewed here and expanded beyond the original foundation; the hypothesis and its implications will be addressed.  相似文献   

16.
Abstract: The present study describes the development of a new technique to measure melatonin contents in the pineal gland of freely moving rats, by means of on-line microdialysis. The transcerebral cannula was modified, and a sensitive assay of melatonin, using HPLC with fluori-metric detection, was set up. With this system it is possible to monitor the melatonin levels on-line in the pineal gland during day-and nighttime. The nightly increase in melatonin release was recorded. Tetrodotoxin had an inhibitory effect on nighttime levels, whereas even high concentrations did not alter the daytime level. From this we conclude that neuronal activity is necessary to synthesize melatonin and that during daytime no net neuronal activity is present. Melatonin levels could be greatly enhanced by systemic administration of the β-agonist isoprenaline (ISO). Also, local infusion of ISO or 8-bromoadenosine 3',5'-cyclic monophosphate, an analogue of the second messenger cyclic AMP, resulted in increased melatonin levels, demonstrating the presence of β-adrenergic receptors, coupled to a cyclic AMP-based second messenger system, on the pineal gland. Injection of phenylephrine had no effect on daytime levels. Only when administered during ISO-induced stimulation of melatonin release did it enhance this stimulated release. This proved the regulatory role of α1-receptors on pinealocytes. The method presented is of special interest for investigating the innervation of the pineal gland and the biochemical processes that regulate the biosynthesis of melatonin. Also, for studies on the diurnal rhythms of melatonin release and factors that influence these rhythms in freely moving animals, this model will be of great value.  相似文献   

17.
蜜蜂褪黑素的测定方法   总被引:1,自引:0,他引:1  
在脊椎动物中,褪黑素(5-甲氧基-N-乙酰色胺,MLT)是一种由松果体分泌的具有典型光周期信号作用的神经内分泌激素。近年在昆虫头部也发现了这种化学物质。该文简述了褪黑素常见测定方法,详细介绍了褪黑素的免疫测定方法RIA(radionimmunoassay),并使用该方法初步测定了中华蜜蜂ApisceranaFabricius工蜂头部褪黑素的含量,结果显示褪黑素含量与工蜂的社会分工相关。  相似文献   

18.
The gastrointestinal tract (GIT) is a major source of extrapineal melatonin. In some animals, tissue concentrations of melatonin in the GIT surpass blood levels by 10-100 times and the digestive tract contributes significantly to melatonin concentrations in the peripheral blood, particularly during the day. Some melatonin found in the GIT may originate from the pineal gland, as the organs of the digestive system contain binding sites, which in some species exhibit circadian variation. Unlike the production of pineal melatonin, which is under the photoperiodic control, release of GI melatonin seems to be related to periodicity of food intake. Melatonin and melatonin binding sites were localized in all GI tissues of mammalian and avian embryos. Postnatally, melatonin was localized in the GIT of newborn mice and rats. Phylogenetically, melatonin and melatonin binding sites were detected in GIT of numerous mammals, birds and lower vertebrates. Melatonin is probably produced in the serotonin-rich enterochromaffin cells (EC) of the GI mucosa and can be released into the portal vein postprandially. In addition, melatonin can act as an autocrine or a paracrine hormone affecting the function of GI epithelium, lymphatic tissues of the immune system and the smooth muscles of the digestive tube. Finally, melatonin may act as a luminal hormone, synchronizing the sequential digestive processes. Higher peripheral and tissue levels of melatonin were observed not only after food intake but also after a long-term food deprivation. Such melatonin release may have a direct effect on the various GI tissues but may also act indirectly via the CNS; such action might be mediated by sympathetic or parasympathetic nerves. Melatonin can protect GI mucosa from ulceration by its antioxidant action, stimulation of the immune system and by fostering microcirculation and epithelial regeneration. Melatonin may reduce the secretion of pepsin and the hydrochloric acid and influence the activity of the myoelectric complexes of the gut via its action in the CNS. Tissue or blood levels of melatonin may serve as a marker of GI lesions or tumors. Clinically, melatonin has a potential for a prevention or treatment of colorectal cancer, ulcerative colitis, irritable bowel syndrome, children colic and diarrhea.  相似文献   

19.
Melatonin: A potential regulator of plant growth and development?   总被引:5,自引:0,他引:5  
Summary Recent research has reported the presence of melatonin (N-acetyl-5-methoxytryptamine), a mammalian indoleamine neurohormone, in higher plants, indicating that melatonin may be an important metabolic regulator that has been highly conserved across biological kingdoms. Melatonin is synthesized from tryptophan in the mammalian pineal gland and a similar biosynthetic pathway was recently described in St. John's wort shoot tissues, wherein radiolabel from tryptophan was recovered in serotonin and melatonin as well as indoleacetic acid. There is growing information describing melatonin control of physiological processes in mammals, yeast, and bacteria, including diurnal responses, detoxification of free radicals, and environmental adaptations. However, at the current time, there is no known specific role for melatonin in plant physiology. Alterations in melatonin concentrations in plant tissues have been shown to affect root development, mitosis, and mitotic spindle formation. The recent advancements in melatonin research in plants and some directions for important areas of future research are reviewed in this article.  相似文献   

20.
The pineal controls the reproductive response of ewes to both stimulatory (short) and inhibitory (long) day lengths. Melatonin, a pineal hormone whose nocturnal secretion is entrained by photoperiod, mediates the effect of stimulatory photoperiod. We now report that melatonin also mediates the effect of inhibitory day length, monitored as response to estradiol negative feedback on luteinizing hormone (LH) secretion. Ovariectomized, estradiol-implanted ewes were pinealectomized and intravenously infused with melatonin to restore the nightly melatonin rise. Following transfer from short to long days, and a concurrent switch from short- to long-day melatonin patterns, LH dropped precipitously in pinealectomized ewes, matching the photoinhibitory response of pineal intact controls. LH dropped similarly in pinealectomized ewes when long-day melatonin was infused under short days. Pinealectomized ewes transferred from long to short days displayed a marked LH rise, provided melatonin was also switched to the short-day pattern. LH remained suppressed if long-day melatonin was infused following transfer to short days. These data indicate the nighttime melatonin rise mediates reproductive responses to inhibitory, as well as stimulatory photoperiods; they further suggest the duration of this rise controls suppression of LH under long days. Rather than being strictly pro- or antigonadal, the pineal participates in measuring day length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号