首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human NADH-cytochrome b5 reductase (EC 1.6.2.2) contains 4 cyteine residues (Cys-203, -273, -283, and -297). Cys-283 was previously proposed to be involved in NADH binding by chemical modification (Hackett, C. S., Novoa, W. B., Ozols, J., and Strittmatter, P. (1986) J. Biol. Chem. 261, 9854-9857). In the present study the role of cysteines in the enzyme was probed by replacing these residues by Ser, Ala, or Gly employing site-directed mutagenesis and chemical modification. Four mutants, in which 1 of the 4 Cys residues was replaced by Ser, retained comparable kcat and Km values to those of the wild type. All of these mutants were as sensitive as the wild type to treatment with SH modifiers, while a double mutant, C273S/C283S was resistant. Since inhibition by SH modifiers was protected by NADH, Cys-273 and Cys-283 were implicated to be close to the NADH-binding site. C273A and C273A/C283A mutants showed approximately one-fifth of the enzyme-FAD reduction rate of the wild type as revealed by steady-state kinetics and by stopped-flow analysis. Anaerobic titration has shown that reduction and re-oxidation processes including formation of the red semiquinone of these mutants were not significantly altered from those of the wild type. From these results it was concluded that none of the Cys residues of the enzyme are essential in the catalytic reaction, but Cys-273 conserved among the enzymes homologous to NADH-cytochrome b5 reductase homologous to NADH-cytochrome b5 reductase plays role(s) in facilitating the reaction. A difference spectrum with a peak at 317 nm, which was formerly considered to be derived from the interaction between NAD+ and Cys-283 of the reduced enzyme, appeared upon binding of NAD+ not only to the reduced wild type enzyme but also to the C273A/C283A mutant in which both of the Cys residues close to the NADH-binding site were replaced.  相似文献   

2.
Lysine residues outside of the NADH-binding site in the soluble catalytic fragment of cytochrome b5 reductase were modified with ethyl acetimidate and acetic anhydride while the binding site was protected by formation of the stable oxidized nucleotide-reduced flavoprotein complex. This treatment had a minimal effect on enzyme activity; the turnover number with potassium ferricyanide was 45,300 in the native reductase and 39,200 in the derivative. Subsequent reaction with [3H]acetic anhydride after the removal of NADH resulted in the loss of 91% of the enzyme activity and the incorporation of 1.9 eq of acetyl groups into the protein. Treatment with 1 M hydroxylamine at pH 13 indicated that only lysine residues were acetylated, and fragmentation of the derivative with cyanogen bromide and subfragmentation with trypsin and chymotrypsin demonstrated that only Lys110 was labeled at high specific activity, with a stoichiometry of 0.83 acetyl groups/mol, in good agreement with the loss of enzyme activity observed. The remaining label was distributed at low levels among four or more additional lysine residues. These results demonstrate that only Lys110 is specifically protected by NADH and is therefore the residue which provides the epsilon-amino group implicated in NADH binding in cytochrome b5 reductase.  相似文献   

3.
N alpha-(4-Amino-4-deoxy-10-methylpteroyl)-N epsilon-(4-azido-5- [125I]iodosalicylyl)-L-lysine, a photoaffinity analogue of methotrexate, is only 2-fold less potent than methotrexate in the inhibition of murine L1210 dihydrofolate reductase. Irradiation of the enzyme in the presence of an equimolar concentration of the 125I-labeled analogue ultimately leads to an 8% incorporation of the photoprobe. A 100-fold molar excess of methotrexate essentially blocks this incorporation. Cyanogen bromide digestion of the labeled enzyme, followed by high-pressure liquid chromatography purification of the generated peptides, indicates that greater than 85% of the total radioactivity is incorporated into a single cyanogen bromide peptide. Sequence analysis revealed this peptide to be residues 53-111, with a majority of the radioactivity centered around residues 63-65 (Lys-Asn-Arg). These data demonstrate that the photoaffinity analogue specifically binds to dihydrofolate reductase and covalently modifies the enzyme following irradiation and is therefore a photolabeling agent useful for probing the inhibitor binding domain of the enzyme.  相似文献   

4.
Wild-type glutamate dehydrogenase (EC 1.4.1.4) from Salmonella typhimurium reacts at 25 degrees C in 0.1 M phosphate buffer, pH 7, with the nucleotide analogue 2-[(4-bromo-2,3-dioxobutyl)thio]-adenosine 2',5'-bisphosphate (2-BDB-TA 2',5'-DP) to give 78% inactivation. Protection against inactivation was achieved with NADPH, indicating that modification occurred in the region of the coenzyme binding site. After reaction of the enzyme with 2-BDB-TA 2',5'-DP, the dioxo moiety of the bound reagent was reduced with [3H]NaBH4. The radioactive peptide which corresponds to the sequence Leu282-Cys283-Glu284-Ile285-Lys286 was isolated by HPLC from tryptic digests of inactive modified enzyme but was absent in digests of active enzyme modified in the presence of NADPH. Mutant enzyme E284Q was 64% inactived by 2-BDB-TA 2',5'-DP and modification of the corresponding Leu282-Lys286 peptide was found, while neither mutant enzyme C283I nor C283I:E284Q was inactivated by the nucleotide analogue and no corresponding radioactive peptides were found. These results show that cysteine-283 is the target of the reagent and is located near the coenzyme binding site. The nucleotide analogue 2-[(4-bromo-2,3-dioxobutyl)thio]-1,N6-ethenoadenosine 2',5'-bisphosphate (2-BDB-T epsilon A 2',5'-DP) has also been shown to react with cysteine-283 (L. Haeffner-Gormley et al., 1991, J. Biol. Chem. 266, 5388-5394). However, the predominant form of the Leu282-Lys286 peptide after reaction with 2-BDB-TA 2',5'-DP contained only 0.17 mol tritium/mol leucine, whereas the 2-BDB-T epsilon A 2',5'-DP-modified peptide contained 1.80 mol tritium/mol leucine; these results indicate that the reaction product of 2-BDB-T epsilon A 2',5'-DP retains two reducible carbonyl groups while these are not available in the product of 2-BDB-TA 2',5'-DP. It is suggested that cysteine-283 reacts primarily at a carbonyl group of 2-BDB-TA 2',5'-DP to form a thiohemiacetal derivative, while it reacts at the methylene group of 2-BDB-T epsilon A 2',5'-DP with displacement of bromide. Both nucleotide analogues also yielded, in small amount, a crosslinked peptide containing the sequences 282-286 and 299-333, indicating proximity between these regions in the native structure.  相似文献   

5.
As a part of a study of the complete amino acid sequence of actin we have determined the sequences of five cyanogen bromide peptides, which together contain 158 amino acid residues, including the two ends of the molecule. The five peptides are: CB-13 (residues 1 to 44 in the intact chain), CB-11 (residues 83 to 119), CB-12 (residues 228 to 268), CB-8 (residues 283 to 298), and CB-9 (residues 355 to 374). Each of the peptides except CB-11 has one sulfhydryl group, and these peptides thus account for 4 of the 5 cysteines in actin. The reactivity of actin --SH groups toward N-ethylmaleimide was investigated, and it was found that Cys-373 (in CB-9 adjacent to the COOH-terminal phenylalanine) is the first to react with this reagent.  相似文献   

6.
The activity of rat liver microsomal glutathione transferase is increased by limited tryptic proteolysis; the membrane-bound and purified forms of the enzyme are activated about 5- and 10-fold respectively. The cleavage sites that correlate with this activation were determined by amino acid sequence analysis to be located after Lys-4 and Lys-41. Differences in the relative extent of cleavage at these two sites did not consistently affect the degree of activation. Thus the data support the conclusion that cleavage at either site results in activation. The trypsin-activated enzyme was compared with the form activated with N-ethylmaleimide, which modifies Cys-49. These two differently activated forms were found to have similar kinetic parameters, which differ from those of the unactivated enzyme. The relatedness of the two types of activation is also demonstrated by the observation that microsomal glutathione transferase fully activated by N-ethylmaleimide is virtually resistant to further activation by trypsin. This is the case despite the fact that the N-ethylmaleimide-activated enzyme is much more susceptible to trypsin cleavage at Lys-41 than is the untreated enzyme. The latter observation indicates that activation with N-ethylmaleimide is accompanied by a conformational change involving Lys-41.  相似文献   

7.
The reaction between N-ethylmaleimide and (Na+ + K+)-ATPase, performed under ligand conditions which produce each of the kinetic states of the enzyme and their associated conformational forms, was examined through an analysis of the inhibition of enzymatic activity and the incorporation of radiolabeled reagent into the enzyme. The inactivation reactions displayed pseudo-first order kinetics with respect to the concentration of active enzyme, indicating that the loss of activity is associated with the alkylation of a unique sulfhydryl group. In the absence of enzyme phosphorylation, the nucleophilicity of this sulfhydryl group is affected primarily by the nature of the monovalent cation present and does not correlate with the conformational state. A method for determining the actual concentration and specific radioactivity of radiolabeled N-ethylmaleimide during the reaction with (Na+ + K+)-ATPase was developed, allowing the measurement of the total reactive sulfhydryl groups of native (Na+ + K+)-ATPase under conditions identical with those of the inactivation studies. The labeling of the enzyme complex is associated almost exclusively with the large polypeptide, which contains four sulfhydryl groups which react with this reagent. One of these residues is presumably the sulfhydryl responsible for inactivation of the enzyme. Two react stoichiometrically and rapidly with N-ethylmaleimide under all conditions. The nucleophilicity of the fourth sulfhydryl group is governed by the conformational state of the enzyme, but the alkylation of this residue does not result in loss of enzymatic activity.  相似文献   

8.
A water-soluble carbodiimide has been used to promote the formation of amide bonds between carboxyl residues on cytochrome b5 and lysyl residues on cytochrome b5 reductase. The visible and UV absorption spectrum of the purified cross-linked complex was identical with the sum of the spectra of the individual enzymes, and the average apparent molecular weight of the complex, determined by sodium dodecyl sulfate-gel electrophoresis, was within 12% of the sum of the apparent molecular weights of the two monomeric enzymes, indicating that the cross-linked derivative was a dimer containing one molecule each of cytochrome b5 and cytochrome b5 reductase. When reconstituted into phospholipid vesicles, the amphipathic derivative showed substantially reduced Vmax values with the soluble electron acceptors potassium ferricyanide, cytochrome b5 heme peptide and cytochrome c, and with the membrane-bound acceptors amphipathic cytochrome b5 and stearyl-CoA desaturase. The soluble catalytic fragment of the derivative, produced by limited digestion with subtilisin Carlsberg, showed similar decreases in Vmax values with the above soluble acceptors. In contrast, intradimer electron transfer in the soluble fragment, measured by stopped flow spectrophotometry at 2 degrees C was very efficient. Ninety per cent of the cytochrome b5 in the derivative was reduced with a first order rate constant of 51 s-1 upon the addition of NADH; the transfer of electrons from NADH to the reductase FAD prosthetic group, which is known to be the rate-limiting step in the reductase reaction mechanism, proceeded with an apparent rate constant of 57 s-1 under these conditions. These kinetic data show that the enzymes in the complex are cross-linked together at the surfaces involved in protein-protein contacts during electron transfer in an orientation similar to that assumed during electron transfer between the free proteins.  相似文献   

9.
Prolyl oligopeptidase, which is involved in memory disorders, is a member of a new family of serine peptidases. In addition to the peptidase domain, the enzyme contains a beta-propeller, which excludes large peptides from the active site. The enzyme is inhibited with thiol reagents, possibly by reacting with Cys-255 located close to the substrate binding site. This assumption was tested with the Cys-255 --> Thr, Cys-255 --> Ala, and Cys-255 --> Ser variants of prolyl oligopeptidase. In contrast to the wild type enzyme, the Cys-255 --> Thr variant was not inhibited with N-ethylmaleimide, indicating that Cys-255, of the 16 free cysteine residues, exclusively accounts for the enzyme inhibition. Unlike the wild type enzyme that showed a doubly bell-shaped pH rate profile, the modified enzyme displayed a single bell-shaped pH dependence with benzyloxycarbonyl-Gly-Pro-naphthylamide. It was the high pH form of the enzyme that virtually disappeared with all three enzyme variants. A substantial reduction was also observed in k(cat)/K(m) for the aminobenzoyl-Ser-Pro-Phe(NO(2))-Ala-OH substrate. The high pK(a) (9.77) of Cys-255 determined by titration with N-ethylmaleimide excluded the possibility that ionization of the thiol group was responsible for generation of the two active enzyme forms. The impaired activity of the enzyme variants could be rationalized in terms of weaker binding, which manifests itself in high K(m) for substrates and high K(i) for inhibitors, like benzyloxycarbonyl-Gly-Pro-OH and aminobenzoyl-Ser-d-Pro-Phe(NO(2))-Ala-OH. It was concluded that, besides selecting substrates by size, the beta-propeller domain containing Cys-255 remarkably contributed to catalysis of the peptidase domain.  相似文献   

10.
The formation of covalent binary complexes of thymidylate synthase and its nucleotide substrate dUMP, product dTMP, and inhibitor, 5-fluorodeoxyuridylate (FdUMP) was investigated using the trichloroacetic acid precipitation method. It was observed that, in addition to FdUMP, both dUMP and dTMP were capable of covalent interactions with the enzyme in the absence of added folates. The presence of folate, dihydrofolate, or tetrahydrofolate (H4folate) was found to produce substantial enhancements in the covalent binding of both FdUMP and dUMP to the enzyme with H4folate being the most effective agent. Further, covalent binary complexes of the enzyme with the three radiolabeled nucleotides were isolated by trichloroacetic acid precipitation and subjected to CNBr cleavage. The active-site CNBr peptide was isolated by reverse phase high performance liquid chromatography, and the first five N-terminal amino acid residues were sequenced by the dansyl-Edman procedure. Each active site peptide obtained from the covalent binary complexes as well as that from the covalent inhibitory ternary complex formed from enzyme, FdUMP, and 5,10-methylene-H4folate exhibited an identical sequence of Ala-Leu-Pro-Pro-(X)-, and the 5th amino acid was found to be associated with radiolabeled nucleotide ligand. Dansyl-Edman sequence analysis of the active site CNBr peptide, derived from enzyme which had been treated with iodoacetic acid, gave a sequence of Ala-Leu-Pro-Pro-CmCys (where CmCys is carboxymethylcysteine), thus confirming the fact that the fifth residue from the N terminus is Cys-198. In all the cases, the active site Cys-198 residue was found to be covalently linked to the nucleotides. These results provide unequivocal proof that the covalent binary complexes of enzyme with dUMP and dTMP predicted in the catalytic reaction mechanism actually exist.  相似文献   

11.
The inactivation of ornithine aminotransferase by an enzyme-activated irreversible inhibitor 4-aminohex-5-ynoate was accompanied by stoichiometric binding of the radiolabeled compound. Distribution of radiolabel among separated tryptic peptides indicated that more than one amino acid residue had reacted. Lys-292 and Cys-388 were positively identified. Reduction with borohydride was necessary to stabilize the adduct formed with Lys-292, and the relevant peptide prepared after this treatment contained equimolar amounts of inhibitor and coenzyme. The coenzyme chromophore in this peptide showed strong negative circular dichroism. A mechanism consistent with these observations is proposed.  相似文献   

12.
The mitochondrial F1-ATPase is irreversibly inactivated by the adenine nucleotide analogue, p-fluorosulfonylbenzoyl-5'-adenosine. This inactivation is partly prevented by the presence of bound adenine nucleotides. Inactivations of the ATPase with p-fluorosulfonyl[14C]benzoyl-5'-adenosine were most efficiently accomplished with the nucleotide-free enzyme at pH 7.0, in a buffer containing 20% glycerol. Under these conditions, 4.2 g atoms of 14C are incorporated per 350,000 g of enzyme when the ATPase is inactivated by 90% by its reaction with 2 mM p-fluorosulfonyl[14C]benzoyl-5'-adenosine. Isolation of the component polypeptide chains of the labeled ATPase showed that all of the radioactivity was associated with the two largest subunits. The isolated alpha subunit contained 0.45 g atom of 14C/mol and the isolated beta subunit contained 0.88 g atom of 14C/mol. Hence, the inactivation can be correlated with the incorporation of 14C into the beta subunit. This suggests that the hydrolytic site of the enzyme resides on this subunit. The majority of the radioactivity in a tryptic digest of labeled beta subunit is contained ina tryptic peptide that has the following amino acid sequence: Ile-Met-Asp-Pro-Asn-Ile-Val-Gly-Ser-Glu-His-Tyr-Asp-Val-Ala-Arg, where Tyr is the radioactive derivative of the tyrosine residue that was sulfonylated during the inactivation.  相似文献   

13.
Abstract Respiratory nitrate reductase from the denitrifying bacterium Pseudomonas stutzeri is an iron-sulfur enzyme containing the molybdenum cofactor. Hydrolysis of native nitrate reductase with aqueous sulfuric acid revealed 0.92 mol of 5'-GMP per mol of enzyme. The pterin present in the molybdenum cofactor was liberated from the protein and reacted with iodoacetamide. The resulting di(carboxamidomethyl) (cam) derivative was purified on a C18-cartridge and analyzed for its structural elements. Treatment of the cam derivative with nucleotide pyrophosphatase and subsequent HPLC analysis revealed the formation of di(cam)molybdopterin and 5'-GMP at a 1:1 molar ratio and with a yield of 79% with respect to the molybdenum content of the enzyme. Treatment of the cam derivative with nucleotide pyrophosphatase and alkaline phosphatase led to the liberation of 0.51 mol dephosphodi(cam)molybdopterin and of 0.59 mol guanosine per mol of enzyme, which is equal to a molar ratio of 1:2.2. The results indicate, that the organic moiety of the molybdenum cofactor of nitrate reductase from P. stutzeri is molybdopterin guanine dinucleotide of which one mol is contained per mol of nitrate reductase.  相似文献   

14.
M Fujioka  Y Takata  K Konishi  H Ogawa 《Biochemistry》1987,26(18):5696-5702
Rat liver glycine methyltransferase is completely inactivated by 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB). Treatment of the inactivated enzyme with KCN results in a reactivated enzyme having values of Vmax and S0.5 for S-adenosyl-L-methionine comparable to those of the native enzyme and about a 4-fold greater Km value for glycine. Kinetics of inactivation and reactivation show that one cysteine residue is involved in this process. Reaction of the methyltransferase with iodoacetate leads to partial inactivation of the enzyme; about 22% of the initial activity is retained in the modified enzyme. The relationship between the loss of enzyme activity and the number of iodoacetate molecules incorporated and the sequence analysis of peptides containing the modified residues indicate that carboxymethylation of Cys-282 is responsible for loss of activity. The observations that the activity of the cyanylated glycine methyltransferase shows no decrease upon incubation with iodoacetate and, conversely, the residual activity associated with the iodoacetate-modified enzyme is not abolished by DTNB suggest that Cys-282 is also involved in the inactivation by DTNB. Besides this residue, Cys-185, Cys-246, and Cys-262 are modified upon prolonged incubation with iodoacetate. 5'-[p-(Fluorosulfonyl)benzoyl]adenosine (FSBA) inactivates glycine methyltransferase by forming 1 disulfide/subunit [Fujioka, M., & Ishiguro, Y. (1986) J. Biol. Chem. 261, 6346-6351]. Despite this stoichiometry, treatment of the FSBA-inactivated enzyme with unlabeled iodoacetate and then with iodo[14C]acetate after reduction with 2-mercaptoethanol and subsequent peptide analysis show that the incorporated radioactivity is distributed equally among Cys-185, Cys-246, Cys-262, and Cys-282.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
The role of the three cysteine residues at positions 13, 63 and 133 in Escherichia coli RNAase H, an enzyme that is sensitive to N-ethylmaleimide [Berkower, Leis & Hurwitz (1973) J. Biol. Chem. 248, 5914-5921], was examined by using both site-directed mutagenesis and chemical modification. Novel aspects that were found are as follows. First, none of the cysteine residues is required for activity. Secondly, chemical modification of either Cys-13 or Cys-133 with thiol-blocking reagents inactivates the enzyme, but that of Cys-63 does not. Thus the sensitivity of E. coli RNAase H to N-ethylmaleimide arises not from blocking of the thiol group but from steric hindrance by the modifying group incorporated at either Cys-13 or Cys-133.  相似文献   

17.
Cytosolic 5'-nucleotidase/phosphotransferase (cN-II), specific for purine monophosphates and their deoxyderivatives, acts through the formation of a phosphoenzyme intermediate. Phosphate may either be released leading to 5'-mononucleotide hydrolysis or be transferred to an appropriate nucleoside acceptor, giving rise to a mononucleotide interconversion. Chemical reagents specifically modifying aspartate and glutamate residues inhibit the enzyme, and this inhibition is partially prevented by cN-II substrates and physiological inhibitors. Peptide mapping experiments with the phosphoenzyme previously treated with tritiated borohydride allowed isolation of a radiolabeled peptide. Sequence analysis demonstrated that radioactivity was associated with a hydroxymethyl derivative that resulted from reduction of the Asp-52-phosphate intermediate. Site-directed mutagenesis experiments confirmed the essential role of Asp-52 in the catalytic machinery of the enzyme and suggested also that Asp-54 assists in the formation of the acyl phosphate species. From sequence alignments we conclude that cytosolic 5'-nucleotidase, along with other nucleotidases, belong to a large superfamily of hydrolases with different substrate specificities and functional roles.  相似文献   

18.
The complete amino acid sequence of the subunit of branched-chain amino acid aminotransferase (transaminase B, EC 2.6.1.42) of Salmonella typhimurium was determined. An Escherichia coli recombinant containing the ilvGEDAY gene cluster of Salmonella was used as the source of the hexameric enzyme. The peptide fragments used for sequencing were generated by treatment with trypsin, Staphylococcus aureus V8 protease, endoproteinase Lys-C, and cyanogen bromide. The enzyme subunit contains 308 residues and has a molecular weight of 33,920. To determine the coenzyme-binding site, the pyridoxal 5-phosphate containing enzyme was treated with tritiated sodium borohydride prior to trypsin digestion. Peptide map comparisons with an apoenzyme tryptic digest and monitoring radioactivity incorporation allowed identification of the pyridoxylated peptide, which was then isolated and sequenced. The coenzyme-binding site is the lysyl residue at position 159. The amino acid sequence of Salmonella transaminase B is 97.4% identical with that of Escherichia coli, differing in only eight amino acid positions. Sequence comparisons of transaminase B to other known aminotransferase sequences revealed limited sequence similarity (24-33%) when conserved amino acid substitutions are allowed and alignments were forced to occur on the coenzyme-binding site.  相似文献   

19.
Incubation of rat hepatocytes with glucagon results in a time- and dose-dependent decrease in the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase. We demonstrate, using immunoprecipitation of radiolabeled enzyme, that 10 nM glucagon inhibits the synthesis of the enzyme by approximately 50%, but that the apparent rate of degradation of the enzyme is not affected by the hormone. We also demonstrate that the intact reductase polypeptide contained phosphoserine. We conclude that glucagon inhibits the activity of the reductase by inhibition of enzyme synthesis.  相似文献   

20.
BACKGROUND: Peptide methionine sulphoxide reductases catalyze the reduction of oxidized methionine residues in proteins. They are implicated in the defense of organisms against oxidative stress and in the regulation of processes involving peptide methionine oxidation/reduction. These enzymes are found in numerous organisms, from bacteria to mammals and plants. Their primary structure shows no significant similarity to any other known protein. RESULTS: The X-ray structure of the peptide methionine sulphoxide reductase from Escherichia coli was determined at 3 A resolution by the multiple wavelength anomalous dispersion method for the selenomethionine-substituted enzyme, and it was refined to 1.9 A resolution for the native enzyme. The 23 kDa protein is folded into an alpha/beta roll and contains a large proportion of coils. Among the three cysteine residues involved in the catalytic mechanism, Cys-51 is positioned at the N terminus of an alpha helix, in a solvent-exposed area composed of highly conserved amino acids. The two others, Cys-198 and Cys-206, are located in the C-terminal coil. CONCLUSIONS: Sequence alignments show that the overall fold of the peptide methionine sulphoxide reductase from E. coli is likely to be conserved in many species. The characteristics observed in the Cys-51 environment are in agreement with the expected accessibility of the active site of an enzyme that reduces methionine sulphoxides in various proteins. Cys-51 could be activated by the influence of an alpha helix dipole. The involvement of the two other cysteine residues in the catalytic mechanism requires a movement of the C-terminal coil. Several conserved amino acids and water molecules are discussed as potential participants in the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号