首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Two kinds of double-stranded oligonucleotides containing a single 8-oxo-7,8-dihydroguanine were labeled with (32)P at their 5' ends and exposed to gamma rays in the frozen aqueous state at 77 K, where both direct and quasi-direct effects of ionizing radiation predominate. Analysis of the oligonucleotides with 20% denaturing polyacrylamide gel electrophoresis revealed no difference in the immediate induction of strand breaks between oligonucleotides containing 8-oxo-7,8-dihydroguanine and their corresponding oligonucleotides with normal guanine, but piperidine-sensitive damage was induced more frequently in the former than in the latter. Sequence analysis of irradiated oligonucleotides showed that not only 8-oxo-7,8-dihydroguanine but also its neighboring bases and the cytosine residue that is paired to it became piperidine-sensitive in both oligonucleotides. These results suggest that 8-oxo-7,8-dihydroguanine, its neighboring bases and the opposite cytosine are candidates for radiation damage hot spots.  相似文献   

2.
Genome integrity is maintained via removal (repair) of DNA lesions and an increased load of such DNA damage has been linked to numerous pathological conditions, including carcinogenesis and ageing. 8-Oxo-7,8-dihydroguanine is one of the most critical lesions of this type. The free 8-oxo-7,8-dihydroguanine produced by the action of a specific DNA glycosylase is a potential source of this compound in urine. To date, there has been no direct, experimental evidence demonstrating that urinary 8-oxo-7,8-dihydroguanine is produced by the base excision repair pathway. For clarification of this issue, we applied a recently developed methodology which involved high performance liquid chromatography pre-purification followed by gas chromatography with isotope dilution mass spectrometric detection to compare the urinary excretion rate of 8-oxo-7,8-dihydroguanine in wild type and OGG1 glycosylase knock out mice. Our study revealed a 26% reduction in urinary level of 8-oxo-7,8-dihydroguanine in OGG1 deficient mice in comparison with the wild type strain. This clearly indicates that the mouse OGG1 glycosylase contributes significantly to the generation of urinary 8-oxo-7,8-dihydroguanine. Therefore, urinary measurements of 8-oxo-7,8-dihydroguanine may be attributed to DNA damage and repair, which in turn suggests that they may be useful in studying associations between DNA repair and disease.  相似文献   

3.
In order to eliminate the possibility that diet may influence urinary oxidative DNA lesion levels, in our experiments we used a recently developed technique involving HPLC pre-purification followed by gas chromatography with isotope dilution mass spectrometric detection. This methodology was applied for the determination of the lesions: 8-oxo-7,8-dihydroguanine (8-oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and 5-(hydroxymethyl)uracil (5HMUra) in the urine of mice fed with nucleic acid free diet and normal, unrestricted diet. The mean levels of 8-oxoGua, 8-oxodGuo and 5HMUra of the animals fed the normal diet reached the mean values of [Formula: See Text], [Formula: See Text] and [Formula: See Text] After feeding the mice for 12 days with nucleic acid free diet the respective values were [Formula: See Text], [Formula: See Text] and [Formula: See Text] respectively. The results clearly demonstrate that irrespective of the diet, the excretion rates were not statistically different during the course of feeding. The respective p values for the differences between lesions in the two types of diets were: 0.13 (8-oxoGua), 0.16 (8-oxodGuo), 0.18 (5-HMUra). Our results clearly indicate that diet does not contribute to urinary excretion of the lesions in mouse model.  相似文献   

4.
UVC-radiation-induced DNA damage was measured in mouse fibroblast cells using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in conjunction with isotopically labeled internal standards. The thymine glycol and formamide lesions were assayed in the form of modified dinucleoside monophosphates. The 8-oxo-7,8-dihydroguanine lesion was measured as the modified nucleoside. DNA damage in cells treated with tirapazamine was also measured. Tirapazamine is a chemotherapeutic agent that acts via a free radical mechanism. The two agents, UVC radiation and tirapazamine, produce markedly different profiles of DNA damage, reflecting their respective mechanisms of action. Both agents produce significant amounts of thymine glycol and formamide damage, but only the former produced a measurable amount of the 8-oxo-7,8-dihydroguanine lesion. The merits of measuring DNA damage at the dimer level are discussed.  相似文献   

5.
5-Formyluracil is a major oxidation product of thymine, formed in DNA in yields comparable to that of 8-oxo-7,8-dihydroguanine by exposure to gamma-irradiation. Whereas the repair pathways for removal and the biological effects of persisting 8-oxo-7,8-dihydroguanine are much elucidated, much less attention has been paid to the cellular implications of 5-formyluracil in DNA. Here we review the present state of knowledge in this important area within research on oxidative DNA damage.  相似文献   

6.
Singlet oxygen, hydrogen peroxide, hydroxyl radical and hydrogen peroxide are the reactive oxygen species (ROS) considered most responsible for producing oxidative stress in cells and organisms. Singlet oxygen interacts preferentially with guanine to produce 8-oxo-7,8-dihydroguanine and spiroiminodihydantoin. DNA damage due to the latter lesion has not been detected directly in the DNA of cells exposed to singlet oxygen. In this study, the singlet oxygen-induced lesion was isolated from a short synthetic oligomer after exposure to UVA radiation in the presence of methylene blue. The lesion could be enzymatically excised from the oligomer in the form of a modified dinucleoside monophosphate. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), the singlet oxygen lesion was detected in the form of modified dinucleoside monophosphates in double-stranded DNA and in the DNA of HeLa cells exposed to singlet oxygen. Pentamer containing the singlet oxygen-induced lesion and an isotopic label was synthesized as an internal standard for quantifying the lesion and served as well as for correcting for losses of product during sample preparation.  相似文献   

7.
The gene 5 protein (g5p) from Ff filamentous virus is a model single-stranded DNA (ssDNA) binding protein that has an oligonucleotide/oligosaccharide binding (OB)-fold structure and binding properties in common with other ssDNA-binding proteins. In the present work, we use circular dichroism (CD) spectroscopy to analyze the effects of amino acid substitutions on the binding of g5p to double-stranded DNA (dsDNA) compared to its binding to ssDNA. CD titrations of poly[d(A). d(T)] with mutants of each of the five tyrosines of the g5p showed that the 229-nm CD band of Tyr34, a tyrosine at the interface of adjacent protein dimers, is reversed in sign upon binding to the dsDNA, poly[d(A). d(T)]. This effect is like that previously found for g5p binding to ssDNAs, suggesting there are similarities in the protein-protein interactions when g5p binds to dsDNA and ssDNA. However, there are differences, and the possible perturbation of a second tyrosine, Tyr41, in the complex with dsDNA. Three mutant proteins (Y26F, Y34F, and Y41H) reduced the melting temperature of poly[d(A). d(T)] by 67 degrees C, but the wild-type g5p only reduced it by 2 degrees C. This enhanced ability of the mutants to denature dsDNA suggests that their binding affinities to dsDNA are reduced more than are their binding affinities to ssDNA. Finally, we present evidence that when poly[d(A). d(T)] is melted in the presence of the wild-type, Y26F, or Y34F proteins, the poly[d(A)] and poly[d(T)] strands are separately sequestered such that renaturation of the duplex is facilitated in 2 mM Na(+).  相似文献   

8.
Ionizing radiations often induce multiple and clustered DNA lesions at the site of DNA interaction. As a model, we have studied the toxicity and the mutagenicity of two adjacent oxidative bases as clustered DNA lesions in mammalian cells using shuttle vectors. The chosen oxidative lesions were 8-oxo-7,8-dihydroguanine, the formylamine residue resulting from the oxidation of a pyrimidine base and the tandem lesion 8-oxo-7,8-dihydroguanine/formylamine where both modifications are located at a vicinal position. A single-stranded DNA shuttle vector carrying a unique DNA lesion was constructed, transfected into simian COS7 cells and mutations induced after replication in mammalian cells were screened in bacteria. 8-oxo-7,8-dihydroguanine, as expected, does not affect greatly survival (70% bypass) whereas formylamine and the tandem lesions are blocking alterations, DNA polymerase bypass being of 45% and 17%, respectively. Base insertion opposite the lesion was studied. Under our experimental conditions, replication of 8-oxo-7, 8-dihydroguanine finally gives rise to guanine:cytosine pairing, rendering this lesion only slightly mutagenic. This is not the case for the formylamine that codes preferentially for adenine (71%). In addition, one-base deletions were observed targeted to the site to the lesion. Cytosine and thymine were inserted opposite the lesion with similar but low frequencies. Thus, coding properties of the formylamine render this residue very mutagenic when coming from the oxidative alteration of a cytosine. The coding properties of the tandem damage are a combination of the contribution of the two isolated lesions with a very high percentage of adenine insertion (94%) opposite the formylamine residue of the tandem lesion. The toxicity as well as the mutation spectrum of the tandem lesion allow us to speculate about the molecular mechanism with which the DNA polymerase replicates these two lesions.  相似文献   

9.
In the present work, positively charged chitosan (CS) and negatively charged DNA were alternately adsorbed on the surface of pyrolytic graphite (PG) electrodes, forming (CS/DNA)(n) layer-by-layer films. Cyclic voltammetry (CV) results showed that negatively charged electroactive probe, 9,10-anthraquinone-2,6-disulfonate (AQDS), could be loaded into the (CS/DNA)(n) films from its solution (1 mM at pH 7.0, containing 0.1 M NaCl), designated as (CS/DNA)(n)-AQDS, and then released from the films in blank buffers. The loading/release behavior of (CS/DNA)(n) films toward AQDS was found to be obviously different between double-stranded (dsDNA) and single-stranded DNA (ssDNA). The release rate of AQDS from (CS/dsDNA)(n) films was much slower than that from the ssDNA counterparts mainly because AQDS could be intercalated into the double helix structure of dsDNA despite the repulsion between likely charged AQDS and DNA. The loading/release behavior of (CS/DNA)(n) films toward AQDS in recognition of dsDNA and ssDNA was then successfully applied to electrochemically detect the damage of natural DNA caused by Fenton reaction. To further understand the essence of the interactions involved in the AQDS loading/release process for (CS/DNA)(n) films, comparison experiments were performed, in which either positively charged intercalator brilliant cresyl blue (BCB) was used to replace AQDS as the redox probe, or poly(diallyldimethylammonium) (PDDA) with relatively high positive charge density was used to replace CS as the constituent of layer-by-layer films with DNA. The loading/release behavior of DNA films toward electroactive intercalator may open new possibilities for dsDNA/ssDNA recognition and of DNA damage detection by electrochemistry.  相似文献   

10.
When 8-oxo-7,8-dihydro-2′-deoxyguanosine in potassium phosphate buffer of pH 7.4 was bubbled by nitric oxide at room temperature under aerobic conditions, two major products were formed. They were identified as the diastereomers of spiroiminodihydantoin deoxyribonucleoside on the basis of their identical ESI-MS and UV spectra and HPLC retention times with those of the major products in reaction of 8-oxo-7,8-dihydro-2′-deoxyguanosine with hypochlorous acid. A 1000-fold excess of 2′-deoxyguanosine did not inhibit the reaction of 8-oxo-7,8-dihydro-2′-deoxyguanosine with nitric oxide. The results suggest that an 8-oxo-7,8-dihydroguanine moiety formed in DNA may react with nitric oxide in the presence of oxygen molecule generating spiroiminodihydantoin in humans.  相似文献   

11.
Interactions between DNA-intercalating molecules, methylene blue (MB) and doxorubicin (DOX), and gold surface modified by various DNA species and n-hexadecyl mercaptan (HDM) were investigated by cyclic voltammetry (CV). Hydrophilic DOX was completely blocked by the HDM film from contacting the gold electrode whereas hydrophobic MB could readily partition into the film. Unlabeled single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) underwent non-specific adsorption on gold surface but the adsorbed DNA can be partially displaced by HDM. Thiol-labeled ssDNA and dsDNA adsorbed on gold surface via both thiol-gold linkage and non-specific interactions between DNA strands and gold. The non-specific interactions could be interrupted by the addition of HDM, forming a mixed monolayer containing both HDM and DNA attached to the gold surface at 5'-thiol termini. The presence of ssDNA and dsDNA in the monolayer facilitated the redox reaction of MB and DOX on the modified electrode. Both MB and DOX diffuse along the ssDNA in the ssDNA-containing monolayers, and they additionally intercalate into the dsDNA in the dsDNA-containing monolayers. No sufficient evidence is shown to indicate that an organized monolayer is formed by the thiol-labeled dsDNA on gold surface, and that the redox reactions of MB and DOX were carried out by electron transfer through DNA helix.  相似文献   

12.
Interaction of dimeric intercalating dyes with single-stranded DNA.   总被引:5,自引:2,他引:3       下载免费PDF全文
The unsymmetrical cyanine dye thiazole orange homodimer (TOTO) binds to single-stranded DNA (ssDNA, M13mp18 ssDNA) to form a fluorescent complex that is stable under the standard conditions of electrophoresis. The stability of this complex is indistinguishable from that of the corresponding complex of TOTO with double-stranded DNA (dsDNA). To examine if TOTO exhibits any binding preference for dsDNA or ssDNA, transfer of TOTO from pre-labeled complexes to excess unlabeled DNA was assayed by gel electrophoresis. Transfer of TOTO from M13 ssDNA to unlabeled dsDNA proceeds to the same extent as that from M13 dsDNA to unlabeled dsDNA. A substantial amount of the dye is retained by both the M13 ssDNA and M13 dsDNA even when the competing dsDNA is present at a 600-fold weight excess; for both dsDNA and ssDNA, the pre-labeled complex retains approximately one TOTO per 30 bp (dsDNA) or bases (ssDNA). Rapid transfer of dye from both dsDNA and ssDNA complexes is seen at Na+ concentrations > 50 mM. Interestingly, at higher Na+ or Mg2+ concentrations, the M13 ssDNA-TOTO complex appears to be more stable to intrinsic dissociation (dissociation in the absence of competing DNA) than the complex between TOTO and M13 dsDNA. Similar results were obtained with the structurally unrelated dye ethidium homodimer. The dsDNA- and ssDNA-TOTO complexes were further examined by absorption, fluorescence and circular dichroism spectroscopy. The surprising conclusion is that polycationic dyes, such as TOTO and EthD, capable of bis-intercalation, interact with dsDNA and ssDNA with very similar high affinity.  相似文献   

13.
Substrate specificities of bacterial and human AlkB proteins   总被引:2,自引:3,他引:2  
Methylating agents introduce cytotoxic 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) residues into nucleic acids, and it was recently demonstrated that the Escherichia coli AlkB protein and two human homologues, hABH2 and hABH3, can remove these lesions from DNA by oxidative demethylation. Moreover, AlkB and hABH3 were also found to remove 1-meA and 3-meC from RNA, suggesting that cellular RNA repair can occur. We have here studied the preference of AlkB, hABH2 and hABH3 for single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA), and show that AlkB and hABH3 prefer ssDNA, while hABH2 prefers dsDNA. This was consistently observed with three different oligonucleotide substrates, implying that the specificity for single-stranded versus double-stranded DNA is sequence independent. The dsDNA preference of hABH2 was observed only in the presence of magnesium. The activity of the enzymes on single-stranded RNA (ssRNA), double-stranded RNA (dsRNA) and DNA/RNA hybrids was also investigated, and the results generally confirm the notion that while AlkB and hABH3 tend to prefer single-stranded nucleic acids, hABH2 is more active on double-stranded substrates. These results may contribute to identifying the main substrates of bacterial and human AlkB proteins in vivo.  相似文献   

14.
8-Oxo-7,8-dihydroguanine (8-hydroxyguanine) is oxidized more easily than normal nucleobases, which can produce spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh). These secondary oxidation products of 8-oxo-7,8-dihydroguanine are highly mutagenic when formed within DNA. To evaluate the mutagenicity of the corresponding oxidation products of 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-hydroxy-2'- deoxyguanosine 5'-triphosphate) in the nucleotide pool, Escherichia coli cells deficient in the mutT gene were treated with H(2)O(2), and the induced mutations were analyzed. Moreover, the 2'-deoxyriboside 5'-triphosphate derivatives of Sp and Gh were also introduced into competent E. coli cells. The H(2)O(2) treatment of mutT E. coli cells resulted in increase of G:C → T:A and A:T → T:A mutations. However, the incorporation of exogenous Sp and Gh 2'-deoxyribonucleotides did not significantly increase the mutation frequency. These results suggested that the oxidation product(s) of 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate induces G:C → T:A and A:T → T:A mutations, and that the 2'-deoxyriboside 5'-triphosphate derivatives of Sp and Gh exhibit quite weak mutagenicity, in contrast to the bases in DNA.  相似文献   

15.
The Fanconi anemia complementation group A (FANCA) gene is one of 15 disease-causing genes and has been found to be mutated in ~60% of Fanconi anemia patients. Using purified protein, we report that human FANCA has intrinsic affinity for nucleic acids. FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, its affinity for ssDNA is significantly higher than for dsDNA in an electrophoretic mobility shift assay. FANCA also binds to RNA with an intriguingly higher affinity than its DNA counterpart. FANCA requires a certain length of nucleic acids for optimal binding. Using DNA and RNA ladders, we determined that the minimum number of nucleotides required for FANCA recognition is ~30 for both DNA and RNA. By testing the affinity between FANCA and a variety of DNA structures, we found that a 5'-flap or 5'-tail on DNA facilitates its interaction with FANCA. A patient-derived FANCA truncation mutant (Q772X) has diminished affinity for both DNA and RNA. In contrast, the complementing C-terminal fragment of Q772X, C772-1455, retains the differentiated nucleic acid-binding activity (RNA > ssDNA > dsDNA), indicating that the nucleic acid-binding domain of FANCA is located primarily at its C terminus, where most disease-causing mutations are found.  相似文献   

16.
We studied the ability of single-stranded DNA (ssDNA) to participate in targeted recombination in mammalian cells. A 5' end-deleted adenine phosphoribosyltransferase (aprt) gene was subcloned into M13 vector, and the resulting ssDNA and its double-stranded DNA (dsDNA) were transfected to APRT-Chinese hamster ovary cells with a deleted aprt gene. APRT+ recombinants with the ssDNA was obtained at a frequency of 3 x 10(-7) per survivor, which was almost equal to that with the double-stranded equivalent. Analysis of the genome in recombinant clones produced by ssDNA revealed that 12 of 14 clones resulted from correction of the deletion in the aprt locus. On the other hand, the locus of the remaining 2 was not corrected; instead, the 5' deletion of the vector was corrected by end extension, followed by integration into random sites of the genome. To exclude the possibility that input ssDNA was converted into its duplex form before participating in a recombination reaction, we compared the frequency of extrachromosomal recombination between noncomplementary ssDNAs, and between one ssDNA and one dsDNA, of two phage vectors. The frequency with the ssDNAs was 0.4 x 10(-5), being 10-fold lower than that observed with the ssDNA and the dsDNA, suggesting that as little as 10% of the transfected ssDNA was converted into duplex forms before the recombination event, hence 90% remained unchanged as single-stranded molecules. Nevertheless, the above finding that ssDNA was as efficient as dsDNA in targeted recombination suggests that ssDNA itself is able to participate directly in targeted recombination reactions in mammalian cells.  相似文献   

17.
Replication of the oxidative lesion 8-oxo-7,8-dihydroguanine (GO) leads to the formation of both 8-oxo-7,8-dihydroguanine:adenine (GO:A) and 8-oxo-7,8-di-hydroguanine:cytosine (GO:C) pairs. The repair and mutagenic potency of these two kinds of base pairs were studied in simian COS7 and human MRC5V1 cells using the shuttle vector technology. Shuttle vectors carrying a unique GO residue opposite either a C or an A were constructed, then transfected into recipient mammalian cells. DNA repair resulting in G:C pairs and mutation frequency, were determined using resistance to digestion by the Ngo MI restriction enzyme for screening and DNA sequencing of suspect mutants. Results showed that the GO:C mismatch was well repaired since almost no mutations were detected in the plasmid progeny obtained 72 h after cell transfection. The GO:A pair was poorly repaired since only 32-34% of the plasmid progeny contained G:C whereas two thirds contained A:T at the original site. Repair kinetics measured with a non-replicating vector deleted by 13 bp at the SV40 replication origin, showed that GO:A was slowly repaired. Only 30% of the mispairs were corrected in 12 h. During this time 100% of the plasmids containing GO:A pairs were replicated as seen by the replication kinetics in a vector with an intact SV40 replication origin. These results show that, under our experimental conditions, replication is occurring before completion of DNA repair which explains the high mutagenic potency of the GO:A mispair.  相似文献   

18.
The formation of clustered DNA damage sites is a unique feature of ionizing radiation. Recent studies have shown that the repair of lesions within clusters may be compromised, but little is understood about the mutagenic consequences of such damage sites. Using a plasmid-based method, damaged DNA containing uracil positioned at 1–5 bp separations from 8-oxo-7,8-dihydroguanine on the complementary strand was transfected into wild-type Escherichia coli or into strains lacking the DNA glycosylases Fpg and MutY. Mutation frequencies were found to be significantly higher for clustered damage sites than for single lesions. The loss of MutY gave a large relative increase in mutation frequency and a strain lacking both Fpg and MutY showed even higher mutation frequencies, up to nearly 40% of rescued plasmid. In these strains, the mutation frequency decreases with increasing spacing of the uracil from the 8-oxo-7,8-dihydroguanine site. Sequencing of plasmid DNA carrying clustered damage, following rescue from bacteria, showed that almost all of the mutations are GC→TA transversions. The data suggest that at clustered damage sites, depending on lesion spacing, the action of Fpg is compromised and post-replication processing of lesions by MutY is the most important mechanism for protection against mutagenesis.  相似文献   

19.
In the present study, we used the method involving HPLC pre-purification followed by gas chromatography with isotope dilution mass spectrometric detection for the determination of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) and 8-oxo-7,8-dihydroguanine (8-oxoGua) in human urine. The mean levels of 8-oxoGua and 8-oxodGuo in the urine samples of the subjects on unrestricted diet were respectively 1.87 nmol/kg 24 h (±0.90) and 0.83 nmol/kg 24h (±0.49), and in the case of the groups studied, they did not depend on the applied diet. The sum of the amounts of both compounds in urine can give information about the formation rate of 8-oxoGua in cellular DNA. It is also likely that the levels of modified nucleo-base/side in urine sample are reflective of the involvement of different repair pathways responsible for the removal of 8-oxodGuo from DNA, namely base excision repair (BER) and nucleotide excision repair (NER).  相似文献   

20.
In the present study, we used the method involving HPLC pre-purification followed by gas chromatography with isotope dilution mass spectrometric detection for the determination of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and 8-oxo-7,8-dihydroguanine (8-oxoGua) in human urine. The mean levels of 8-oxoGua and 8-oxodGuo in the urine samples of the subjects on unrestricted diet were respectively 1.87 nmol/kg 24 h (±0.90) and 0.83 nmol/kg 24h (±0.49), and in the case of the groups studied, they did not depend on the applied diet. The sum of the amounts of both compounds in urine can give information about the formation rate of 8-oxoGua in cellular DNA. It is also likely that the levels of modified nucleo-base/side in urine sample are reflective of the involvement of different repair pathways responsible for the removal of 8-oxodGuo from DNA, namely base excision repair (BER) and nucleotide excision repair (NER).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号