首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liposomes as defined model membranes were used to quantitatively study the effects of specific sialic acid containing glycolipids on activation of the alternative pathway of human C. Liposomes containing dimyristoylphosphatidylethanolamine, cholesterol, and cerebrosides at molar ratios of 1.0/0.75/0.33 activated the alternative pathway in human serum treated with MgEGTA. Activation was measured by C3 conversion and the deposition of total C3 and functional C3b on the liposome surface. The monosialoganglioside GM1, when incorporated into the activating liposome membrane at molar ratios between 10(-5) and 10(-2), inhibited activation in a dose-dependent manner. Sialosylparagloboside also inhibited activation in human serum, and inhibition was completely reversed after neuraminidase treatment. The degree of inhibition by GM1 correlated with the relative amount of GM1 exposed on the liposome surface. Sialic acid did not directly inhibit the binding of C3b when liposomes containing gangliosides were incubated with the purified components C3, B, D, and P. GM1 did inhibit activation when liposomes were incubated with a mixture of purified C3, B, D, P, H, and I. Binding assays with radiolabeled H showed increased binding of H to liposome-bound C3b in the presence of GM1. These results establish the ability of sialic acid on glycolipids to promote H binding to C3b and thereby regulate alternative pathway activation on a defined lipid membrane.  相似文献   

2.
Abstract Genome analysis of Pseudomonas aeruginosa was performed by digestion with rare-cutting restriction endonucleases and subsequent one- and two-dimensional field inversion gel electrophoresis (FIGE). The frequency of chromosomal recognition sites increased in the order Spe I, Dra I, Xba I, Ssp I, Nhe I. The genome size of strain PAO and the 17 IATS strains varied from 4.4 × 106 to 5.4 × 106 base pairs. Double restriction digests and two-dimensional FIGE provide a genome fingerprint which is useful for the identification and typing of the respective strains.  相似文献   

3.
The effect of glycophorin on complement activation via the alternative pathway was examined by incorporating it into the liposome membrane with trinitrophenylaminocaproyldipalmitoylphosphatidylethanolamine (TNP-Cap-DPPE). Liposomes having incorporated TNP-Cap-DPPE onto the membrane activate the alternative complement pathway of guinea pig as reported previously, and the additional insertion of glycophorin was found to reduce their activating capacity on the alternative complement pathway. This inhibitory effect was cancelled by pretreatment of the glycophorin-containing liposomes with neuraminidase indicating that the sialic acid in glycophorin is playing a role in the regulation of alternative complement pathway-activation on the biological membrane.  相似文献   

4.
Although sialoglycolipids on liposome membranes were able to inhibit the activation of the alternative complement pathway (ACP) of guinea pigs mediated by trinitrophenylaminocaproyldipalmitoylphosphatidylethanolamine, they scarcely inhibited the ACP activation mediated by natural antibody to paragloboside (PG) inserted into the liposome membranes. Therefore, ACP activation was able to proceed regardless of the presence of sialoglycolipids on heterologous cell membranes when antibodies to constituents of the membranes were available. On the other hand, sialoglycolipids effectively inhibit undesirable ACP activation on self cell membranes, because little if any antibody is reacting on the self cell surface. Thus, the natural antibody reaction may effectively discriminate between self and non-self cell surface by cooperation with complement inhibitors on cell membranes such as sialoglycolipids.  相似文献   

5.
Liposomal model membranes were found to activate the alternative pathway of human complement. Activation was measured by C3 conversion and component consumption in serum that had been incubated with liposomes. C3 conversion did not require C1 or C2 of the classical pathway, since it was observed in serum from a C1r-deficient patient, serum from a C2-dificient patient, and normal serum in buffer containing EGTA and MgCl2. The incubation of liposomes with C2-deficient serum resulted in consumption of components C3 through C9 with no consumption of C1 or C4 in a profile typical of alternative pathwya activation. The reaction was further shown to require alternative pathway factor D, and to be independent of antibody. Activation of the alterative pathway was dependent on the membrane composition of the liposomes. A positive charge was required for liposomes to produce C3 conversion. Liposomal cholesterol concentration and phospholipid fatty acyl chain length and unsaturation all influenced activation, suggesting the importance of membrane fluidity. Positively charged liposomes containing dimyristoyl phosphatidylcholine and cholesterol required the presence of certain glycolipids for C3 conversion. The activation of the alternative complement pathway by liposomes of defined membrane composition may provide a suitable model for the study of alternative pathway activation by cellular membranes.  相似文献   

6.
By virtue of its amplifying property, the alternative complement pathway has been implicated in a number of inflammatory diseases and constitutes an attractive therapeutic target. An anti-factor D Fab fragment (AFD) was generated to inhibit the alternative complement pathway in advanced dry age-related macular degeneration. AFD potently prevented factor D (FD)-mediated proteolytic activation of its macromolecular substrate C3bB, but not proteolysis of a small synthetic substrate, indicating that AFD did not block access of the substrate to the catalytic site. The crystal structures of AFD in complex with human and cynomolgus FD (at 2.4 and 2.3 Å, respectively) revealed the molecular details of the inhibitory mechanism. The structures show that the AFD-binding site includes surface loops of FD that form part of the FD exosite. Thus, AFD inhibits FD proteolytic function by interfering with macromolecular substrate access rather than by inhibiting FD catalysis, providing the molecular basis of AFD-mediated inhibition of a rate-limiting step in the alternative complement pathway.  相似文献   

7.
The capacity of isolated human glomerular basement membrane (GBM) to initiate surface activation of the human alternative complement pathway was defined by the deposition of C3b under circumstances in which the classical complement pathway was inoperative. The deposition of C3b from normal or C2-deficient serum was time- and magnesium-dependent, implying a role for the alternative pathway. Normal human serum rendered deficient in D did not sustain C3b deposition until its reconstitution with D, indicating an absolute requirement for a protein unique to the alternative pathway and essential to the cleavage activation of the C3 amplification convertase of that pathway. The capacity of the excess control proteins H and I to prevent C3b deposition onto GBM incubated in C2-deficient serum provided further evidence for the direct activation of the alternative pathway in this system. The use of radiolabeled monoclonal antibody to localize the deposited C3b afforded specificity and quantitation of about 100 ng of C3b/mg of GBM. Immunohistochemical analysis with a monoclonal antibody to detect C3b demonstrated its deposition to be confined to the epithelial surface of the GBM.  相似文献   

8.
By means of cobra venom factor (CVF) it is demonstrated that the stimulation of hexosemonophosphate shunt (HMPS) of human polymorphonuclear leukocytes (PMN) by zymosan (Z) and dextran sulfate (DS) is caused by at least two models of activation: (a) via activation caused by phagocytosis, (b) via activated alternative pathway of complement activation (APC). Active factors of APC presented with phagocytizable objects strongly enhance activation of PMN. The effect of APC can be observed in serum-containing as well as in serum-free cultures. It can be demonstrated that in serum-free cultures the factors of APC participating in the activation of PMN are supplied by monocytes. By use of synthetic hexapeptide (HP) representing the COOH-terminal sequence of human C3 further evidence is provided that factors of APC are able to activate the PMN.  相似文献   

9.
Alternative pathway amplification plays a major role for the final effect of initial specific activation of the classical and lectin complement pathways, but the quantitative role of the amplification is insufficiently investigated. In experimental models of human diseases in which a direct activation of alternative pathway has been assumed, this interpretation needs revision placing a greater role on alternative amplification. We recently documented that the alternative amplification contributed to 80-90% of C5 activation when the initial activation was highly specific for the classical pathway. The recent identification of properdin as a recognition factor directly initiating alternative pathway activation, like C1q in the classical and mannose-binding lectin in the lectin pathway initiates a renewed interest in the reaction mechanisms of complement. Complement and Toll-like receptors, including the CD14 molecule, are two main upstream recognition systems of innate immunity, contributing to the inflammatory reaction in a number of conditions including ischemia-reperfusion injury and sepsis. These systems act as "double-edged swords", being protective against microbial invasion, but harmful to the host when activated improperly or uncontrolled. Combined inhibition of complement and Toll-like receptors/CD14 should be explored as a treatment regimen to reduce the overwhelming damaging inflammatory response during sepsis. The alternative pathway should be particularly considered in this regard, due to its uncontrolled amplification in sepsis. The alternative pathway should be regarded as a dual system, namely a recognition pathway principally similar to the classical and lectin pathways, and an amplification mechanism, well known, but quantitatively probably more important than generally recognized.  相似文献   

10.
Activation of complement via the alternative pathway   总被引:3,自引:0,他引:3  
Activation of complement via the alternative pathway represents one means of natural resistance to infection because it is capable of neutralizing a wide variety of potential pathogens in the total absence of antibody. The pathway involves six serum proteins and possesses a unique amplification system capable of depositing large numbers of C3b molecules on the surfaces of activating particles. C3b deposition enhances phagocytosis and results in activation of the membrane attack pathway of complement. C3b attachment is covalent, arising from a reaction between an intramolecular thiolester bond in nascent C3b and nucleophiles such as hydroxyl groups on surface carbohydrates. The reactions that initiate C3b attachment are not specific interactions like those initiating other biological cascade systems, but involve slow, spontaneous hydrolysis of the thiolester bond in C3 and subsequent random deposition of C3b onto all nearby surfaces. Once bound, C3b is capable of discriminating between host-derived cells and activating particles. Recognition is evidenced by a lower affinity between activator-bound C3b and the complement control protein factor H. Measurements of the association constant between unbound, soluble C3b and factor H suggest that activator-bound C3b recognizes structures on activators that inhibit factor H binding.  相似文献   

11.
The fluid phase C3 convertase of the alternative pathway of human complement activation has been constructed from the isolated C3 component and from purified factors B and D. The enzyme was able to activate the isolated components C4 and C2 in the presence of C4 but had no effect on C2 in the absence of C4. The C4 and C2 activation was monitored by the loss of their hemolytic activity during the incubation with the alternative fluid phase C3 convertase. The activation of C4 and C2 components by the membrane-bound alternative C3 convertase formed on red cells (EC3bBb) was followed by the formation of C3 convertase of the classic pathway--EC4b2a. This resulted in the enhancement of hemolysis.  相似文献   

12.
Mannose-binding lectin (MBL)-associated serine proteases (MASPs) are responsible for activation of the lectin complement pathway. Three types of MASPs (MASP-1, MASP-2, and MASP-3) are complexed with MBL and ficolins in serum. Although MASP-1 and MASP-2 are known to contribute to complement activation, the function of MASP-3 remains unclear. In this study, we investigated the mechanism of MASP-3 activation and its substrate using the recombinant mouse MASP-3 (rMASP-3) and several different types of MASP-deficient mice. A proenzyme rMASP-3 was obtained that was not autoactivated during preparation. The recombinant enzyme was activated by incubation with Staphylococcus aureus in the presence of MBL-A, but not MBL-C. In vivo studies revealed the phagocytic activities of MASP-1/3-deficient mice and all MASPs (MASP-1/2/3)-deficient mice against S. aureus and bacterial clearance in these mice were lower than those in wild-type and MASP-2-deficient mice. Sera from all MASPs-deficient mice showed significantly lower C3 deposition activity on the bacteria compared with that of wild-type serum, and addition of rMASP-3 to the deficient serum restored C3 deposition. The low C3 deposition in sera from all MASPs-deficient mice was probably caused by the low level factor B activation that was ameliorated by the addition of rMASP-3. Furthermore, rMASP-3 directly activated factors B and D in vitro. These results suggested that MASP-3 complexed with MBL is converted to an active form by incubation with bacterial targets, and that activated MASP-3 triggered the initial activation step of the alternative complement pathway.  相似文献   

13.
Mouse thymocytes activated the alternative complement pathway of mouse serum in the presence of heated fetal calf serum. The activation required C3 from the fetal calf serum but was independent of antibody either in the murine or bovine serum. No other murine cells tested, including erythrocytes, peripheral blood lymphocytes, lymph node cells, spleen cells, and various cultured cell lines, activated the alternative complement pathway as effectively as thymocytes. In addition, sera from species other than cows could not substitute for fetal calf serum. The C3 deposited on thymocytes was in the form of both C3b (immune adherence positive) and C3bi (conglutinable). We propose that the basis of activation in this system is the specific protection of bovine C3b on mouse thymocyte surface.  相似文献   

14.
Immune complex-induced inflammation can be mediated by the classical pathway of complement. However, using mice genetically deficient in factor B or C4, we have shown that the collagen Ab-induced model of arthritis requires the alternative pathway of complement and is not dependent on the classical pathway. We now demonstrate that collagen Ab-induced arthritis is not altered in mice genetically deficient in either C1q or mannose-binding lectins A and C, or in both C1q and mannose-binding lectins. These in vivo results prove the ability of the alternative pathway to carry out pathologic complement activation in the combined absence of intact classical and lectin pathways. C3 activation was also examined in vitro by adherent collagen-anti-collagen immune complexes using sera from normal or complement-deficient mice. These results confirm the ability of the alternative pathway to mediate immune complex-induced C3 activation when C4 or C1q, or both C1q and mannose-binding lectins, are absent. However, when all three activation pathways of complement are intact, initiation by immune complexes occurs primarily by the classical pathway. These results indicate that the alternative pathway amplification loop, with its ability to greatly enhance C3 activation, is necessary to mediate inflammatory arthritis induced by adherent immune complexes.  相似文献   

15.
Regulation of the alternative pathway of complement by pH   总被引:2,自引:0,他引:2  
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hemolytic anemia. The abnormal PNH erythrocytes are highly susceptible to complement-mediated lysis in vitro, especially at pH 6.4. Lysis has been shown to be due to alternative pathway activation. The purpose of this study was to determine why lysis of PNH erythrocytes is increased at acidic pH. The results presented demonstrate that at pH 6.4: binding of C5 and Factor B to C3b deposited on human erythrocytes is markedly enhanced; generation of the two C3 convertases, C3(H2O), Bb and C3b,Bb is increased; and control of C3b on human erythrocytes by CR1 and Factor I is diminished. In addition, it was found that rabbit erythrocytes, which activate the human alternative pathway, are also lysed much better at pH 6.4 than at pH 7.4. These results indicate that the optimal pH for the initiation and amplification of the alternative complement pathway, and probably also for the activation of the membrane attack complex, is 6.4.  相似文献   

16.
Prior absorption of normal human serum (NHS) or C2-deficient human serum (C2D) with zymosan at 0 degrees C results in diminished consumption of C3 and factor B during subsequent incubation of the sera in Mg-EGTA buffer with zymosan at 37 degrees C for 30 min. An acid eluate from the zymosan restores the defect of absorbed NHS and C2D, and also enhances C3 and factor B utilization in hypogammaglobulinemic serum (H gamma S) in a dose-dependent fashion. The activity is specific in that the eluate from zymosan fails to enhance C3 and B depletion in H gamma S or absorbed NHS by lipopolysaccharide or Sepharose. The active component of th zymosan eluate emerges from both Sepharose 4B and Sephacryl S-200 in the region of molecules with m.w. of 150,000. Absorption with protein A-Sepharose removes the activity, demonstrating that it is IgG. Digestion of the IgG with pepsin fails to diminish activity, indicating that the Fc region is not required for activity; reduction to monovalent Fab' fragments, however, abrogates activity. When IgG antibody is bound to Protein A-Sepharose, it fails to enhance C3 depletion in H gamma S by Sepharose, indicating that binding of IgG antibody by the Fab region is necessary for enhancement of alternative pathway activity in human serum.  相似文献   

17.
Covalent attachment of the complement (C) protein C3b to polysaccharides on biologic particles which activate the alternative pathway leads to changes in the affinity of C3b for factor H, a regulatory protein of the C system. In this study the size of the site with which the polysaccharides interact and its special relationship to the thioester site were investigated using a fluorimetric assay and soluble C3b attached to low m.w. polysaccharides. Oligomers of alpha 1-6 and alpha 1-4 polyglucose and beta 1-2 polyfructose were prepared and attached to C3b at the thioester site. C3b bound to monomeric, dimeric, or trimeric sugars exhibited the same interaction with factor H as free C3b, i.e., there was no effect due to attachment alone. Beginning with tetrameric oligosaccharides a linear decrease in factor H binding was observed with increasing oligosaccharide size and the effect reached an apparent maximum with large polysaccharides. Maximum inhibition of factor H function was estimated to occur at a length of 16 saccharide units. The results suggest that this site, which regulates the inactivation rate of surface-bound C3b and thus the activation of the alternative pathway of C, spans a maximum of 13 sugar units (less than 65 A) starting four units (approximately 15 A) from the thioester site in C3b.  相似文献   

18.
Examination of C3b deposition on the surface of activators during alternative pathway activation revealed three temporal phases: a lag phase, an amplification phase, and a heretofore uncharacterized plateau phase. During the plateau phase no C3b deposition appeared to occur even in the presence of an excess of alternative pathway components. Double label experiments, however, revealed that the plateau was a steady state between continued C3b deposition and release of C3b or C3bi from the activator. Under conditions of excess complement it was found that deposition of increasing numbers of C3b molecules caused a gradual increase in the ability of Factors H and I to inactivate newly deposited C3b; i.e., the deposited C3b converted the activator into a nonactivator. The data indicate that the surface of rabbit erythrocytes is rendered completely nonactivating when 2.4 X 10(6) molecules of C3b plus C3bi are bound per cell. The plateau of C3b deposition appears to represent the maximum steady state level maintainable by a given concentration of complement components, and it also reflects conversion of an activating surface to one resembling a nonactivator.  相似文献   

19.
Although capsular polysaccharide (CPS) is critical for meningococcal virulence, the molecular basis of alternative complement pathway (AP) regulation by meningococcal CPSs remains unclear. Using serum with only the AP active, the ability of strains to generate C3a (a measure of C3 activation) and subsequently deposit C3 fragments on bacteria was studied in encapsulated group A, B, C, W-135, and Y strains and their isogenic unencapsulated mutants. To eliminate confounding AP regulation by membrane-bound factor H (fH; AP inhibitor) and lipooligosaccharide sialic acid, the meningococcal fH ligands (fHbp and NspA) and lipooligosaccharide sialylation were deleted in all strains. Group A CPS expression did not affect C3a generation or C3 deposition. C3a generated by encapsulated and unencapsulated group B and C strains was similar, but CPS expression was associated with reduced C3 deposition, suggesting that these CPSs blocked C3 deposition on membrane targets. Paradoxically, encapsulated W-135 and Y strains (including the wild-type parent strains) enhanced C3 activation and showed marked C3 deposition as early as 10 min; at this time point C3 was barely activated by the unencapsulated mutants. W-135 and Y CPSs themselves served as a site for C3 deposition; this observation was confirmed using immobilized purified CPSs. Purified CPSs bound to unencapsulated meningococci, simulated findings with naturally encapsulated strains. These data highlight the heterogeneity of AP activation on the various meningococcal serogroups that may contribute to differences in their pathogenic mechanisms.  相似文献   

20.
Species specificity of recognition by the alternative pathway of complement   总被引:12,自引:0,他引:12  
The recognition function of the alternative complement pathway was studied with isolated human and rabbit components. Zymosan and homologous and heterologous erythrocytes were used as representative activators or nonactivators. The binding affinity of Factor B and Factor H for particle-bound C3b was measured. In both species, the average affinity of Factor H for bound C3b on homologous cells (nonactivators) was eight to 10 times higher than on zymosan particles (activators). The interaction between Factor H and C3b on rabbit erythrocytes was species-specific: rabbit Factor H bound strongly to rabbit C3b on rabbit erythrocytes and also on human erythrocytes, which are nonactivators for the rabbit alternative pathway. Human Factor H bound strongly to human C3b on human erythrocytes but seven times weaker on rabbit erythrocytes, which are activators of the human alternative pathway. No substantial differences were found in the binding of Factor B to bound C3b regardless of the nature of the particle to which C3b was bound. The results indicate that in the two species studied, the molecular mechanism of recognition is analogous and that recognition is species-specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号