首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Saccharomyces cerevisiae centrosome or spindle pole body (SPB) is a dynamic structure that is remodeled in a cell cycle dependent manner. The SPB increases in size late in the cell cycle and during most cell cycle arrests and exchanges components during G1/S. We identified proteins involved in the remodeling process using a strain in which SPB remodeling is conditionally induced. This strain was engineered to express a modified SPB component, Spc110, which can be cleaved upon the induction of a protease. Using a synthetic genetic array analysis, we screened for genes required only when Spc110 cleavage is induced. Candidate SPB remodeling factors fell into several functional categories: mitotic regulators, microtubule motors, protein modification enzymes, and nuclear pore proteins. The involvement of candidate genes in SPB assembly was assessed in three ways: by identifying the presence of a synthetic growth defect when combined with an Spc110 assembly defective mutant, quantifying growth of SPBs during metaphase arrest, and comparing distribution of SPB size during asynchronous growth. These secondary screens identified four genes required for SPB remodeling: NUP60, POM152, and NCS2 are required for SPB growth during a mitotic cell cycle arrest, and UBC4 is required to maintain SPB size during the cell cycle. These findings implicate the nuclear pore, urmylation, and ubiquitination in SPB remodeling and represent novel functions for these genes.  相似文献   

2.
The release of Cdc14 from the nucleolus occurs in two waves in early and late anaphase, controlled by the FEAR and MEN pathways, respectively. Two new papers report the localisation at the spindle pole body of the Cdc14 released in early anaphase and, surprisingly, show that the two pulses of released Cdc14 have opposite effects on MEN activation.  相似文献   

3.
During spindle pole body (SPB) duplication, the new SPB is assembled at a distinct site adjacent to the old SPB. Using quantitative fluorescence methods, we studied the assembly and dynamics of the core structural SPB component Spc110p. The SPB core exhibits both exchange and growth in a cell cycle-dependent manner. During G1/S phase, the old SPB exchanges approximately 50% of old Spc110p for new Spc110p. In G2 little Spc110p is exchangeable. Thus, Spc110p is dynamic during G1/S and becomes stable during G2. The SPB incorporates additional Spc110p in late G2 and M phases; this growth is followed by reduction in the next G1. Spc110p addition to the SPBs (growth) also occurs in response to G2 and mitotic arrests but not during a G1 arrest. Our results reveal several dynamic features of the SPB core: cell cycle-dependent growth and reduction, growth in response to cell cycle arrests, and exchange of Spc110p during SPB duplication. Moreover, rather than being considered a conservative or dispersive process, the assembly of Spc110p into the SPB is more readily considered in terms of growth and exchange.  相似文献   

4.
The inactivation of mitotic cyclin-dependent kinases (CDKs) during anaphase is a prerequisite for the completion of nuclear division and the onset of cytokinesis [1, 2]. In the budding yeast Saccharomyces cerevisiae, the essential protein kinase Cdc15 [3] together with other proteins of the mitotic exit network (Tem1, Lte1, Cdc5, and Dbf2/Dbf20 [4-7]) activates Cdc14 phosphatase, which triggers cyclin degradation and the accumulation of the CDK inhibitor Sic1 [8]. However, it is still unclear how CDK inactivation promotes cytokinesis. Here, we analyze the properties of Cdc15 kinase during mitotic exit. We found that Cdc15 localized to the spindle pole body (SPB) in a unique pattern. Cdc15 was present at the SPB of the mother cell until late mitosis, when it also associated with the daughter pole. High CDK activity inhibited this association, while dephosphorylation of Cdc15 by Cdc14 phosphatase enabled it. The analysis of Cdc15 derivatives indicated that SPB localization was specifically required for cytokinesis but not for mitotic exit. These results show that Cdc15 has two separate functions during the cell cycle. First, it is required for the activation of Cdc14. CD14, in turn, promotes CDK inactivation and also dephosphorylates of Cdc15. As a consequence, Cdc15 binds to the daughter pole and triggers cytokinesis. Thus, Cdc15 helps to coordinate mitotic exit and cytokinesis.  相似文献   

5.
The Saccharomyces cerevisiae genes KAR1 and CDC31 are required for the initial stages of spindle pole body (SPB) duplication in yeast. The Cdc31 protein is most related to caltractin/centrin, a calcium-binding protein present in microtubule organizing centers in many organisms. Because of a variety of genetic interactions between CDC31 and KAR1 (Vallen, E. A., W. Ho. M. Winey, and M. D. Rose. 1994. Genetics. In press), we wanted to determine whether Cdc31p and Kar1p physically interact. Cdc31p was expressed and purified from Escherichia coli and active for binding calcium. Using a protein blotting technique, Cdc31p bound to Kar1p in vitro via an essential domain in Kar1p required for SPB duplication (Vallen, E. A., M. A. Hiller, T. Y. Scherson, and M. D. Rose. 1992a. J. Cell Biol. 117:1277-1287). By immunofluorescence microscopy, we determined that the interaction also occurs in vivo. Cdc31p was localized to the SPB in wild-type cells but was mislocalized in a kar1 mutant strain. In a kar1 mutant containing a dominant CDC31 suppressor, Cdc31p was again localized to the SPB. Furthermore, the localization of Cdc31p to the SPB was affected by the overexpression of Kar1p-beta-galactosidase hybrids. Based on these data, we propose that the essential function of Kar1p is to localize Cdc31p to the SPB, and that this interaction is normally required for SPB duplication.  相似文献   

6.
Nickas ME  Neiman AM 《Genetics》2002,160(4):1439-1450
Spore formation in Saccharomyces cerevisiae requires the de novo synthesis of prospore membranes and spore walls. Ady3p has been identified as an interaction partner for Mpc70p/Spo21p, a meiosis-specific component of the outer plaque of the spindle pole body (SPB) that is required for prospore membrane formation, and for Don1p, which forms a ring-like structure at the leading edge of the prospore membrane during meiosis II. ADY3 expression has been shown to be induced in midsporulation. We report here that Ady3p interacts with additional components of the outer and central plaques of the SPB in the two-hybrid assay. Cells that lack ADY3 display a decrease in sporulation efficiency, and most ady3Delta/ady3Delta asci that do form contain fewer than four spores. The sporulation defect in ady3Delta/ady3Delta cells is due to a failure to synthesize spore wall polymers. Ady3p forms ring-like structures around meiosis II spindles that colocalize with those formed by Don1p, and Don1p rings are absent during meiosis II in ady3Delta/ady3Delta cells. In mpc70Delta/mpc70Delta cells, Ady3p remains associated with SPBs during meiosis II. Our results suggest that Ady3p mediates assembly of the Don1p-containing structure at the leading edge of the prospore membrane via interaction with components of the SPB and that this structure is involved in spore wall formation.  相似文献   

7.
Cdc55, a B-type regulatory subunit of protein phosphatase 2A, has been implicated in mitotic spindle checkpoint activity and maintenance of sister chromatid cohesion during metaphase. The spindle checkpoint is composed of two independent pathways, one leading to inhibition of the metaphase-to-anaphase transition by checkpoint proteins, including Mad2, and the other to inhibition of mitotic exit by Bub2. We show that Cdc55 is a negative regulator of mitotic exit. A cdc55 mutant, like a bub2 mutant, prematurely releases Cdc14 phosphatase from the nucleolus during spindle checkpoint activation, and premature exit from mitosis indirectly leads to loss of sister chromatid cohesion and inviability in nocodazole. The role of Cdc55 is separable from Bub2 and inhibits release of Cdc14 through a mechanism independent of the known negative regulators of mitotic exit. Epistasis experiments indicate Cdc55 acts either downstream or independent of the mitotic exit network kinase Cdc15. Interestingly, the B-type cyclin Clb2 is partially stable during premature activation of mitotic exit in a cdc55 mutant, indicating mitotic exit is incomplete.  相似文献   

8.
M Knop  G Pereira  S Geissler  K Grein    E Schiebel 《The EMBO journal》1997,16(7):1550-1564
Previously, we have shown that the gamma-tubulin Tub4p and the spindle pole body component Spc98p are involved in microtubule organization by the yeast microtubule organizing centre, the spindle pole body (SPB). In this paper we report the identification of SPC97 encoding an essential SPB component that is in association with the SPB substructures that organize the cytoplasmic and nuclear microtubules. Evidence is provided for a physical and functional interaction between Tub4p, Spc98p and Spc97p: first, temperature-sensitive spc97(ts) mutants are suppressed by high gene dosage of SPC98 or TUB4. Second, Spc97p interacts with Spc98p and Tub4p in the two-hybrid system. Finally, immunoprecipitation and fractionation studies revealed complexes containing Tub4p, Spc98p and Spc97p. Further support for a direct interaction of Tub4p, Spc98p and Spc97p comes from the toxicity of strong SPC97 overexpression which is suppressed by co-overexpression of TUB4 or SPC98. Analysis of temperature-sensitive spc97(ts) alleles revealed multiple spindle defects. While spc97-14 cells are either impaired in SPB separation or mitotic spindle formation, spc97-20 cells show an additional defect in SPB duplication. We discuss a model in which the Tub4p-Spc98p-Spc97p complex is part of the microtubule attachment site at the SPB.  相似文献   

9.
Cdc15p is an essential protein kinase and functions with a group of late mitotic proteins that includes Lte1p, Tem1p, Cdc14p and Dbf2p/Dbf20p to inactivate Cdc28p-Clb2p at the end of mitosis in budding yeast [1] [2]. Cdc14p is activated and released from the nucleolus at late anaphase/telophase to dephosphorylate important regulators of Cdc28p-Clb2p such as Hct1p/Cdh1p, Sic1p and Swi5p in a CDC15-dependent manner [3] [4] [5] [6] [7]. How Cdc15p itself is regulated is not known. Here, we report that both the phosphorylation and localization of Cdc15p are cell cycle regulated. The extent of phosphorylation of Cdc15p gradually increases during cell-cycle progression until some point during late anaphase/telophase when it is rapidly dephosphorylated. We provide evidence suggesting that Cdc14p is the phosphatase responsible for the dephosphorylation of Cdc15p. Using a Cdc15p fusion protein coupled at its carboxyl terminus to green fluorescent protein (GFP), we found that Cdc15p, like its homologue Cdc7p [8] in fission yeast, localizes to the spindle pole bodies (SPBs) during mitosis. At the end of telophase, a portion of Cdc15p is located at the mother-bud neck, suggesting a possible role for Cdc15p in cytokinesis.  相似文献   

10.
In Saccharomyces cerevisiae, the spindle pole body (SPB) is the functional homolog of the mammalian centrosome, responsible for the organization of the tubulin cytoskeleton. Cytoplasmic (astral) microtubules essential for the proper segregation of the nucleus into the daughter cell are attached at the outer plaque on the SPB cytoplasmic face. Previously, it has been shown that Cnm67p is an integral component of this structure; cells deleted for CNM67 are lacking the SPB outer plaque and thus experience severe nuclear migration defects. With the use of partial deletion mutants of CNM67, we show that the N- and C-terminal domains of the protein are important for nuclear migration. The C terminus, not the N terminus, is essential for Cnm67p localization to the SPB. On the other hand, only the N terminus is subject to protein phosphorylation of a yet unknown function. Electron microscopy of SPB serial thin sections reveals that deletion of the N- or C-terminal domains disturbs outer plaque formation, whereas mutations in the central coiled-coil domain of Cnm67p change the distance between the SPB core and the outer plaque. We conclude that Cnm67p is the protein that connects the outer plaque to the central plaque embedded in the nuclear envelope, adjusting the space between them by the length of its coiled-coil.  相似文献   

11.
In eukaryotes, mitosis requires the activation of cdc2 kinase via association with cyclin B and dephosphorylation of the threonine 14 and tyrosine 15 residues. It is known that in the budding yeast Saccharomyces cerevisiae, a homologous kinase, Cdc28, mediates the progression through M phase, but it is not clear what specific mitotic function its activation by the dephosphorylation of an equivalent tyrosine (Tyr-19) serves. We report here that cells expressing cdc28-E19 (in which Tyr-19 is replaced by glutamic acid) perform Start-related functions, complete DNA synthesis, and exhibit high levels of Clb2-associated kinase activity but are unable to form bipolar spindles. The failure of these cells to form mitotic spindles is due to their inability to segregate duplicated spindle pole bodies (SPBs), a phenotype strikingly similar to that exhibited by a previously reported mutant defective in both kinesin-like motor proteins Cin8 and Kip1. We also find that the overexpression of SWE1, the budding-yeast homolog of wee1, also leads to a failure to segregate SPBs. These results imply that dephosphorylation of Tyr-19 is required for the segregation of SPBs. The requirement of Tyr-19 dephosphorylation for spindle assembly is also observed under conditions in which spindle formation is independent of mitosis, suggesting that the involvement of Cdc28/Clb kinase in SPB separation is direct. On the basis of these results, we propose that one of the roles of Tyr-19 dephosphorylation is to promote SPB separation.  相似文献   

12.
The mitotic exit network (MEN) is a signaling cascade that triggers inactivation of the mitotic cyclin-dependent kinases and exit from mitosis. The GTPase Tem1 localizes on the spindle pole bodies (SPBs) and initiates MEN signaling. Tem1 activity is inhibited until anaphase by Bfa1-Bub2. These proteins are also part of the spindle position checkpoint (SPOC), a surveillance mechanism that restrains mitotic exit until the spindle is correctly positioned. Here, we show that regulation of Tem1 localization is essential for the proper function of the MEN and the SPOC. We demonstrate that the dynamics of Tem1 loading onto SPBs determine the recruitment of other MEN components to this structure, and reevaluate the interdependence in the localization of Tem1, Bfa1, and Bub2. We also find that removal of Tem1 from the SPBs is critical for the SPOC to impede cell cycle progression. Finally, we demonstrate for the first time that localization of Tem1 to the SPBs is a requirement for mitotic exit.  相似文献   

13.
The Schizosaccharomyces pombe septation initiation network (SIN) signals the onset of cell division from the spindle pole body (SPB) and is regulated by the small GTPase Spg1p. The localization of SIN components including Spg1p to the SPB is required for cytokinesis and is dependent on Sid4p, a constitutive resident of SPBs. However, a direct interaction between Sid4p and other members of the SIN has not been detected. To understand how Sid4p is linked to other SIN components, we have begun to characterize an S. pombe homolog of the Saccharomyces cerevisiae SPB protein Nud1p. We have determined that this S. pombe Nud1p homolog corresponds to Cdc11p, a previously uncharacterized SIN element. We report that Cdc11p is present constitutively at SPBs and that its function appears to be required for the localization of all other SIN components to SPBs with the exception of Sid4p. The Cdc11p C terminus localizes the protein to SPBs in a Sid4p-dependent manner, and we demonstrate a direct Cdc11p-Sid4p interaction. The N-terminus of Cdc11p is required for Spg1p binding to SPBs. Our studies indicate that Cdc11p provides a physical link between Sid4p and the Spg1p signaling pathway.  相似文献   

14.
M-phase checkpoints inhibit cell division when mitotic spindle function is perturbed. Here we show that the Saccharomyces cerevisiae MPS1 gene product, an essential protein kinase required for spindle pole body (SPB) duplication (Winey et al., 1991; Lauze et al., 1995), is also required for M-phase check-point function. In cdc31-2 and mps2-1 mutants, conditional failure of SPB duplication results in cell cycle arrest with high p34CDC28 kinase activity that depends on the presence of the wild-type MAD1 checkpoint gene, consistent with checkpoint arrest of mitosis. In contrast, mps1 mutant cells fail to duplicate their SPBs and do not arrest division at 37 degrees C, exhibiting a normal cycle of p34CDC28 kinase activity despite the presence of a monopolar spindle. Double mutant cdc31-2, mps1-1 cells also fail to arrest mitosis at 37 degrees C, despite having SPB structures similar to cdc31-2 single mutants as determined by EM analysis. Arrest of mitosis upon microtubule depolymerization by nocodazole is also conditionally absent in mps1 strains. This is observed in mps1 cells synchronized in S phase with hydroxyurea before exposure to nocodazole, indicating that failure of checkpoint function in mps1 cells is independent of SPB duplication failure. In contrast, hydroxyurea arrest and a number of other cdc mutant arrest phenotypes are unaffected by mps1 alleles. We propose that the essential MPS1 protein kinase functions both in SPB duplication and in a mitotic checkpoint monitoring spindle integrity.  相似文献   

15.
We have examined the process of spindle pole body (SPB) duplication in Saccharomyces cerevisiae by electron microscopy and found several stages. These include the assembly, probably from the satellite, of a large plaque-like structure, the duplication plaque, on the cytoplasmic face of the half-bridge and its insertion into the nuclear envelope. We analyzed the role of the main SPB components in the formation of these structures by identifying them from an SPB core fraction by mass spectrometry. Temperature-sensitive mutants for two of the components, Spc29p and Nud1p, were prepared to partly define their function. The composition of two of the intermediates in SPB duplication, the satellite and the duplication plaque, was examined by immunoelectron microscopy. Both contain cytoplasmic SPB components showing that duplication has already been partly achieved by the end of the preceding cell cycle when the satellite is formed. We show that by overexpression of SPB components the structure of the satellite can be changed and SPB duplication inhibited by disrupting the attachment of the plaque-like intermediate to the half-bridge. We present a model for SPB duplication where binding of SPB components to either end of the bridge structure ensures two separate SPBs.  相似文献   

16.
Guanine nucleotide exchange factor activation of Rho G-proteins is critical for cytoskeletal reorganization. In the yeast Saccharomyces cerevisiae, the sole guanine nucleotide exchange factor for the Rho G-protein Cdc42p, Cdc24p, is essential for its site-specific activation. Several mammalian exchange factors have been shown to oligomerize; however, the function of this homotypic interaction is unclear. Here we show that Cdc24p forms oligomers in yeast via its catalytic Dbl homology domain. Mutation of residues critical for Cdc24p oligomerization also perturbs the localization of this exchange factor yet does not alter its catalytic activity in vitro. Chemically induced oligomerization of one of these oligomerization-defective mutants partially restored its localization to the bud tip and nucleus. Furthermore, chemically induced oligomerization of wild-type Cdc24p does not affect in vitro exchange factor activity, yet it results in a decrease of activated Cdc42p in vivo and the presence of Cdc24p in the nucleus at all cell cycle stages. Together, our results suggest that Cdc24p oligomerization regulates Cdc42p activation via its localization.  相似文献   

17.
In Saccharomyces cerevisiae exit from mitosis requires the Cdc14 phosphatase to reverse CDK-mediated phosphorylation. Cdc14 is released from the nucleolus by the Cdc14 early anaphase release (FEAR) and mitotic exit network (MEN) pathways. In meiosis, the FEAR pathway is essential for exit from anaphase I. The MEN component Cdc15 is required for the formation of mature spores. To analyze the role of Cdc15 during sporulation, a conditional mutant in which CDC15 expression was controlled by the CLB2 promoter was used. Cdc15-depleted cells proceeded normally through the meiotic divisions but were unable to properly disassemble meiosis II spindles. The morphology of the prospore membrane was aberrant and failed to capture the nuclear lobes. Cdc15 was not required for Cdc14 release from the nucleoli, but it was essential to maintain Cdc14 released and for its nucleo-cytoplasmic transport. However, cells carrying a CDC14 allele with defects in nuclear export (Cdc14-DeltaNES) were able to disassemble the spindle and to complete spore formation, suggesting that the Cdc14 nuclear export defect was not the cause of the phenotypes observed in cdc15 mutants.  相似文献   

18.
Two independent methods identified the spindle pole body component Nuf1p/Spc110p as the essential mitotic target of calmodulin. Extragenic suppressors of cmd1-1 were isolated and found to define three loci, XCM1, XCM2, and XCM3 (extragenic suppressor of cmd1-1). The gene encoding a dominant suppressor allele of XCM1 was cloned. On the basis of DNA sequence analysis, genetic cosegregation, and mutational analysis, XCM1 was identified as NUF1/SPC110. Independently, a C-terminal portion of Nuf1p/Spc110p, amino acid residues 828 to 944, was isolated as a calmodulin-binding protein by the two-hybrid system. As assayed by the two-hybrid system, Nuf1p/Spc110p interacts with wild-type calmodulin and triple-mutant calmodulins defective in binding Ca2+ but not with two mutant calmodulins that confer a temperature-sensitive phenotype. Deletion analysis by the two-hybrid system mapped the calmodulin-binding site of Nuf1p/Spc110p to amino acid residues 900 to 927. Direct binding between calmodulin and Nuf1p/Spc110p was demonstrated by a modified gel overlay assay. Furthermore, indirect immunofluorescence with fixation procedures known to aid visualization of spindle pole body components localized calmodulin to the spindle pole body. Sequence analysis of five suppressor alleles of NUF1/SPC110 indicated that suppression of cmd1-1 occurs by C-terminal truncation of Nuf1p/Spc110p at amino acid residues 856, 863, or 881, thereby removing the calmodulin-binding site.  相似文献   

19.
The budding yeast Saccharomyces cerevisiae provides a unique opportunity for study of the microtubule-based motor proteins that participate in mitotic spindle function. The genome of Saccharomyces encodes a relatively small and genetically tractable set of microtubule-based motor proteins. The single cytoplasmic dynein and five of the six kinesin-related proteins encoded have been implicated in mitotic spindle function. Each motor protein is unique in amino acid sequence. On account of functional overlap, no single motor is uniquely required for cell viability, however. The ability to create and analyze multiple mutants has allowed experimental dissection of the roles performed by each mitotic motor. Some of the motors operate within the nucleus to assemble and elongate the bipolar spindle (kinesin-related Cin8p, Kip1p, Kip3p and Kar3p). Others operate on the cytoplasmic microtubules to effect spindle and nuclear positioning within the cell (dynein and kinesin-related Kip2p, Kip3p and Kar3p). The six motors apparently contribute three fundamental activities to spindle function: motility, microtubule cross-linking and regulation of microtubule dynamics.  相似文献   

20.
Krishnan R  Pangilinan F  Lee C  Spencer F 《Genetics》2000,156(2):489-500
The spindle assembly checkpoint-mediated mitotic arrest depends on proteins that signal the presence of one or more unattached kinetochores and prevents the onset of anaphase in the presence of kinetochore or spindle damage. In the presence of either damage, bub2 cells initiate a preanaphase delay but do not maintain it. Inappropriate sister chromatid separation in nocodazole-treated bub2 cells is prevented when mitotic exit is blocked using a conditional tem1(c) mutant, indicating that the preanaphase failure in bub2 cells is a consequence of events downstream of TEM1 in the mitotic exit pathway. Using a conditional bub2(tsd) mutant, we demonstrate that the continuous presence of Bub2 protein is required for maintaining spindle damage-induced arrest. BUB2 is not required to maintain a DNA damage checkpoint arrest, revealing a specificity for spindle assembly checkpoint function. In a yeast two-hybrid assay and in vitro, Bub2 protein interacts with the septin protein Cdc3, which is essential for cytokinesis. These data support the view that the spindle assembly checkpoint encompasses regulation of distinct mitotic steps, including a MAD2-directed block to anaphase initiation and a BUB2-directed block to TEM1-dependent exit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号