首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two membrane electrochemical reactors (MER) were designed and applied to HLADH-catalysed reduction of cyclohexanone to cyclohexanol. The regeneration of the cofactor NADH was ensured electrochemically, using either methyl viologen or a rhodium complex as electrochemical mediator. A semi-permeable membrane (dialysis or ultra-filtration) was integrated in the filter-press electrochemical reactor to confine the enzyme(s) as close as possible to the electrode surface. When methyl viologen was used, the transformation ratio of cyclohexanone varied from 0 to 65% depending on the internal arrangement of the reactor. Matching the reactor configuration to the reaction system was essential in this case. With the rhodium complex, the ultra-filtration MER was tested in continuous and recycling configurations. The best conditions led to 100% transformation of 0.1 L volume of 0.1 M cyclohexanone after 70 h with the recycling mode. Finally, the performances of the reactors are discussed with respect to different evaluations of the production yields.  相似文献   

2.
NAD recycling in the collagen membrane was investigated as follows: (1) Alcohol dehydrogenase and lactate dehydrogenase were co-immobilized in the collagen membrane and the rate of lactate production by immobilized enzymes was compared with that of free enzymes by using free NAD. An increased rate was observed in the case of immobilized enzyme. (2) The soluble high molecular weight derivatives of NAD (dextran-NAD) were immobilized in the collagen membrane with the two dehydrogenases and recycling of dextran-NAD in the membrane was examined. Lactate was produced by the membrane without adding free NAD. The interaction between the high molecular weight NAD derivatives and enzymes are also discussed.  相似文献   

3.
Multienzyme reaction systems with simultaneous coenzyme regeneration have been investigated in a continuously operated membrane reactor at bench scale. NAD(H) covalently bound to polyethylene glycol with a molecular weight of 10(4) [PEG-10,000-NAD(H)] was used as coenzyme. It could be retained in the membrane reactor together with the enzymes. L-leucine dehydrogenase (LEUDH) was used as catalyst for the reductive amination of alpha-ketoisocaproate (2-oxo-4-methylpentanoic acid) to L-leucine. Formate dehydrogenase (FDH) was used for the regeneration of NADH. Kinetic experiments were carried out to obtain data which could be used in a kinetic model in order to predict the performance of an enzyme membrane reactor for the continuous production of L-leucine. The kinetic constants V(max) and k(m) of the enzymes are all in the same range regardless of whether native NAD(H) or PEG-10,000-NAD(H) is used as coenzyme. L-leucine was produced continuously out of alpha-ketoisocaproate for 48 days; a maximal conversion of 99.7% was reached. The space-time yield was 324 mmol/L day (or 42.5 g/L day).  相似文献   

4.
The kinetic properties of a continuous enzyme reactor containing rabbit muscle lactate dehydrogenase, horse liver alcohol dehydrogenase and poly(ethylene glycol)-bound NAD (PEG-NAD) were investigated experimentally and theoretically. The enzymes and PEG-NAD were retained in the reactor with an ultrafiltration membrane, and the substrates (pyruvate and ethanol) were fed continuously. The reactions of the dehydrogenases were coupled by the recycling of the cofactor. The steady-state concentration of L-lactate, one of the products, was measured under different experimental conditions and compared with the corresponding theoretical value. The theoretical value was calculated based on a simplified ordered bi-bi mechanism for the individual enzyme reactions, of which kinetic constants were determined by independent kinetic studies. Differences were found between the kinetic constants of the enzymes for NAD(H) and PEG-NAD(H). The steady-state values obtained by continuous operation were lower than those calculated, possibly due to the simplification made for the kinetic model; but there was general agreement between them in the dependence on the experimental conditions. The steady-state behavior of the enzyme reactor was explained semi-quantitatively by the simple kinetic model.  相似文献   

5.
NAD(H) was retained in a noncharged ultrafiltration membrane reactor for the simultaneous and continuous production of L-lactate and gluconate with coenzyme regeneration. Polyethyleneimine (PEI), a 50-kDa cationic polymer, achieved coenzyme retentions above 0.8 for PEI/NAD(H) molar ratios higher than 5. The ionic strength of the inlet medium caused a decrease of NAD(H) retention that can be counterbalanced by an initial addition of 1% bovine serum albumin (BSA). Continuous reactor performance in the presence of PEI and BSA showed that NAD(H), glucose dehydrogenase, and lactate dehydrogenase were retained by 10-kDa ultrafiltration membranes; L-lactate and gluconate were produced at conversions higher than 95%. PEI enhanced the thermal stability of the enzymes used and increased the catalytic efficiency of glucose dehydrogenase, while no effect was found on the kinetic parameters of lactate dehydrogenase. A model that implements the kinetic equations of the two enzymes describes the reactor behavior satisfactorily. In brief, the use of PEI to retain NAD(H) is a new interesting approach to be widely applied in continuous synthesis with the large number of known dehydrogenases.  相似文献   

6.
A chimeric bifunctional enzyme composing of galactose dehydrogenase (galDH; from Pseudomonas fluorescens) and lactate dehydrogenase (LDH; from Bacillus stearothermophilus) was successfully constructed. The chimeric galDH/LDH possessed dual characteristics of both galactose dehydrogenase and lactate dehydrogenase activities while exhibiting hexameric rearrangement with a molecular weight of approximately 400 kDa. In vitro observations showed that the chimeric enzyme was able to recycle NAD with a continuous production of lactate without any externally added NADH. Two fold higher recycling rate (0.3 mM/h) than that of the native enzyme was observed at pH values above 8.5. Proximity effects became especially pronounced during the recycling assay when diffusion hindrance was induced by polyethylene glycol. All these findings open up a high feasibility to apply the NAD(H) recycling system for metabolic engineering purposes e.g. as a model to gain a better understanding on the molecular proximity process and as the routes for synthesizing of numerous high-value-added compounds.  相似文献   

7.
In this study, whole cells and a crude enzyme of Candida peltata were applied to an electrochemical bioreactor, in order to induce an increment of the reduction of xylose to xylitol. Neutral red was utilized as an electron mediator in the whole cell reactor, and a graphite-Mn(IV) electrode was used as a catalyst in the enzyme reactor in order to induce the electrochemical reduction of NAD(+) to NADH. The efficiency with which xylose was converted to xylitol in the electrochemical bioreactor was five times higher than that in the conventional bioreactor, when whole cells were employed as a biocatalyst. Meanwhile, the xylose to xylitol reduction efficiency in the enzyme reactor using the graphite-Mn (IV) electrode and NAD(+) was twice as high as that observed in the conventional bioreactor which utilized NADH as a reducing power. In order to use the graphite-Mn(IV) electrode as a catalyst for the reduction of NAD(+) to NADH, a bioelectrocatalyst was engineered, namely, oxidoreductase (e.g. xylose reductase). NAD(+) can function in this biotransformation procedure without any electron mediator or a second oxidoreductase for NAD(+)/NADH recycling.  相似文献   

8.
A compact automated analyser which could analyse constituents in biological fluids with a small sample volume and in a short time has been developed. The instrument was composed of a flow injection analysis system equipped with chemiluminometric detection and an immobilized enzyme column reactor used in combination. Chemiluminescence has high sensitivity, and its reaction proceeds very quickly. Furthermore, an immobilized enzyme column reactor can produce a sufficient amount of hydrogen peroxide from compounds in serum in a short time. When enzymes are used as reagents for the analysis of substances in blood or blood serum, the final signals emitted by different enzyme reactions are usually not only hydrogen peroxide but also ammonia, NAD(P)H and so on. However, the practical chemiluminescence method for ammonia and NAD(P)H has not been established. We have discovered a new practical method for ammonia and NAD(P)H using an enzyme column reactor consisting of both immobilized L -glutamate dehydrogenase and L -glutamate oxidase. The determinations of glucose and uric acid in serum by chemiluminometry after production of hydrogen peroxide by the respective oxidases are presented. A newly chemiluminometric determination of ammonia, NAD(P)H and its applications to other enzymatic analyses that give ammonia and NAD(P)H as a final signal are also described.  相似文献   

9.
Continuous production of L-alanine with conjugated enzyme systems of alanine dehydrogenase (AlaDH) and lactate dehydrogenase (LDH) or alcohol dehydrogenase (ADH) was carried out with NAD regeneration in an ultrafiltration hollow-fiber capillary reactor (HFCR) which was proposed as a test bioreactor with very small scale. In the AlaDH/LDH system, pyruvate is the intermediate product for L-alanine so that an optimal point existed in pyruvate concentration for the production rate of L-alanine. NAD cycling number of 4850 and L-alanine productivity of 61.7 mmol/L h were obtained at the best condition. In the AlaDH/ADH system, however, the substrate inhibition in the AlaDH reaction by pyruvate should be considered and the best results of NAD cycling number and (L)-alanine productivity were 2700 and 13.5 mmol/L h, respectively. In consideration of concentration distribution and mixing in the axial direction on an HFCR, performance of the reactor was theoretically analyzed with a multistage stirred tank reactor model combined with the kinetic model based on all the elementary reactions involved. Although quantitative discrepancy existed in some cases, the present theoretical model could explain experimental results and is expected to be generally applicable to standard hollow fiber reactors.  相似文献   

10.
Multienzyme reaction systems with simultaneous coenzyme regeneration have been investigated in a continuously operated membrane reactor at bench scale. NAD(H) covalently bound to polyethylene glycol with a molecular weight of 104 [PEG-10,000-NAD(H)] was used as coenzyme. It could be retained in the membrane reactor together with the enzymes. L -leucine dehydrogenase (LEUDH) was used as catalyze for the reductive amination of α-ketoisocaproate (2-oxo-4-methylpentanoic acid) to L -leucine. Format dehydrogenease (FDH) was used for the regeneration of NADH. Kinetic experiments were carried out to obtain data which could be used in a kinetic model in order to predict the performance of an enzyme membrane reactor for the continuous production of L -leucine. The kinetic constants Vmax and Km of enzymes are all in the same range regardless of whether native NAD(H) or PEG-10,000-NAD(H) is used as coenzyme. L -leucine was produced continuously out of α-ketoisocaproate for 48 days; a maximal conversion of 99.7% was reached. The space-time yield was 324 mmol/L day (or 42.5 g/L day).  相似文献   

11.
The enantiocatalytic performance of immobilized lipase in an emulsion membrane reactor using stable emulsion prepared by membrane emulsification technology was studied. The production of optical pure (S)-naproxen from racemic naproxen methyl ester was used as a model reaction system. The O/W emulsion, containing the substrate in the organic phase, was fed to the enzyme membrane reactor from shell-to-lumen. The enzyme was immobilized in the sponge layer (shell side) of capillary polyamide membrane with 50 kDa cut-off. The aqueous phase was able to permeate through the membrane while the microemulsion was retained by the thin selective layer. Therefore, the substrate was kept in the enzyme-loaded membrane while the water-soluble product was continuously removed from the reaction site. The results show that lipase maintained stable activity during the entire operation time (more than 250 h), showing an enantiomeric excess (96 +/- 2%) comparable to the free enzyme (98 +/- 1%) and much higher compared to similar lipase-loaded membrane reactors used in two-separate phase systems (90%). The results demonstrate that immobilized enzymes can achieve high stability as well as high catalytic activity and enantioselectivity.  相似文献   

12.
It has been shown that ADP, ATP, NAD(P), and NAD(P)H significantly stimulate pyruvate production from malate by intact uncoupled human term placental mitochondria. No stimulation by ADP was observed when mitochondria were incubated in the presence of NAD(P) or NAD(P)H or when mitochondrial membrane had been disrupted. Atractyloside and oligomycin were without effect on ADP- and ATP-stimulated pyruvate production. Other dinucleotides tested such as GDP, UDP, and CDP, stimulated pyruvate production only slightly when mitochondria were incubated in the absence of phosphate. The rate of pyruvate production by intact mitochondria is commensurate with partly purified NAD(P)-linked malic enzyme activity as measured by NAD(P) reduction as far as the effects of pH of hydroxymalonate on these both processes is concerned. It is concluded that pyruvate production by intact human placental mitochondria is catalyzed by NAD(P)-linked malic enzyme and that this process is stimulated by ADP and ATP.  相似文献   

13.
Glucose-dehydrogenase-poly(ethylene glycol)-NAD conjugate (GlcDH-PEG-NAD) was prepared and its kinetic properties as an NADH-regeneration unit were investigated. The conjugate has about two molecules of active and covalently linked NAD per tetramer. The specific activity of the enzyme moiety of the conjugate in the presence of exogenous NAD is about 77% of that of the native enzyme, and this decrease is mainly due to the decrease in the Vmax value. The conjugate has the same pH-stability profile as the native enzyme and an internal activity of 0.26s−1 (as a monomer); its NAD moiety has similar coenzyme activity to poly(ethylene glycol)-bound NAD. These results indicate that GlcDH-PEG-NAD can be used as an NADH-regeneration unit for many dehydrogenase reactions. The coupled reaction of GlcDH-PEG-NAD and lactate dehydrogenase was then studied. The specific activity of the conjugate is 1.1 s−1 (as a tetramer), the recycling rate of the active NAD moiety is 0.54 s−1, and the apparent Km value for glucose is 24 mM. Kinetically, lactate dehydrogenase behaves like a substrate with an apparent Km value of 1.8 units·ml−1 in this coupled reaction system with low coenzyme concentration. l-Lactate was continuously produced from pyruvate in a reactor with a PM10 ultrafiltration membrane, and containing GlcDH-PEG-NAD and lactate dehydrogenase. GlcDH-PEG-NAD proved to be applicable in continuous enzyme reactors as an NADH-regeneration unit with a large molecular size.  相似文献   

14.
The soluble hydrogenase (hydrogen: NAD+ oxidoreductase, EC 1.12.1.2) from Alcaligenes eutrophus H 16 was purified 68-fold with a yield of 20% and a final specific activity (NAD reduction) of about 54 mumol H2 oxidized/min per mg protein. The enzyme was shown to be homogenous by polyacrylamide gel electrophoresis. Its molecular weight and isoelectric point were determined to be 205 000 and 4.85 respectively. The oxidized hydrogenase, as purified under aerobic conditions, was of high stability but not reactive. Reductive activation of the enzyme by H2, in the presence of catalytic amounts of NADH, or by reducing agents caused the hydrogenase to become unstable. The purified enzyme, in its active state, was able to reduce NAD, FMN, FAD, menaquinone, ubiquinone, cytochrome c, methylene blue, methyl viologen, benzyl viologen, phenazine methosulfate, janus green, 2,6-dichlorophenoloindophenol, ferricyanide and even oxygen. In addition to hydrogenase activitiy, the enzyme exhibited also diaphorase and NAD(P)H oxidase activity. The reversibility of hydrogenase function (i.e. H2 evolution from NADH, methyl viologen and benzyl viologen) was demonstrated. With respect to H2 as substrate, hydrogenase showed negative cooperativity; the Hill coefficient was n = 0.4. The apparent Km value for H2 was found to be 0.037 mM. The absorption spectrum of hydrogenase was typical for non-heme iron proteins, showing maxima (shoulders) at 380 and 420 nm. A flavin component could be extracted from native hydrogenase characterized by its absorption bands at 375 and 447 nm and a strong fluorescense at 526 nm.  相似文献   

15.
Lactic acid production with cell recycling on an ultrafiltration tubular membrane reactor was studied; higher lactic acid concentrations as well as productivities were obtained under long-term fermentations compared with other high cell density systems. Different operational conditions, namely dilution rates and start-up modes, were assessed. Performances were very different at the three different dilution rates tested (D = 0.20 h(-1), D = 0.40 h(-1), or D = 0.58 h(-1)). The different behaviours are discussed and factors responsible for them are presented. The best way to operate for lactic acid production is chosen, the dilution rate of D = 0.40 h(-1) being the one providing the best overall performance. On the other hand, results show that of the two start-up modes tested, continuous start (membrane open) permits higher permeabilities throughout the operational runs than batch start (membrane closed). Operational stability was found to be directly associated with membranes that work at "steady state," the membrane permeability being kept around 15 L/m(2) h. Optimized cell bleed can improve time of operation if such membrane permeability can be maintained for a longer time. A comparison of results with those obtained in other lactic acid production systems is presented; such comparison shows that this tubular ultrafiltration membrane cell recycle reactor presents three important advantages: (1) concomitant lactic acid concentrations and productivities; (2) long periods of operation at reasonable permeabilities; and (3) good mechanical stability permitting the use of steam sterilization. (c) 1995 John Wiley & Sons, Inc.  相似文献   

16.
The conjugated redox reaction was driven across the electron transfer membrane prepared from a urethane prepolymer to carry positive charge, where NADP+ as electron transfer carrier was adsorbed in the prepared polyurethane membrane. Glutathione reductase [NAD (P)H: oxidized-glutathione oxidoreductase (EC 1.6.4.1)] was used as the catalyst for production of the reduced form of glutathione (GSH) from the oxidized form (GSSG) in the objective reaction, and methyl viologen (MV) was used for the electrochemical regeneration of NADPH in the subreaction. The conjugated redox reaction in the separated reactions system, using the three-compartment cell with two membranes, was successful without MV contamination. Under the given conditions, the conversion ratio of GSH from GSSG reached 50% after 4 h of incubation at 30°C and the amount of GSH accumulated was 0.5 μmol ml−1 of reaction mixture.  相似文献   

17.
The NAD(P)H oxidase is an enzyme assembled at the cellular membrane able to produce superoxide anion from NADH or NAD(P)H (nicotinamide adenine dinucleotide phosphate). It is one of the main sources of superoxide anion in cardiovascular tissues and its role in a variety of cardiovascular disorders such as atherosclerosis, cardiac hypertrophy, and endothelial dysfunction was recently proposed. Although, many factors and receptors were shown to lead to the activation of the enzyme, particulary the type 1 angiotensin receptor, the pathways involved are still widely unknown. Despite the identification of factors such as c-Src and protein kinase C implicated in the acute activation of NAD(P)H oxidase, the signalling involved in the sustained activation of the enzyme is probably far more complex than was previously envisioned. In this review, we describe the role of endothelin-1 in NAD(P)H oxidase signalling after a sustained stimulation by angiotensin II. Since most pathologies caused by an NAD(P)H oxidase overactivation develop over a relatively long period of time, it is necessary to better understand the long-term signalling of the enzyme for the development or use of more specific therapeutic tools.  相似文献   

18.
The main catalytic properties of the Hox type hydrogenase isolated from the Gloeocapsa alpicola cells have been studied. The enzyme effectively catalyzes reactions of oxidation and evolution of H2 in the presence of methyl viologen (MV) and benzyl viologen (BV). The rates of these reactions in the interaction with the physiological electron donor/acceptor NADH/NAD+ are only 3-8% of the MV(BV)-dependent values. The enzyme interacts with NADP+ and NADPH, but is more specific to NAD+ and NADH. Purification of the hydrogenase was accompanied by destruction of its multimeric structure and the loss of ability to interact with pyridine nucleotides with retained activity of the hydrogenase component (HoxYH). To show the catalytic activity, the enzyme requires reductive activation, which occurs in the presence of H2, and NADH accelerates this process. The final hydrogenase activity depends on the redox potential of the activation medium (E(h)). At pH 7.0, the enzyme activity in the MV-dependent oxidation of H2 increased with a decrease in E(h) from -350 mV and reached the maximum at E(h) of about -390 mV. However, the rate of H2 oxidation in the presence of NAD+ in the E(h) range under study was virtually constant and equal to 7-8% of the maximal rate of H2 oxidation in the presence of MV.  相似文献   

19.
辅酶NAD(H)相比NADP(H)有稳定性好、价格低廉及更广的辅酶循环方法等优势,因此在实际应用中常需将NADP(H)依赖型的脱氢酶改造成为NAD(H)依赖型的。来源于嗜热共生杆菌Symbiobacterium thermophilum的NADP(H)依赖型内消旋-2,6-二氨基庚二酸脱氢酶(meso-2,6-diaminopimelate dehydrogenase,St DAPDH)及其突变体酶是催化还原氨化合成D-氨基酸的优良催化剂,本研究试图改变其辅酶偏好性,增强其应用优势。对其晶体结构分析可知,氨基酸残基Y76距离腺嘌呤较近,R35及R36和辅酶上磷酸基团有直接相互作用。依氨基酸侧链基团性质对Y76进行了定点突变,发现不同突变子对两种辅酶的偏好性都发生了变化;对与磷酸基团直接作用的R35、R36进行的双突变R35S/R36V,导致酶对NADP+的催化活力降低;将R35S/R36V和部分Y76突变进行了组合,发现三突变组合以NAD+为辅酶时的活力均大于以NADP+为辅酶的活力,实现了辅酶偏好性转变。这些研究工作为进一步实现St DAPDH的辅酶偏好性完全转变提供依据。  相似文献   

20.
《Biosensors》1989,4(4):231-239
An enzyme thermistor method for the determination of ADP and/or ATP with signal amplification by recycling procedures is described. Pyruvate kinase (PK) and hexokinase (HK) coimmobilised on aminopropyl-controlled pore glass were applied in a column reactor. Addition of an excess of phosphoenolpyruvate (PEP) and glucose leads to cofactor recycling and production of glucose-6-phosphate and pyruvate. In presence of PEP an amplification of the sensitivity up to 30 times was reached as compared with the HK-catalysed reaction alone. An additional signal amplification was accomplished by recycling the pyruvate leaving the first enzyme reactor in a second reactor containing L-lactate dehydrogenase, lactate oxidase and catalase. In the presence of NADH an overall amplification of the sensitivity for ATP or ADP up to 1700 times was found. The limits of detection were 6 × 10−5 M cofactor without recycling at all, 2 × 10−6M with recycling in the kinase bienzyme reactor and 1 × 10−8M with the dual recycling system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号