首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The PS II–LHC II supercomplex is a novel type of oxygen evolving Photosystem II (PS II) core particle that contains the light harvesting complex proteins Lhcb1/2/4/5 in addition to the PS II reaction centre, oxygen evolving complex (OEC) and inner antennae [Hankamer et al. (1997) Eur J Biochem 243: 422–429]. The 33 and 23 kDa extrinsic proteins in these particles have been localised by image analysis of electron micrographs and averaging techniques [Boekema et al. (1998) Eur J Biochem 252: 268–276]. To assay the functionality of the water splitting complex, we compared the single flash P680+ reduction kinetics in these supercomplexes with those of PS II-rich granal stack membranes (BBYs). We found that the P680+ reduction kinetics in PS II–LHC II supercomplexes were indistinguishable from those in BBYs. We also examined a number of PS II core particles lacking the Lhcb components. All of these had different P680+ reduction kinetics, which we attributed to partial loss of OEC function before and during the measurements.  相似文献   

2.
We present a unifying mechanism for photoinhibition based on current obsevations from in vivo studies rather than from in vitro studies with isolated thylakoids or PS II membranes. In vitro studies have limited relevance for in vivo photoinhibition because very high light is used with photon exposures rarely encountered in nature, and most of the multiple, interacting, protective strategies of PS II regulation in living cells are not functional. It is now established that the photoinactivation of Photosystem II in vivo is a probability and light-dosage event which depends on the photons absorbed and not the irradiance per se. As the reciprocity law is obeyed and target theory analysis strongly suggests that only one photon is required, we propose that a single dominant molecular mechanism occurs in vivo with one photon inactivating PS II under limiting, saturating or sustained high light. Two mechanisms have been proposed for photoinhibition under high light, acceptor-side and donor-side photoinhibition [see Aro et al. (1994) Biochim Biophys Acta 1143: 113–134], and another mechanism for very low light, the low-light syndrome [Keren et al. (1995) J Biol Chem 270: 806–814]. Based on the exciton-radical pair equilibrium model of exciton dynamics, we propose a unifying mechanism for the photoinactivation of PS II in vivo under steady-state photosynthesis that depends on the generation and maintenance of increased concentrations of the primary radical pair, P680+Pheo, and the different ways charge recombination is regulated under varying environmental conditions [Anderson et al. (1997) Physiol Plant 100: 214–223]. We suggest that the primary cause of damage to D1 protein is P680+, rather than singlet O2 formed from triplet P680, or other reactive oxygen species.  相似文献   

3.
The 33-kDa manganese-stabilizing protein (MSP) of Photosystem II (PS II) maintains the functional stability of the Mn cluster in the enzyme’s active site. This protein has been shown to possess characteristics similar to those of the intrinsically disordered, or natively unfolded proteins [Lydakis-Simantiris et al. (1999b) Biochemistry 38: 404–414]. Alternately it was proposed that MSP should be classified as a molten globule, based in part on the hypothesis that its lone disulfide bridge is necessary for structural stability and function in solution [Shutova et al. (2000) FEBS Lett. 467: 137–140]. A site-directed mutant MSP (C28A,C51A) that eliminates the disulfide bond reconstitutes O2 evolution activity and binds to MSP-free PS II preparations at wild-type levels [Betts et al. (1996) Biochim. Biophys. Acta 1274: 135–142]. This mutant was further characterized by incubation at 90 °C to determine the effect of loss of the disulfide bridge on MSP thermostability and solution structure. After heating at 90 °C for 20 min, C28A,C51A MSP was still able to bind to PS II preparations at molar stoichiometries similar to those of WT MSP and reconstitute O2 evolution activity. A fraction of the protein aggregates upon heating, but after resolubilization, it regains the ability to bind to PS II and reconstitute O2 evolution activity. Characterization of the solution structure of C28A,C51A MSP, using CD spectroscopy, UV absorption spectroscopy, and gel filtration chromatography, revealed that the mutant has a more disordered solution structure than WT MSP. The disulfide bond is therefore unnecessary for MSP function and the intrinsically disordered characteristics of MSP are not dependent on its presence. However, the disulfide bond does play a role in the solution structure of MSP in vivo, as evidenced by the lability of a C20S MSP mutation in Synechocystis 6803 [Burnap et al. (1994) Biochemistry 33: 13712–13718].  相似文献   

4.
The sll1418 gene encodes a PsbP-like protein in Synechocystis sp. PCC 6803. Expression of sll1418 was similar in BG-11 and in Cl- or Ca2+-limiting media, and inactivation of sll1418 did not prevent photoautotrophic growth in normal or nutrient-limiting conditions. Also the wild-type and ΔPsbP strains exhibited similar oxygen evolution and assembly of Photosystem II (PS II) centers. Inactivation of sll1418 in the ΔPsbO: ΔPsbP, ΔPsbQ:ΔPsbP, ΔPsbU:ΔPsbP and ΔPsbV:ΔPsbP mutants did not prevent photoautotrophy or alter PS II assembly and oxygen evolution in these strains. Moreover, the absence of PsbP did not affect the ability of alkaline pH to restore photoautotrophic growth in the ΔPsbO:ΔPsbU strain. The PsbO, PsbU and PsbV proteins are required for thermostability of PS II and thermal acclimation in Synechocystis sp. PCC 6803 [Kimura et al. (2002) Plant Cell Physiol 43: 932–938]. However, thermostability and thermal acclimation in ΔPsbP cells were similar to wild type. These results are consistent with the conclusion that PsbP is associated with ∼3 of PS II centers, and may play a regulatory role in PS II [Thornton et al. (2004) Plant Cell 16: 2164–2175].  相似文献   

5.
In order to examine whether the two photosystems, PS I and PS II, are organized in specific electron transporting pairs, or randomly transport electrons from PS II to PS I, the photosystems imbalance of photoactivities (Emerson enhancement) was measured by modulated fluorimetry under different degrees of PS II inhibition in broken chloroplasts, where the granal structures were preserved by the presence of 5 mM MgCl. The results indicate a lack of any measurable specific functional pairing between individual PS I and PS II, in contrast to a previous research work in leaves (Malkin et al. 1986, Photosynth. Res. 10: 291–296). These results and this discrepancy are further discussed.  相似文献   

6.
The O2-evolution deficient mutant (LF-1) of Scenedesmus obliquus inserts an unprocessed D1 protein into the thylakoid membrane and binds less than half the wild type (WT) level of Mn. LF-1 photosystem II (PS II) membrane fragments lack that part of the high-affinity Mn2+-binding site found in WT membranes which may be associated with histidine residues on the D1 protein (Seibert et al. 1989 Biochim Biophys Acta 974: 185–191). Hsu et al. (1987 Biochim Biophys Acta 890: 89–96) purport that the high-affinity site (characterized by competitive inhibition of DPC-supported DCIP photoreduction by M concentrations of Mn2+) in Mn-extracted PS II membranes is also the binding site for Mn functional in O2 evolution. Proteases (papain, subtilisin, and carboxypeptidase A) can be used to regenerate the high-affinity Mn2+-binding site in LF-1 PS II membranes but not in thylakoids. Experiments with the histidine modifier, DEPC, suggest that the regenerated high-affinity Mn2+-binding sites produced by either subtilisin or carboxypeptidase A treatments were the same sites observed in WT membranes. However, none of the protease treatments produced LF-1 PS II membranes that could be photoactivated. Reassessment of the processing studies of Taylor et al. (1988 FEBS Lett 237: 229–233) lead us to believe that their procedure also does not result in substantial photoactivation of LF-1 PS II membranes. We conclude that (1) the unprocessed carboxyl end of the D1 protein in LF-1 is located on the lumenal side of the PS II membrane, (2) the unprocessed fragment physically obstructs or perturbs that part of the high-affinity Mn2+-binding site undetectable in LF-1, and (3) the D1 protein must be processed at the time of insertion into the membrane for normal O2-evolution function to result.Abbreviations Chl chlorophyll - DCBQ 2,6-dichloro-1,4-benzoquinone - DCIP 2,6-dichlorophenol indophenol - DEPC diethylpryocarbonate - DPC 1,5-diphenylcarbazide - HEPES 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid - LDS-PAGE lithium dodecylsulfate polyacrylamide gel electrophoresis - LF-1 a low-fluorescent mutant of Scenedesmus obliquus - MES 4-morpholineethanesulfonic acid - PS II photosystem II - PMSF phenylmethylsulfonyl fluoride - RC photosystem II reaction center - Tris tris(hydroxymethyl)aminomethane - WT wild type Operated by the Midwest Research Institute for the U.S. Department of Energy under contract DE-AC-02-83CH10093.  相似文献   

7.
Phosphorylation of thylakoid membrane proteins results in a partial inhibition (approximately 15–20%) of the light-saturated rate of oxygen evolution. The site of inhibition is thought to be located on the acceptor side of photosystem 2 (PS2) between the primary, QA, and secondary, QB, plastoquinone acceptors (Hodges et al. 1985, 1987). In this paper we report that thylakoid membrane phosphorylation increases the damping of the quaternary oscillation in the flash oxygen yield and increases the extent of the fast component in the deactivation of the S2 oxidation state. These results support the proposal that thylakoid membrane protein phosphorylation decreases the equilibrium constant for the exchange of an electron between QA and QB. An analysis of the oxygen release patterns using the recurrence matrix model of Lavorel (1976) indicates that thylakoid membrane phosphorylation increases the probability that PS2 miss a S-state transition by 20%. This is equivalent, however, to an insignificant inhibition (approximately 2.4%) of the light-saturated oxygen evolution rate. If a double miss in the S-state transitions is included when the PS2 centres are in S2 the fit between the experimental and theoretical oxygen yield sequences is better, and sufficient to account for the 15–20% inhibition in the steady-state oxygen yield. A double miss in the S-state transition is a consequence of an increased population of PS2 centres retaining QA : not only will these PS2 centres fail to catalyse photochemical charge transfer until QA is reoxidized, but the re-oxidation reaction will also result in the deactivation of S2 to S1.Abbreviations Chl Chlorophyll - PS2 Photosystem 2 - Si The oxidation states of PS2 (where i can be from 0 to 4) - QA and QB the anionic semiquinone forms of the primary and secondary plastoquione acceptors of PS2  相似文献   

8.
The topography of subunits around the 9-kDa polypeptide in thephotosystem I (PS I) complex of spinach was studied by examiningthe results of alkaline and chaotropic ion treatments, trypticdigestion, and cross-linking of thylakoid membranes supplementedwith Western blotting techniques using antibodies raised againstthe 9-, 14- and 19-kDa polypeptides. The 14- and 19-kDa polypeptideshave been shown to correspond to subunits III and II [Münchet al. (1988) Curr. Genet. 14: 511–518.], respectively,by a comparison of their respective amino acid compositionsand amino-terminal sequences [Oh-oka et al. (1988a) J. Biochem.103: 962–968.]. It appears that these three polypeptidesare peripheral proteins situated in close to each other on thestromal side of thylakoid membranes. The 9-kDa polypeptide withcenters A and B is stable within a specific environment of themembranes, in which the polypeptide is embedded under the twoother subunits, the 14- and 19-kDa polypeptides. Thus, the 9-kDapolypeptide becomes unstable when dissociated from the PS Icomplex and exposed to the solvent environment. (Received March 15, 1989; Accepted June 15, 1989)  相似文献   

9.
We have used three doxyl stearic acid spin labels to study the transverse hetero-geneity in lipid fluidity in thylakoids, photosystem II (PS II) preparations, and thylakoid galactolipid vesicles. This comparative study shows that spin labels incorporated into the membrane of the PS II preparation experience far more immobilization than do the same spin labels incorporated into either thylakoids or vesicles prepared from the polar lipids extracted from thylakoids. The spin label immobilization found in the PS II preparation is manifest even near the center of the bilayer, where lipid mobility is normally at its maximum. Analysis of the lipid content of the PS II preparation, relative to chlorophyll, suggests that the PS II preparation may be lipid depleted. This lipid depletion could explain the results presented. However, electron microscopy [Dunahay et al. (1984) Biochim. Biophys. Acta 764:179–193] has not indicated that major delipidation has occurred, and so it remains possible that the immobilization found in the PS II preparation is due primarily to the normal (but close) juxtaposition of adjacent PS II complexes and the cooperative immobilization of their surrounding lipids. Based on the results presented, we conclude that highly mobile lipids are not required for oxygen evolution, the primary photochemistry or the secondary reduction of exogenously added quinones. Unfortunately, the relationship between the plastoquinone pool and the fluidity of the membrane in the PS II preparation remains ambiguous.Abbreviations PS II photosystem II - SDSA 5-doxylstearic acid - 12DSA 12-doxylstearic acid - 16DSA 16-doxylstearic acid - 7N14 2-heptyl-2-hexyl-5,5-dimethyloxazolidine-N-oxyl - chromium oxalate potassium trioxalatochromiate - EPR electron paramagnetic resonance - Chl chlorophyll - MGDG monogalactosyldiacylglycerol - DGDG digalactosyldiacylglycerol  相似文献   

10.
Thermo-optically induced structural reorganizations have earlier been identified in isolated LHCII, the main chlorophyll a/b light harvesting complexes of Photosystem II, and in granal thylakoid membranes [Cseh et al. (2000) Biochemistry 39: 15250–15257; Garab et al. (2002) Biochemistry 41: 15121–15129]. According to the thermo-optic mechanism, structural changes can be induced by fast, local thermal transients due to the dissipation of excess excitation energy. In this paper, we analyze the temperature and light-intensity dependencies of thermo-optically induced reversible and irreversible reorganizations in the chiral macrodomains of lamellar aggregates of isolated LHCII and of granal thylakoid membranes. We show that these structural changes exhibit non-Arrhenius type of temperature dependencies, which originate from the ‘combination’ of the ambient temperature and the local thermal transient. The experimental data can satisfactorily be simulated with the aid of a simple mathematical model based on the thermo-optic effect. The model also predicts, in good accordance with experimental data published earlier and presented in this paper, that the reorganizations depend linearly on the intensity of the excess light, a unique property that is probably important in light adaptation and photoprotection of plants.  相似文献   

11.
Now is a very exciting time for researchers in the area of the primary reactions of purple bacterial photosynthesis. Detailed structural information is now available for not only the reaction center (Lancaster et al. 1995, in: Blankenship RE et al. (eds) Anoxygenic Photosynthetic Bacteria, pp 503–526), but also LH2 from Rhodopseudomonas acidophila (McDermott et al. 1995, Nature 374: 517–521) and LH1 from Rhodospirillum rubrum (Karrasch et al. 1995. EMBO J 14: 631–638). These structures can now be integrated to produce models of the complete photosynthetic unit (PSU) (Papiz et al., 1996, Trends Plant Sci, in press), which opens the door to a much more detailed understanding of the energy transfer events occurring within the PSU.Abbreviations Bchl bacteriochlorophyll - LH light-harvesting - PSU photosynthetic unit Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences  相似文献   

12.
The Photosystem II (PS II) manganese stabilizing protein (MSP) possesses characteristics, including thermostability, ascribed to the natively unfolded class of proteins (Lydakis-Simantiris et al. (1999) Biochemistry 38: 404–414). A site-directed mutant of MSP, C28A, C51A, which lacks the -S–S- bridge, also binds to PS II at wild-type levels and reconstitutes oxygen evolution activity [Betts et al. (1996) Biochim Biophys Acta 1274: 135–142], although the mutant protein is even more disordered in solution. Both WT and C28A, C51A MSP aggregate upon heating, but an examination of the effects of protein concentration and pH on heat-induced aggregation showed that each MSP species exhibited greater resistance to aggregation at a pH near their pI (5.2) than do either bovine serum albumin (BSA) or carbonic anhydrase, which were used as model water soluble proteins. Increases in pH above the pI of the MSPs and BSA enhanced their aggregation resistance, a behavior which can be predicted from their charge (MSP) or a combination of charge and stabilization by -S–S- bonds (BSA). In the case of aggregation resistance by MSP, this is likely to be an important factor in its ability to avoid unproductive self-association reactions in favor of formation of the protein–protein interactions that lead to formation of the functional oxygen evolving complex.  相似文献   

13.
Abtract A series of publications has dealt in the last years with topics as the isolation, properties and applications of animal stem cells (Weissman 2000. Cell 100: 157–168; Weissman 2002. N. Engl. J. Med. 346: 1567–1579; Lovell-Badge 2001. Nature 414: 88–91; Marshak et al. 2001. Stem Cell Biology. Cold Spring Harbor Laboratory Press, New york; Eridani 2002. J. Roy. Soc. Med. 95: 5–8; Borge and Evers 2003. Cytotechnology 41: 59–68; Sgaramella 2003. Cytotechnology 41: 69–73), however, the bonanza of experimental data recently accumulating have raised such an amount of controversial views and discussions that time perhaps has come for a reassessment of the basic facts in this peculiar area of research and an evaluation of possible, not unrealistic, implications.  相似文献   

14.
Thylakoids isolated from cells of the red alga Porphyridium cruentum exhibit an increased PS I activity on a chlorophyll basis with increasing growth irradiance, even though the stoichiometry of Photosystems I and II in such cells shows little change (Cunningham et al. (1989) Plant Physiol 91: 1179–1187). PS I activity was 26% greater in thylakoids of cells acclimated at 280 mol photons · m–2 · s–1 (VHL) than in cells acclimated at 10 mol photons · m–2 · s–1 (LL), indicating a change in the light absorbance capacity of PS I. Upon isolating PS I holocomplexes from VHL cells it was found that they contained 132±9 Chl/P700 while those obtained from LL cells had 165±4 Chl/P700. Examination of the polypeptide composition of PS I holocomplexes on SDS-PAGE showed a notable decrease of three polypeptides (19.5, 21.0 and 22 kDa) in VHL-complexes relative to LL-complexes. These polypeptides belong to a novel LHC I complex, recently discovered in red algae (Wolfe et al. (1994a) Nature 367: 566–568), that lacks Chl b and includes at least six different polypeptides. We suggest that the decrease in PS I Chl antenna size observed with increasing irradiance is attributable to changes occurring in the LHC I-antenna complex. Evidence for a Chl-binding antenna complex associated with PS II core complexes is lacking at this point. LHC II-type polypeptides were not observed in functionally active PS II preparations (Wolfe et al. (1994b) Biochimica Biophysica Acta 1188: 357–366), nor did we detect polypeptides that showed immunocross-reactivity with LHC II specific antisera (made to Chlamydomonas and Euglena LHC II).Abbreviations Bis-Tris bis(2-hydroxyethyl)imino-tris(hydroxymethyl)methane - DCPIP 2,6-dichlorophenol indophenol - -dm dodecyl--d-maltoside - HL high light of 150 mol photons · m–2 · s–1 - LGB lower green band - LHC I light-harvesting complex of PS I - LHC II light-harvesting complex of PS II - LL low light of 10 mol photons · m–2 · s–1 - ML medium light of 50 mol photons · m–2 · s–1 - MES 2-(N-morpholino) ethanesulfonic acid - P700 reaction center of PS I - PFD photon flux density - Trizma tris(hydroxymethyl)aminomethane - UGB upper green band - VHL very high light of 280 mol photons · m–2 · s–1  相似文献   

15.
N,N,N,N′-tetramethyl-p-phenylenediamine (TMPD) was previously used to study the kinetics of the OJIP chlorophyll fluorescence rise. The present study is an attempt to elucidate the origin of TMPD-induced delay and quenching of the I–P step of fluorescence rise. For this purpose, we analyzed the kinetics of OJIP rise in thylakoid membranes in which electron transport was modified using ascorbate, methyl viologen (MV), and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). In the absence of TMPD, the OJIP kinetics of fluorescence induction (FI) was not altered by ascorbate. However, ascorbate eliminated the I–P rise delay caused by high concentrations of TMPD. On the other hand, neither ascorbate nor DBMIB, which blocks the electron release from Photosystem II (PS II) at the cytochrome b6/f complex, could prevent the quenching of I–P rise by TMPD. In control thylakoids, MV suppressed the I–P rise of FI by about 60. This latter effect was completely removed if the electron donation to MV was blocked by DBMIB unless TMPD was present. When TMPD intercepted the linear electron flow from PS II, re-oxidation of TMPD by photosystem I (PS I) and reduction of MV fully abolished the I–P rise. The above is in agreement with the fact that TMPD can act as an electron acceptor for PS II. With MV, the active light-driven uptake of O2 during re-oxidation of TMPD by PS I contributes towards an early decline in the I–P step of the OJIP fluorescence rise.  相似文献   

16.
Estimation of evolutionary distances between nucleotide sequences   总被引:11,自引:0,他引:11  
A formal mathematical analysis of the substitution process in nucleotide sequence evolution was done in terms of the Markov process. By using matrix algebra theory, the theoretical foundation of Barry and Hartigan's (Stat. Sci. 2:191–210, 1987) and Lanave et al.'s (J. Mol. Evol. 20:86–93, 1984) methods was provided. Extensive computer simulation was used to compare the accuracy and effectiveness of various methods for estimating the evolutionary distance between two nucleotide sequences. It was shown that the multiparameter methods of Lanave et al.'s (J. Mol. Evol. 20:86–93, 1984), Gojobori et al.'s (J. Mol. Evol. 18:414–422, 1982), and Barry and Hartigan's (Stat. Sci. 2:191–210, 1987) are preferable to others for the purpose of phylogenetic analysis when the sequences are long. However, when sequences are short and the evolutionary distance is large, Tajima and Nei's (Mol. Biol. Evol. 1:269–285, 1984) method is superior to others.  相似文献   

17.
Recent work on the domain organization of the thylakoid is reviewed and a model for the thylakoid of higher plants is presented. According to this model the thylakoid membrane is divided into three main domains: the stroma lamellae, the grana margins and the grana core (partitions). These have different biochemical compositions and have specialized functions. Linear electron transport occurs in the grana while cyclic electron transport is restricted to the stroma lamellae. This model is based on the following results and considerations. (1) There is no good candidate for a long-range mobile redox carrier between PS II in the grana and PS I in the stroma lamellae. The lateral diffusion of plastoquinone and plastocyanin is severely restricted by macromolecular crowding in the membrane and the lumen respectively. (2) There is an excess of 14±18% chlorophyll associated with PS I over that of PS II. This excess is assumed to be localized in the stroma lamellae where PS I drives cyclic electron transport. (3) For several plant species, the stroma lamellae account for 20±3% of the thylakoid membrane and the grana (including the appressed regions, margins and end membranes) for the remaining 80%. The amount of stroma lamellae (20%) corresponds to the excess (14–18%) of chlorophyll associated with PS I. (4) The model predicts a quantum requirement of about 10 quanta per oxygen molecule evolved, which is in good agreement with experimentally observed values. (5) There are at least two pools of each of the following components: PS I, PS II, cytochrome bf complex, plastocyanin, ATP synthase and plastoquinone. One pool is in the grana and the other in the stroma compartments. So far, it has been demonstrated that the PS I, PS II and cytochrome bf complexes each differ in their respective pools.Abbreviations PS I and PS II Photosystem I and II - P 700 reaction center of PS I - LHC II light-harvesting complex II  相似文献   

18.
Photoinactivation of Photosystem (PS) II in vivo was investigated by cumulative exposure of pea, rice and spinach leaves to light pulses of variable duration from 2 to 100 s, separated by dark intervals of 30 min. During each light pulse, photosynthetic induction occurred to an extent depending on the time of illumination, but steady-state photosynthesis had not been achieved. During photosynthetic induction, it is clearly demonstrated that reciprocity of irradiance and duration of illumination did not hold: hence the same cumulative photon exposure (mol m–2) does not necessarily give the same extent of photoinactivation of PS II. This contrasts with the situation of steady-state photosynthesis where the photoinactivation of PS II exhibited reciprocity of irradiance and duration of illumination (Park et al. (1995) Planta 196: 401–411). We suggest that, for reciprocity to hold between irradiance and duration of illumination, there must be a balance between photochemical (qP) and non-photochemical (NPQ) quenching at all irradiances. The index of susceptibility to light stress, which represents an intrinsic ability of PS II to balance photochemical and non-photochemical quenching, is defined by the quotient (1-qP)/NPQ. Although constant in steady-state photosynthesis under a wide range of irradiance (Park et al. (1995). Plant Cell Physiol 36: 1163–1169), this index of susceptibility for spinach leaves declined extremely rapidly during photosynthetic induction at a given irradiance, and, at a given cumulative photon exposure, was dependent on irradiance. During photosynthetic induction, only limited photoprotective strategies are developed: while the transthylakoid pH gradient conferred some degree of photoprotection, neither D1 protein turnover nor the xanthophyll cycle was operative. Thus, PS II is more easily photoinactivated during photosynthetic induction, a phenomenon that may have relevance for understorey leaves experiencing infrequent, short sunflecks.Abbreviations D1 protein psbA gene product - DTT dithiothreitol - Fv, Fm, Fo variable, maximum, and initial (corresponding to open traps) chlorophyll fluorescence yield, respectively - NPQ non-photochemical quenching - PS Photosystem - QA primary quinone acceptor of PS II - qP photochemical quenching coefficient  相似文献   

19.
Analyses of chlorophyll fluorescence induction kinetics from DCMU-poisoned thylakoids were used to examine the contribution of the light-harvesting chlorophyll protein complex (LHCP) to Photosystem II (PS II) heterogeneity. Thylakoids excited with 450 nm radiation exhibited fluorescence induction kinetics characteristic of major contributions from both PS IIα and PS IIβ centres. On excitation at 550 nm the major contribution was from PS IIβ centres, that from PS IIα centres was only minimal. Mg2+ depletion had negligible effect on the induction kinetics of thylakoids excited with 550 nm radiation, however, as expected, with 450 nm excitation a loss of the PS IIα component was observed. Thylakoids from a chlorophyll-b-less barley mutant exhibited similar induction kinetics with 450 and 550 nm excitation, which were characteristic of PS IIβ centres being the major contributors; the PS IIα contribution was minimal. The fluorescence induction kinetics of wheat thylakoids at two different developmental stages, which exhibited different amounts of thylakoid appression but similar chlorophyll ratios and thus similar PS II:LHCP ratios, showed no appreciable differences in the relative contributions of PS IIα and PS IIβ centres. Mg2+ depletion had similar effects on the two thylakoid preparations. These data lead to the conclusion that it is the PS II:LHCP ratio, and probably not thylakoid appression, that is the major determinant of the relative contributions of PS IIα and PS IIβ to the fluorescence induction kinetics. PS IIα characteristics are produced by LHCP association with PS II, whereas PS IIβ characteristic can be generated by either disconnecting LHCP from PS II or by preferentially exciting PS II relative to LHCP.  相似文献   

20.
Chlorophyll (Chl) a fluorescence transient, a sensitive and non-invasive probe of the kinetics and heterogeneity of the filling up of the electron acceptor pool of Photosystem II (PS II), was used to characterize D1-mutants of Chlamydomonas reinhardtii. Using a shutter-less system (Plant Efficiency Analyzer, Hansatech, UK), which provides the first measured data point at 10 s and allows data accumulation over several orders of magnitude of time, we have characterized, for the first time, complete Chl a fluorescence transients of wild type (WT), cell wall less (CW-15) C. reinhardtii and several herbicide-resistant mutants of the D1 proteins: D1-V219I A251V, F255Y, S264A G256D and L275F. In all cases, the Chl a fluorescence induction transients follow a pattern of O-J-I-P where J and I appear as two steps between the minimum Fo (O) and the maximum Fmax (Fm, P) levels. The differences among the mutants are in the kinetics of the filling up of the electron acceptor pool of PS II (this paper) in addition to those in the re-oxidation kinetics of QA to QA, published elsewhere (Govindjee et al. (1992) Biochim Biophys. Acta: 1101: 353–358; Strasser et al. (1992) Archs. Sci. Genève 42: 207–224) and not in the ratio of the maximal fluorescence Fm to the initial fluorescence Fo. The value of this experimental ratio is Fm/Fo = 4.4±0.21 independent of the mutation. At 600 W m–2 of 650 nm excitation, distinct hierarchy in the fraction of variable Chl a fluorescence at the J level is observed: S264A > A251V G256A > L275F V219I > F255Y CW-15 WT. At 300 and 60 W m–2 excitation, a somewhat similar hierarchy among the mutants was observed for the intermediate levels J and I. Addition of bicarbonate-reversible inhibitor formate did not change the O to J phases, slowed the I to P rise, and in many cases, slowed the decay of fluorescence beyond the P level. These observations are interpreted in terms of formate effect being on the acceptor rather than on the donor side (S-states) of PS II. The formate effect was different in different mutants, with L275F being the most insensitive mutant followed by others (V219I, F255Y, WT, A251V and S264A). Further, in the presence of high concentrations of DCMU, identical transients were observed for all the mutants and the WT.The quantum yield of photochemistry of PS II, calculated from 1-(Fo/Fm), is in the range of 0.73 to 0.82 for the WT as well as for the mutants examined. Thus, in contrast to differences in the kinetics of the electron acceptor side of PS II, there were no significant differences in the maximum quantum yield of PS II, among the mutants tested. We suggest that earlier photochemistry yield values were much lower (0.4–0.6) than those reported here due to either higher measured values of Fo by instruments using camera shutters, or due to the use of cells grown in less than-optimal conditions.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号