首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
磷脂酰甘油对光系统Ⅱ放氧活性的影响   总被引:1,自引:0,他引:1  
The dependence of oxygen evolution in PS Ⅱ from spinach Spinacia oleracea L. on the content of exogenous anionic phosphatidylglycerol (PG) at pH 6.0 was investigated through reconstitution experiment. It was found that there was a steady increase in oxygen evolution. With increasing PG/PS Ⅱ ratio up to a maximum at concentrations ranging from 10-22 mg PG/mg chlorophyll (Chl). Then, further addition of PG resulted in the inhibitions of oxygen evolution. With a PG/PS Ⅱ ratio of 40 mg PG/mg Chl, the oxygen-evolving activity of PS Ⅱ decreased to 40% of the untreated PS Ⅱ. It is suggested that a stimulation of oxygen evolution at a low PG/Chl ratio was resulted from the structural optimization of PS Ⅱ by PG while an inhibitory effect on oxygen evolution at higher values of this ratio was ascribed to the structural changes of extrinsic proteins of PS Ⅱ owing to osmotic pressure.  相似文献   

2.
光合放氧是植物光系统II(PSII)的重要功能之一。PSII的放氧反应主要是由PSII氧化侧的 4个锰原子组成的锰簇催化的。在类囊体膜的囊腔侧还结合有若干个外周蛋白 ,对放氧反应起着重要作用。文章总结了植物光系统II外周蛋白的结构和功能研究方面的最新进展  相似文献   

3.
4.
Photosynthetic oxygen evolution by photosystem II particleswas inactivated by treatment with NaCl, NH2OH or high pH. Whenthe degree of inactivation was compared with the degree of releasefrom the particles of Mn and three polypeptides having molecularmasses of 33, 24 and 18kdaltons, two types of inactivation werefound: one, brought about with 960 mM NaCl, was related to therelease of the 24 kdalton polypeptide, and the other, broughtabout with 1.5 mM NH2OH or high pH, seemed to be related tothe release of Mn. 1Present address: Department of Chemistry, Faculty of Science,Toho University, Miyama 2-2-1, Funabashi 274, Japan. (Received January 31, 1983; Accepted March 28, 1983)  相似文献   

5.
Ascorbate peroxidase (APEX)-based proximity labeling coupled with mass spectrometry has a great potential for spatiotemporal identification of proteins proximal to a protein complex of interest. Using this approach is feasible to define the proteome neighborhood of important protein complexes in a popular photosynthetic model cyanobacterium Synechocystis sp. PCC6803 (hereafter named as Synechocystis). To this end, we developed a robust workflow for APEX2-based proximity labeling in Synechocystis and used the workflow to identify proteins proximal to the photosystem II (PS II) oxygen evolution complex (OEC) through fusion APEX2 with a luminal OEC subunit, PsbO. In total, 38 integral membrane proteins (IMPs) and 93 luminal proteins were identified as proximal to the OEC. A significant portion of these proteins are involved in PS II assembly, maturation, and repair, while the majority of the rest were not previously implicated with PS II. The IMPs include subunits of PS II and cytochrome b6/f, but not of photosystem I (except for PsaL) and ATP synthases, suggesting that the latter two complexes are spatially separated from the OEC with a distance longer than the APEX2 labeling radius. Besides, the topologies of six IMPs were successfully predicted because their lumen-facing regions exclusively contain potential APEX2 labeling sites. The luminal proteins include 66 proteins with a predicted signal peptide and 57 proteins localized also in periplasm, providing important targets to study the regulation and selectivity of protein translocation. Together, we not only developed a robust workflow for the application of APEX2-based proximity labeling in Synechocystis and showcased the feasibility to define the neighborhood proteome of an important protein complex with a short radius but also discovered a set of the proteins that potentially interact with and regulate PS II structure and function.  相似文献   

6.
Target analysis of the PS II reaction in spinach thylakoidsshowed that the respective molecular masses of the catalyticunits for oxygen evolution and the reaction center are about120 kDa and 250 kDa based on a kinetic separation of the tworeaction rates. The size of the oxygen-evolving enzyme agreedwith that determined for the PS II preparation from a thermophiliccyanobacterium by the same means [Nugent and Atkinson (1984)FEBS Lett. 170: 89]. Single hit-inactivation of oxygen evolutionand the PS II reaction center units indicates that each functionis driven by a structurally assembled unit. (Received August 6, 1984; Accepted December 17, 1984)  相似文献   

7.
This mini-review briefly summarizes our current knowledge on the reaction pattern of light-driven water splitting and the structure of Photosystem II that acts as a water:plastoquinone oxidoreductase. The overall process comprises three types of reaction sequences: (a) light-induced charge separation leading to formation of the radical ion pair P680+•QA−•; (b) reduction of plastoquinone to plastoquinol at the QB site via a two-step reaction sequence with QA−• as reductant and (c) oxidative water splitting into O2 and four protons at a manganese-containing catalytic site via a four-step sequence driven by P680+• as oxidant and a redox active tyrosine YZ acting as mediator. Based on recent progress in X-ray diffraction crystallographic structure analysis the array of the cofactors within the protein matrix is discussed in relation to the functional pattern. Special emphasis is paid on the structure of the catalytic sites of PQH2 formation (QB-site) and oxidative water splitting (Mn4O x Ca cluster). The energetics and kinetics of the reactions taking place at these sites are presented only in a very concise manner with reference to recent up-to-date reviews. It is illustrated that several questions on the mechanism of oxidative water splitting and the structure of the catalytic sites are far from being satisfactorily answered.  相似文献   

8.
Photosystem II particles having an oxygen evolution activityas high as 300 µmol mg–1 chlorophyll hr –1were prepared from spinach chloroplasts using Triton X-100.The oxygen evolution system in these particles was stable; 70%of the original activity remained after storage of the particlesat 0?C for 7 days. When the particles were treated at pH 9.3,the oxygen evolution was specifically inactivated and threepolypeptides having apparent molecular weights of 32,000. 24,000and 15,000 were simultaneously released. This observation suggeststhat these polypeptides are associated with the oxygen evolutionsystem of photosynthesis. 1 Present address: Department of Chemistry, Faculty of Science,Toho University, Miyama 2-2-1, Funabashi, Chiba 274, Japan. (Received January 4, 1982; Accepted February 19, 1982)  相似文献   

9.
Structure, Function, and Evolution of Proton-ATPases   总被引:6,自引:5,他引:1  
Proton-ATPases are among the most important primary ion pumps in nature. There are three classes of these enzymes which are distinguished by their structure, function, mechanism of action, and evolution. They function in ATP formation at the expense of a protonmotive force generated by oxidative and photosynthetic electron transports, maintaining a constant pH in the cytoplasm, and forming acidic spaces in special compartments inside and outside the cell. The three classes of proton-ATPases evolved in a way that prevents functional assembly in the wrong compartment. This was achieved by a triple genetic system located in the nucleus, mitochondria and chloroplast, as well as delicate control of the proton pumping activity of the enzymes.  相似文献   

10.
Oxygen evolving photosystem II (PSII-OEC) complexes and PSII core complexes were isolated from spinach and the thermophilic cyanobacteriumSynechococcussp. OD24 and characterized by gel electrophoresis, immunoblotting, and absorbance spectroscopy. The mass of the core complexes was determined by scanning transmission electron microscopy (STEM) and found to be 281 ± 65 kDa for spinach and 313 ± 52 kDa forSynechococcussp. OD24. The mass of the spinach PSII-OEC complex was 327 ± 64 kDa. Digital images of negatively stained PSII-OEC and PSII core complexes were recorded by STEM and analyzed by single particle averaging. All monomeric complexes showed similar morphologies and were of comparable length (14 nm) and width (10 nm). The averages revealed a pseudo-twofold symmetry axis, which is a prominent structural element of the monomeric form. Difference maps between the averaged projections of the oxygen evolving complexes and the core complexes from both species indicated where the 33-kDa extrinsic manganese stabilizing protein is bound. A symmetric organization of the PSII complex, with the PsbA and the PsbD proteins in the center and symmetrically arranged PsbB and PsbC proteins at the periphery of the monomeric complex, is proposed.  相似文献   

11.
ABSTRACT

The ribosomal peptidyl transferase center (PTC) resides in the large ribosomal subunit and catalyzes the two principal chemical reactions of protein synthesis: peptide bond formation and peptide release. The catalytic mechanisms employed and their inhibition by antibiotics have been in the focus of molecular and structural biologists for decades. With the elucidation of atomic structures of the large ribosomal subunit at the dawn of the new millennium, these questions gained a new level of molecular significance. The crystallographic structures compellingly confirmed that peptidyl transferase is an RNA enzyme. This places the ribosome on the list of naturally occurring riboyzmes that outlived the transition from the pre-biotic RNA World to contemporary biology. Biochemical, genetic and structural evidence highlight the role of the ribosome as an entropic catalyst that accelerates peptide bond formation primarily by substrate positioning. At the same time, peptide release should more strongly depend on chemical catalysis likely involving an rRNA group of the PTC. The PTC is characterized by the most pronounced accumulation of universally conserved rRNA nucleotides in the entire ribosome. Thus, it came as a surprise that recent findings revealed an unexpected high level of variation in the mode of antibiotic binding to the PTC of ribosomes from different organisms.  相似文献   

12.
Germin and germin-like proteins (GLPs) are encoded by a family of genes found in all plants. They are part of the cupin superfamily of biochemically diverse proteins, a superfamily that has a conserved tertiary structure, though with limited similarity in primary sequence. The subgroups of GLPs have different enzyme functions that include the two hydrogen peroxide–generating enzymes, oxalate oxidase (OxO) and superoxide dismutase. This review summarizes the sequence and structural details of GLPs and also discusses their evolutionary progression, particularly their amplification in gene number during the evolution of the land plants. In terms of function, the GLPs are known to be differentially expressed during specific periods of plant growth and development, a pattern of evolutionary subfunctionalization. They are also implicated in the response of plants to biotic (viruses, bacteria, mycorrhizae, fungi, insects, nematodes, and parasitic plants) and abiotic (salt, heat/cold, drought, nutrient, and metal) stress. Most detailed data come from studies of fungal pathogenesis in cereals. This involvement with the protection of plants from environmental stress of various types has led to numerous plant breeding studies that have found links between GLPs and QTLs for disease and stress resistance. In addition the OxO enzyme has considerable commercial significance, based principally on its use in the medical diagnosis of oxalate concentration in plasma and urine. Finally, this review provides information on the nutritional importance of these proteins in the human diet, as several members are known to be allergenic, a feature related to their thermal stability and evolutionary connection to the seed storage proteins, also members of the cupin superfamily.  相似文献   

13.
近年来对几丁质酶的研究越来越深入,资料也愈来愈多。有的植物几丁质酶除具有几丁质酶活性,还具有其它的活性。典型的几丁质酶由N_端信号区、催化区和C_端延伸区组成,有的还有几丁质结合域。各功能域具有各自的功能。对植物几丁质酶的分类已经过多次改进,目前公认的是分成4组9个亚组。有证据表明植物几丁质酶在进化过程中有遗传转座现象,但具体进化过程还有待进一步确证。对几丁质酶与其它一些蛋白的关系的了解有助于理解几丁质酶的起源和进化。由于几丁质酶具有独特的抗真菌特性,因而几丁质酶基因成为目前抗真菌基因工程研究的热点之一。  相似文献   

14.
植物几丁质酶的结构与功能、分类及进化   总被引:7,自引:0,他引:7  
近年来对几丁质酶的研究越来越深入,资料也愈来愈多,有的植物几丁质酶除具有几丁质酶活性,还具有其它的活性,典型的几丁质酶由-N-端信号区,催化区和C-端延伸区组成,有的还有几丁质结合域,各项能域具有各自的功能,对植物几丁质酶的分类已经过多次改进,目前公认的分成4组9个亚组,有证据表明植物几丁质酶在进化过程中有遗传转座现象,但具有进化过程还有待进一步确证,对几丁质酶与其它一些蛋白的关系的了解有助于理解几丁质酶的起源和进化,由于几丁质酶具有独特的抗真菌特性,因而几丁质酶基因成为目前抗真菌基因工程研究的热之一。  相似文献   

15.
16.
After exposing etiolated wheat seedlings to intermittent light (cycle of 2 min. light, 118 min. dark) for 24 hr., we obtained an incompletely developed chloroplast membrane. It was then compared with a completely developed chloroplast membrane obtaining from wheat seedlings grown under normal light-dark regime. We investgated the effect of various cations and their concentrations on the absorption spectrum and the photosystem Ⅱ function of the above two types of chloroplast membranes. A similar effect of potassium and magnesium ions on the absorption spectra of completely developed chloroplast membrane was observed. They decreased the absorption peak values at both the red and blue regions of the chloroplast membrane in the same manner. The degree of decrease in the peak value is proportional to ion concentration. But in the incompletely developed chloroplast membranes similar phenomenon was not observed. In the presence of K+ and Mg2+ of various concentrations, the absorptionn peaks at the red region overlapped almost completely, and these at the blue region only changed slightly with ion concentrations. DCIP photoreduction rate of the two types of chloroplast membranes was stimulated by the addition of K+ and Mg2+ in various concentrations. But the degree of stimulation in the two types of membranes was quite different. In the presence of l00 mM KCl or 5.0 mM MgCl2, DCIP photoreduction rate of completely developed chloroplast membranes was enhanced by 76.8% and 68.9% respectively, whereas in incompletely developed chloroplast membranes it was only increased by 56.3% and 36.4% respectively. The causes of the effects of cations on the absorption spectrum and the photosystem Ⅱ function of two types of chloroplast membranes were discussed.  相似文献   

17.
The Structure, Function, and Evolution of a Regional Industrial Ecosystem   总被引:2,自引:0,他引:2  
A framework has been developed to assess the structure, function, and evolution of a regional industrial ecosystem that integrates insights from industrial ecology and economic geography dimensions with complex systems theory. The framework highlights the multilayered landscape of natural ecosystem functions, economic transactions, policy contexts, and social interactions in which interfirm collaboration evolves. Its application to a single case study on the island of Puerto Rico revealed changes in the system's institutional context, its resource flows, and the composition of its industrial community. It illustrated that external forces and interactions among actors at multiple levels can cause permanent changes—but not necessarily system collapse—as policy choices and interfirm cooperation can be used to organize resources in ways that retain system functionality.  相似文献   

18.
Photosystem II (PSII) is a multisubunit chlorophyll–protein complex that drives electron transfer from water to plastoquinone using energy derived from light. In green plants, the native form of PSII is surrounded by the light-harvesting complex (LHCII complex) and thus it is called the PSII–LHCII supercomplex. Over the past several years, understanding of the structure, function, and assembly of PSII and LHCII complexes has increased considerably. The unicellular green alga Chlamydomonas reinhardtii has been an excellent model organism to study PSII and LHCII complexes, because this organism grows heterotrophically and photoautotrophically and it is amenable to biochemical, genetic, molecular biological and recombinant DNA methodology. Here, the genes encoding and regulating components of the C. reinhardtii PSII–LHCII supercomplex have been thoroughly catalogued: they include 15 chloroplast and 20 nuclear structural genes as well as 13 nuclear genes coding for regulatory factors. This review discusses these molecular genetic data and presents an overview of the structure, function and assembly of PSII and LHCII complexes.  相似文献   

19.
Cells of the red alga Porphyridium cruentum (ATCC 50161) exposed to increasing growth irradiance exhibited up to a three-fold reduction in photosystems I and II (PSI and PSII) and phycobilisomes but little change in the relative numbers of these components. Batch cultures of P. cruentum were grown under four photon flux densities of continuous white light; 6 (low light, LL), 35 (medium light, ML), 180 (high light, HL), and 280 (very high light, VHL) microeinsteins per square meter per second and sampled in the exponential phase of growth. Ratios of PSII to PSI ranged between 0.43 and 0.54. About three PSII centers per phycobilisome were found, regardless of growth irradiance. The phycoerythrin content of phycobilisomes decreased by about 25% for HL and VHL compared to LL and ML cultures. The unit sizes of PSI (chlorophyll/P700) and PSII (chlorophyll/QA) decreased by about 20% with increase in photon flux density from 6 to 280 microeinsteins per square meter per second. A threefold reduction in cell content of chlorophyll at the higher photon flux densities was accompanied by a twofold reduction in β-carotene, and a drastic reduction in thylakoid membrane area. Cell content of zeaxanthin, the major carotenoid in P. cruentum, did not vary with growth irradiance, suggesting a role other than light-harvesting. HL cultures had a growth rate twice that of ML, eight times that of LL, and slightly greater than that of VHL cultures. Cell volume increased threefold from LL to VHL, but volume of the single chloroplast did not change. From this study it is evident that a relatively fixed stoichiometry of PSI, PSII, and phycobilisomes is maintained in the photosynthetic apparatus of this red alga over a wide range of growth irradiance.  相似文献   

20.
光系统II核心天线复合物CP43和CP47结构与功能研究进展   总被引:1,自引:0,他引:1  
CP43和CP47是构成光合生物内周天线的两个重要的色素蛋白复合物,在生物体内主要起着传递激发能的作用。最近,大量研究证明,它们在放氧等过程中也起着重要作用。因此,近年来人们借助各种先进的研究技术对它们的结构进行了探讨,以揭示它们行使不同生理功能的分子机理。分子生物学技术可以使人们在整体水平上研究蛋白复合物的结构与功能,因此是一个非常有用的研究手段。本文即对近年来人们通过分子生物学手段,以蓝藻为转化材料,通过基因定点突变技术对CP43和CP47结构和功能的研究结果进行了全面综述,并进行了点评和分析,从而提出了一些新问题,为人们进行深入研究提供了详尽的研究资料和建设性的思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号