首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The functional importance of structural features of ergosterol in yeast.   总被引:6,自引:0,他引:6  
As an approach to the study of the relationship between the structure of sterols and their capacity to function in the lipid leaflet of membranes, various sterols were examined for their ability to support the growth of anaerobic Saccharomyces cerevisiae. A marked dependence on precise structural features was observed in growth-response and morphology. Of the chemical groups which distinguish ergosterol, the main sterol of S. cerevisiae, the hydroxyl group at C-3 was obligatory, and the other groups were found to be of the following relative importance: 24beta-methyl-delta22-grouping greater than 24beta-methyl group greater than delta5,7-diene system = delta5-bond approximately or equal to no double bond. Methyl groups at C-4 and C-14 were inconsistent with activity. Consequently, the data strongly suggest that the normal biosynthetic processes removal of methyl groups from the nucleus and introduction of one in the side chain are of functional significance. A double bond between C-17 and C-20 joining the steroidal side chain to the nucleus had no deleterious effect on the growth process but only if C-22 was trans-oriented to C-13. In the cis-case no growth at all proceeded. This means the natural sterol probably acts functionally in the form of its preferred conformer in which C-22 is to the right ("right-handed") in the usual view. Since the placing of a substituent (OH or CH3) in the molecule at C-20 in such a way that it appears on the front side in the right-handed conformer completely destroyed activity, the sterol apparently presents its front face to protein or phospholipid when complexing occurs.  相似文献   

2.
A Saccharomyces cerevisiae sterol auxotroph, SPK14 (a hem1 erg6 erg7 ura), was constructed to test the ability of selected C-5,6 unsaturated sterols at growth-limiting concentrations to spark growth on bulk cholestanol. The native sterol, ergosterol, initiated growth faster and allowed a greater cell yield than did other sterols selectively altered in one or more features of the sterol. Although the C-5,6 unsaturation is required for the sparking function, the presence of the C-22 unsaturation was found to facilitate sparking far better than did the C-7 unsaturation, whereas the C-24 methyl was the least important group. The addition of delta-aminolevulinic acid to the medium allowed the sparking of FY3 (hem1 erg7 ura) on bulk cholestanol due to the derepression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and the production of endogenous ergosterol. The optimal concentration of delta-aminolevulinic acid to spark growth was 800 ng/ml, whereas higher concentrations caused a growth inhibition. The growth yield of FY3 reached a plateau maximum at about 5 micrograms/ml when the bulk cholestanol was varied in the presence of 10 ng of sparking erogosterol per ml.  相似文献   

3.
We have investigated the metabolism of exogenously provided delta24-sterols by whole cell cultures of a polyene-resistant mutant (D10) of Candida albicans blocked at removal of the C-14 methyl group. Comparison of the relative efficiencies of transmethylation at C-24 of selected sterol substrates revealed the following substrate preferences of the Candida delta24-sterol methyltransferase (EC 2.1.1.41): zymosterol greater than 4alpha-methylzymosterol greater than 14alpha-methylzymosterol. Exogenous 4,4-dimethylzymosterol was not transmethylated by mutant D10. Incorporation of the 14C-labelled methyl group of S-adenosyl-L-[methyl-14C]methionine into the sterols of a D10 culture preloaded with zymosterol indicated that zymosterol was a better (40 X) substrate than endogenous lanosterolmfeeding zymosterol to D10 and a polyene-resistant strain of Saccharomyces cerevisiae (Nys-P100) that was also blocked at removal of the C-14 methyl group gave 24-methyl sterols possessing delta22 and ring B unsaturation. Mutant D10 was able to produce ergosterol from zymosterol whereas Nys-P100 produced ergosta-7,22-dienol. When grown in the presence of 3 micrometer 25-aza-24,25-dihydrozymosterol, a known inhibitor of the delta24-sterol methyltransferase, Nys-P100 accumulated 14alpha-methylzymosterol, a minor metabolite in this mutant under normal growth conditions and hitherto unidentified as a yeast sterol.  相似文献   

4.
W D Nes  S H Xu  W F Haddon 《Steroids》1989,53(3-5):533-558
The sterol composition of two ascomycetous fungi, Saccharomyces cerevisiae and Gibberella fujikuroi, was examined by chromatographic (TLC, GLC, and HPLC) and spectral (MS and 1H-NMR) methods. Of notable importance was that both fungi produced cholesterol and a homologous series of long chain fatty alcohols (C22 to C30). In addition to ergosterol two novel sterols, ergosta-5,7, 9(11), 22-tetraenol and ergosterol endoperoxide, were isolated as minor compounds in growth-arrested cultures of yeast and in mycelia of G. fujikuroi. 24-Ethylidenelanosterol was also detected in mycelia of G. fujikuroi. A shift in sterol biosynthesis was observed by treatment with 24 (RS), 25-epiminolanosterol (an inhibitor of the S-adenosylmethionine C-24 transferase) and by monitoring the sterol composition at various stages of development. The results are interpreted to imply that the genes for 24-desalkyl, e.g., cholesterol, and 24-alkyl sterols, e.g., 24 beta- methyl cholesterol and 24-ethyl cholesterol, are distributed (but not always expressed) generally throughout the fungi but the occurrence of one or another compounds is influenced by the fitness (structure and amount) for specific sterols to act functionally during fungal ontogeny; sterol fitness is coordinated with Darwinian selection pressures.  相似文献   

5.
Synthesis of ergosterol is demonstrated in the GL7 mutant of Saccharomyces cerevisiae. This sterol auxotroph has been thought to lack the ability to synthesize sterols due both to the absence of 2,3-oxidosqualene cyclase and to a heme deficiency eliminating cytochrome P-450 which is required in demethylation at C-14. However, when the medium sterol was 5 alpha-cholestan-3 beta-ol, 5 alpha-cholest-8(14)-en-3 beta-ol, or 24 beta-methyl-5 alpha-cholest-8(14)-en-3 beta-ol, sterol synthesis was found to proceed yielding 1-3 fg/cell of ergosterol (24 beta-methylcholesta-5,7,22E-trien-3 beta-ol). Ergosterol was identified by mass spectroscopy, gas and high performance liquid chromatography, ultraviolet spectroscopy, and radioactive labeling from [3H]acetate. Except for some cholest-5-en-3 beta-ol (cholesterol) which was derived from the 5 alpha-cholestan-3 beta-ol, the stanol and the two 8(14)-stenols were not significantly metabolized confirming the absence of an isomerase for migration of the double bond from C-8(14) to C-7. Drastic reduction of ergosterol synthesis to not more than 0.06 fg/cell was observed when the medium sterol either had a double bond at C-5, as in the case of cholesterol, or could be metabolized to a sterol with such a bond. Thus, both 5 alpha-cholest-8(9)-en-3 beta-ol and 5 alpha-cholest-7-en-3 beta-ol (lathosterol) were converted to cholesta-5,7-dien-3 beta-ol (7-dehydrocholesterol), and the presence of the latter dienol depressed the level of ergosterol. The most attractive of the possible explanations for our observations is the assumption of two genetic compartments for synthesis of sterols, one of which has and one of which has not been affected by the two mutations. The ability, despite the mutations, to synthesize small amounts of ergosterol which could act to regulate the cell cycle may also explain why this mutant can grow aerobically with cholesterol (acting in the bulk membrane role) as the sole exogenous sterol.  相似文献   

6.
The selectivity of the antibiotic nystatin towards ergosterol compared to cholesterol is believed to be a crucial factor in its specificity for fungi. In order to define the structural features of sterols that control this effect, nystatin interaction with ergosterol-, cholesterol-, brassicasterol- and 7-dehydrocholesterol-containing palmitoyloleoylphosphocholine vesicles was studied by fluorescence spectroscopy. Variations in sterol structure were correlated with their effect on nystatin photophysical and activity properties. Substitution of cholesterol by either 7-dehydrocholesterol or brassicasterol enhance nystatin ability to dissipate a transmembrane K+ gradient, showing that the presence of additional double bonds in these sterols-carbon C7 and C22, plus an additional methyl group on C-24, respectively-as compared to cholesterol, is fundamental for nystatin-sterol interaction. However, both modifications of the cholesterol molecule, like in the fungal sterol ergosterol, are critical for the formation of very compact nystatin oligomers in the lipid bilayer that present a long mean fluorescence lifetime and induce a very fast transmembrane dissipation. These observations are relevant to the molecular mechanism underlying the high selectivity presented by nystatin towards fungal cells (with ergosterol) as compared to mammalian cells (with cholesterol).  相似文献   

7.
In Saccharomyces cerevisiae, methylation of the principal membrane sterol at C-24 produces the C-28 methyl group specific to ergosterol and represents one of the few structural differences between ergosterol and cholesterol. C-28 in S. cerevisiae has been suggested to be essential for the sparking function (W. J. Pinto and W. R. Nes, J. Biol. Chem. 258:4472-4476, 1983), a cell cycle event that may be required to enter G1 (C. Dahl, H.-P. Biemann, and J. Dahl, Proc. Natl. Acad. Sci. USA 84:4012-4016, 1987). The sterol biosynthetic pathway in S. cerevisiae was genetically altered to assess the functional role of the C-28 methyl group of ergosterol. ERG6, the putative structural gene for S-adenosylmethionine: delta 24-methyltransferase, which catalyzes C-24 methylation, was cloned, and haploid strains containing erg6 null alleles (erg6 delta 1 and erg6 delta ::LEU2) were generated. Although erg6 delta cells are unable to methylate ergosterol precursors at C-24, they exhibit normal vegatative growth, suggesting that C-28 sterols are not essential in S. cerevisiae. However, erg6 delta cells exhibit pleiotropic phenotypes that include defective conjugation, hypersensitivity to cycloheximide, resistance to nystatin, a severely diminished capacity for genetic transformation, and defective tryptophan uptake. These phenotypes reflect the role of ergosterol as a regulator of membrane permeability and fluidity. Genetic mapping experiments revealed that ERG6 is located on chromosome XIII, tightly linked to sec59.  相似文献   

8.
The selectivity of the antibiotic nystatin towards ergosterol compared to cholesterol is believed to be a crucial factor in its specificity for fungi. In order to define the structural features of sterols that control this effect, nystatin interaction with ergosterol-, cholesterol-, brassicasterol- and 7-dehydrocholesterol-containing palmitoyloleoylphosphocholine vesicles was studied by fluorescence spectroscopy. Variations in sterol structure were correlated with their effect on nystatin photophysical and activity properties. Substitution of cholesterol by either 7-dehydrocholesterol or brassicasterol enhance nystatin ability to dissipate a transmembrane K+ gradient, showing that the presence of additional double bonds in these sterols-carbon C7 and C22, plus an additional methyl group on C-24, respectively-as compared to cholesterol, is fundamental for nystatin-sterol interaction. However, both modifications of the cholesterol molecule, like in the fungal sterol ergosterol, are critical for the formation of very compact nystatin oligomers in the lipid bilayer that present a long mean fluorescence lifetime and induce a very fast transmembrane dissipation. These observations are relevant to the molecular mechanism underlying the high selectivity presented by nystatin towards fungal cells (with ergosterol) as compared to mammalian cells (with cholesterol).  相似文献   

9.
Six nitrogen-, sulfur- and cyclopropane-containing derivatives of cholestanol were examined as inhibitors of growth and sterol biosynthesis in the trypanosomatid protozoan Crithidia fasciculata. The concentrations of inhibitors in the culture medium required for 50% inhibition of growth were 0.32 microM for 24-thia-5 alpha,20 xi-cholestan-3 beta-ol (2), 0.009 microM for 24-methyl-24-aza-5 alpha,20 xi-cholestan-3 beta-ol (3), 0.95 microM for (20,21),(24,-25)-bis-(methylene)-5 alpha,20 xi-cholestan-3 beta-ol (4), 0.13 microM for 22-aza-5 alpha,20 xi-cholestan-3 beta-ol (5), and 0.3 microM for 23-azacholestan-3-ol (7). 23-Thia-5 alpha-cholestan-3 beta-ol (6) had no effect on protozoan growth at concentrations as high as 20 microM. Ergosterol was the major sterol observed in untreated C. fasciculata, but significant amounts of ergost-7-en-3 beta-ol, ergosta-7,24(28)-dien-3 beta-ol, ergosta-5,7,22,24(28)-tetraen-e beta-ol, cholesta-8,24-dien-3 beta-ol, and, in an unusual finding, 14 alpha-methyl-cholesta-8,24-dien-3 beta-ol were also present. When C. fasciculata was cultured in the presence of compounds 2 and 3, ergosterol synthesis was suppressed, and the principal sterol observed was cholesta-5,7,24-trien-3 beta-ol, a sterol which is not observed in untreated cultures. The presence of this trienol strongly suggests that 2 and 3 specifically inhibit the S-adenosylmethionine:sterol C-24 methyltransferase but do not interfere with the normal enzymatic processing of the sterol nucleus. When C. fasciculata was cultured in the presence of compounds 5 and 7, the levels of ergosterol and ergost-7-en-3 beta-ol were suppressed, but the amounts of the presumed immediate precursors of these sterols, ergosta-5,7,22,24(28)-tetraen-3 beta-ol and ergosta-7,24-(28)-dien-3 beta-ol, respectively, were correspondingly increased. These findings suggest that 5 and 7 specifically inhibit the reduction of the delta 24(28) side chain double bond. When C. fasciculata was cultured in the presence of compound 4, ergosterol synthesis was suppressed, but the sterol distribution in these cells was complex and not easily interpreted. Compound 6 had no significant effect on sterol synthesis in C. fasciculata.  相似文献   

10.
Halotolerant and halophilic melanized fungi were recently described in hypersaline waters. A close study of the sterol composition of such fungi, namely Hortaea werneckii, Alternaria alternata, Cladosporium sphaerospermum, Cladosporium sp., and Aureobasidium pullulans revealed the dominance of ergosterol and the presence of 29 intermediates of its biosynthesis pathway. The presence or absence of intermediates from distinct synthesis routes gave insight into the operative synthetic pathways from 4,4,14-trimethylcholesta-8,24-dien-3 beta-ol (lanosterol) to ergosterol in melanized fungi and in Saccharomyces cerevisiae, a reference yeast cultured in parallel. In all studied melanized fungi, initial methylation at C-24 took place before C-14 and C-4 demethylation, involving a different reaction sequence from that observed in S. cerevisiae. Further transformation was observed to occur through various routes. In A. alternata, isomerization at C-7 takes place prior to desaturation at C-5 and C-22, and methylene reduction at C-24. In addition to these pathways in Cladosporium spp., H. werneckii, and A. pullulans, ergosterol may also be synthesized through reduction of the C-24 methylene group before desaturation at C-5 and C-22 or vice versa. Moreover, in all studied melanized fungi except A. alternata, ergosterol biosynthesis may also proceed through C-24 methylene reduction prior to C-4 demethylation. -- Méjanelle, L., J. F. Lòpez, N. Gunde-Cimerman, and J. O. Grimalt. Ergosterol biosynthesis in novel melanized fungi from hypersaline environments. J. Lipid Res. 2001. 42: 352--358.  相似文献   

11.
LM cell growth and membrane lipid adaptation to sterol structure   总被引:2,自引:0,他引:2  
Using a sterol auxotroph of the LM cell mouse fibroblast, we demonstrate that relatively few cholesterol analogues can substitute for cholesterol as a growth factor. The auxotroph grows normally on desmosterol and trans-22-dehydrocholesterol and at reduced rates on dihydrocholesterol, campesterol, and 22,23-dihydrobrassicasterol. It does not grow with beta-sitosterol, stigmasterol, ergosterol, or cis-22-dehydrocholesterol when the sterol is present as sole supplement but does grow at normal rates when the analogue is supplied with suboptimal amounts of cholesterol. Two contrasting types of membrane lipid changes are observed in cells grown on cholesterol analogues. In cells grown with dihydrocholesterol, a marked increase in desaturation and elongation of fatty acids is noted. Conversely, when cells are grown with cis-22-dehydrocholesterol, desaturation and elongation of fatty acids are severely curtailed. Cells grown on alkyl sterols respond like cells grown on cis-22-dehydrocholesterol but in a less pronounced fashion. The effects of sterol substitution in mammalian cells versus in lower eukaryotes are compared, and an explanation for the secondary changes in fatty acid composition in terms of phospholipid phase behavior is suggested.  相似文献   

12.
Caenorhabditis elegans possesses a unique sterol methylation pathway not reported to occur in any other organism and also removes the C-24 ethyl group of sitosterol (a plant sterol). This nematode produced substantial quantities of 4 alpha-methyl-5 alpha-cholest-8(14)-en-3 beta-ol and smaller amounts of lophenol from dietary cholesterol, desmosterol or sitosterol. When C. elegans was propagated in media containing sitosterol plus 25-azacoprostane hydrochloride (25-aza-5 beta-cholestane hydrochloride), an inhibitor of delta 24-sterol reductase in insects, its 4 alpha-methylsterol fraction largely consisted of equal amounts of 4 alpha-methyl-5 alpha-cholesta-7,24-dien-3 beta-ol and 4 alpha-methyl-5 alpha-cholesta-8(14),24-dien-3 beta-ol. Thus 25-azacoprostane hydrochloride inhibited both a delta 24-sterol reductase and a delta 7-sterol isomerase in C. elegans.  相似文献   

13.
Abstract Study of the plasma membrane sterol composition in the yeasts Schizosaccharomyces pombe and Schizosaccharomyces octosporus revealed the presence of ergosterol, lanosterol, dehydroergosterol, fecosterol, episterol and 24-methylene-24,25-dihydrolanosterol (eburicol), a C-31 derivative. The growth of both yeasts in the presence of ketoconazole led to a decrease by 85% of the ergosterol content while the levels of lanosterol and eburicol increased. This suggests that in the biosynthetic pathway of ergosterol in Schizosaccharomyces species, the transmethylation process on the C-24 may occur directly on lanosterol and not only on zymosterol. On the other hand, it cannot be excluded that in the genus Schizosaccharomyces two routes exist from lanosterol to ergosterol: the classical one via a direct C-14, C-4 demethylation of lanosterol and the second one via the formation of a C-31 derivative followed by demethylations.  相似文献   

14.
Studies with Gibberella fujikuroi have been designed to examine the relationship between the biosynthesis and function of fungal sterols. Evidence was obtained through appropriate feeding and trapping experiments for the existence of multiple end products which are produced by separate routes in the later stages of sterol biosynthesis. The three end products, ergosterol (24 beta-methylcholesta-5,7,22E-trien-3 beta-ol), brassicasterol (24 beta-methylcholesta-5,22E-dien-3 beta-ol), and 22(23)-dihydrobrassicasterol (24 beta-methyl-cholesterol), were found to be non-interconvertible during logarithmic phase growth; thus the metabolic route delta 5,7,22-24 beta-CH3----delta 5,22-24 beta-CH3----delta 5-24 beta-CH3 was ruled out. Ergosterol can be further metabolized, viz., to 24 beta-methylcholesta-5,7,9(11),22-tetraen-3 beta-ol, but only as the culture enters into the stationary phase. In the presence of growth inhibitory concentrations of 2,3-iminosqualene, a partial reversal of growth cessation was obtained when all three sterols were concurrently supplied to the medium. Since neither ergosterol nor the other two sterols added individually to the medium was able to overcome the inhibitor's deleterious effect, ergosterol cannot play a dual architectural role (bulk and regulatory) in this fungus as it apparently can do in other fungal systems, i.e., yeast. For G. fujikuroi each sterol end product appears to possess a unique physiological role. Mycelial growth requires more than simply ergosterol.  相似文献   

15.
Cholesterol substitution increases the structural heterogeneity of caveolae   总被引:1,自引:0,他引:1  
Caveolin-1 binds cholesterol and caveola formation involves caveolin-1 oligomerization and cholesterol association. The role of cholesterol in caveolae has so far been addressed by methods that compromise membrane integrity and abolish caveolar invaginations. To study the importance of sterol specificity for the structure and function of caveolae, we replaced cholesterol in mammalian cells with its immediate precursor desmosterol by inhibiting 24-dehydrocholesterol reductase. Desmosterol could substitute for cholesterol in maintaining cell growth, membrane integrity, and preserving caveolar invaginations. However, in desmosterol cells the affinity of caveolin-1 for sterol and the stability of caveolin oligomers were decreased. Moreover, caveolar invaginations became more heterogeneous in dimensions and in the number of caveolin-1 molecules per caveola. Despite the altered caveolar structure, caveolar ligand uptake was only moderately inhibited. We found that in desmosterol cells, Src kinase phosphorylated Cav1 at Tyr(14) more avidly than in cholesterol cells. Taken the role of Cav1 Tyr(14) phosphorylation in caveolar endocytosis, this may help to preserve caveolar uptake in desmosterol cells. We conclude that a sterol C24 double bond interferes with caveolin-sterol interaction and perturbs caveolar morphology but facilitates Cav1 Src phosphorylation and allows caveolar endocytosis. More generally, substitution of cholesterol by a structurally closely related sterol provides a method to selectively modify membrane protein-sterol affinity, structure and function of cholesterol-dependent domains without compromising membrane integrity.  相似文献   

16.
Incorporation of L Cell Sterols into Vesicular Stomatitis Virus   总被引:1,自引:0,他引:1  
The incorporation of host cell sterol into vesicular stomatitis virus can be effectively studied in an L cell system. The end product of de novo sterol synthesis in the L cell is desmosterol, and as the concentration of cholesterol in the medium is increased the cells incorporate the exogenous cholesterol and the synthesis of desmosterol decreases. L cells which contained desmosterol as their sole sterol produced virus whose sterol content was similarly composed of only desmosterol. Virus grown in L cells which had a constantly changing sterol ratio also contained a mixture of cholesterol and desmosterol, but the virus was found to be more enriched in cholesterol than in the L cells in which it was grown. Viral stability, growth, and plaquing efficiency were tested and found not to be affected by the alteration of its sterol composition, i.e., by partially or completely replacing cholesterol with desmosterol.  相似文献   

17.
Unesterified cholesterol is a major component of plasma membranes. In the brain of the adult, it is mostly found in myelin sheaths, where it plays a major architectural role. In the newborn mouse, little myelination of neurons has occurred, and much of this sterol comprises a metabolically active pool. In the current study, we have accessed this metabolically active pool and, using LC/MS, have identified cholesterol precursors and metabolites. Although desmosterol and 24S-hydroxycholesterol represent the major precursor and metabolite, respectively, other steroids, including the oxysterols 22-oxocholesterol, 22R-hydroxycholesterol, 20R,22R-dihydroxycholesterol, and the C21-neurosteroid progesterone, were identified. 24S,25-epoxycholesterol formed in parallel to cholesterol was also found to be a major sterol in newborn brain. Like 24S- and 22R-hydroxycholesterols, and also desmosterol, 24S,25-epoxycholesterol is a ligand to the liver X receptors, which are expressed in brain. The desmosterol metabolites (24Z),26-, (24E),26-, and 7α-hydroxydesmosterol were identified in brain for the first time  相似文献   

18.
A number of steroids have been tested in an L-cell tissue culture system to determine their effects on cellular sterol biosynthesis and cellular growth. Cholesterol, desmosterol, lathosterol, 7-dehydrocholesterol, and cholestanone reduce de novo synthesis and produce only limited toxicity at high concentrations of exogenous sterol. Considerable cellular toxicity is observed when cells are grown in the presence of coprostanol and Delta(4)-cholestenone. No marked effect on either cell growth or sterol biosynthesis is produced by cholestanol, beta-sitosterol, stigmasterol, campesterol, ergosterol, cholesteryl oleate, or cholestane.  相似文献   

19.
Several drugs that interact with membrane sterols or inhibit their syntheses are effective in clearing a number of fungal infections. The AIDS-associated lung infection caused by Pneumocystis jirovecii is not cleared by many of these therapies. Pneumocystis normally synthesizes distinct C28 and C29 24-alkylsterols, but ergosterol, the major fungal sterol, is not among them. Two distinct sterol compositional phenotypes were previously observed in P. jirovecii. One was characterized by delta7 C28 and C29 24-alkylsterols with only low proportions of higher molecular mass components. In contrast, the other type was dominated by high C31 and C32 24-alkylsterols, especially pneumocysterol. In the present study, 28 molecular species were elucidated by nuclear magnetic resonance analysis of a human lung specimen containing P. jirovecii representing the latter sterol profile phenotype. Fifteen of the 28 had the methyl group at C-14 of the sterol nucleus and these represented 96% of the total sterol mass in the specimen (excluding cholesterol). These results strongly suggest that sterol 14alpha-demethylase was blocked in these organisms. Twenty-four of the 28 were 24-alkylsterols, indicating that methylation of the C-24 position of the sterol side chain by S-adenosyl-L-methionine:sterol C-24 methyl transferase was fully functional.  相似文献   

20.
Cultures of Tetrahymena pyriformis were incubated with various sterols and the extent of dehydrogenation at C-7 and C-22 was determined. The sterols incubated were desmosterol, 22-dehydrodesmosterol, 24-methyldesmosterol, 24 alpha-methylcholesterol (campesterol), 24-methylene-cholesterol, isohalosterol (26,27-bisnorcampesterol, also known as 24,24-dimethylchol-5-en-e beta-ol, a naturally occurring C26-sterol), and 20-isohalosterol. 20-Isohalosterol was not metabolized, while products with delta 7- and delta 22-bonds were formed from isohalosterol and all of the other sterols studied. This confirms an earlier conclusion, based on results with 20-isocholesterol and cholesterol, that inversion of the configuration from 20(R) to 20(S) completely prevents metabolism both in the nucleus and the side chain. On the other hand, changes in the electronics or stereochemistry at C-24 had a direct affect only on metabolism in the side chain. The presence of a methyl group at C-24 reduced the yield of metabolites with a delta 22-bond relative to those with a delta 7-bond producing an accumulation of 7-dehydro metabolite. A double bond at position-24 counteracted this steric effect, presumably by enhancing the rate of dehydrogenation, and a delta 24(28)-bond was more effect than was a delta 24(25)-bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号