首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ref(2)P gene of Drosophila melanogaster interferes with sigma rhabdovirus multiplication. This gene is highly variable, and the different alleles are considered permissive or restrictive according to their effects on virus replication. In all cases, the mechanisms involve intracellular interactions between the sigma virus and Ref(2)P proteins. We showed that the N-terminal domain of the Ref(2)P protein was required for its activity in vivo. The protein was inactive in the null p(od)2 mutant when its first 82 amino acids were deleted. The p delta n gene was constructed so that the first 91 amino acids coded for by the restrictive alleles could be expressed in vivo. It was active in a transformed line. This sequence was sufficient to impart a restrictive phenotype to an adult D. melanogaster fly after it was injected with the virus. However, the truncated protein expressed by p delta n did not have an effect on the hereditary transmission of the sigma virus to the offspring of the infected flies, even though it contained the restriction site. The native Ref(2)P protein has been previously shown to have conformation-dependent epitopes common with some of those of the viral N protein. We demonstrated the following. (i) These epitopes were found in a domain of the Ref(2)P protein distinct from the site involved in restriction. (ii) They were modified in the N protein of the haP7 sigma virus mutant selected as being adapted to the restrictive alleles of the ref(2)P gene; only one mutation in the N gene, leading to an amino acid substitution, distinguished the haP7 mutant from the original virus. (iii) The virus strains partially or totally adapted to the effects of the full restrictive protein expressed by pp were always found to multiply to a lesser extent in the presence of the protein expressed by p delta n. These data suggest that two distinct domains of the Ref(2)P protein are involved in the control of sigma virus multiplication.  相似文献   

2.
The ref(2)P locus (2-54.2) is polymorphic for two allelic forms in natural populations of Drosophila melanogaster, ref(2)Po and ref(2)Pp. The latter allele confers resistance to the rhabdovirus sigma infecting wild populations. Previous work, based on a small sample of prescreened restrictive (resistant) and permissive (susceptible) alleles, identified a large number of amino acid replacement changes (7) relative to synonymous changes (1). Such protein variability could be the result of variation-enhancing selection. To further test the selection hypothesis, we have examined the DNA sequences of ten randomly chosen lines of D. melanogaster and one line of D. simulans. Nine of the ten lines are permissive; D. simulans does not harbor the virus. The melanogaster alleles contain 4 synonymous changes, 19 noncoding changes, and 13 amino acid replacement changes, indicating a relatively high level of polymorphism. Three sequenced restrictive alleles have nearly identical sequences, indicating that they are relatively young. Compared to the permissive alleles, they share only a complex deletion at codon 34, CAG-AAT to GGA, which our analysis indicates to be the site conferring the restrictive phenotype. Patterns of polymorphism and divergence differ from neutral predictions by several criteria for the amino terminal region, which contains the complex deletion (codons 1-91), but not the remainder of the protein (codons 92-599). We find a higher rate of evolution on the D. melanogaster lineage than on the D. simulans lineage. The relatively large amount of both replacement and silent polymorphism in the permissive alleles and the lack of divergence between permissive and restrictive alleles suggests that the sigma virus and ref(2)P may be engaged in an evolutionary race in which new restrictive alleles are continually arising but are relatively short-lived.   相似文献   

3.
The ref(2)P gene of Drosophila melanogaster is implicated in sigma rhabdovirus multiplication. Two common alleles of ref(2)P are known, ref(2)P 0 which permits sigma virus multiplication and ref(2)P pwhich is restrictive for most sigma virus strains. This gene maps to the cytogenetic region 37E3-F3. Using Df(2L)E55 (=Df(2L)37D2-El;37F5-38A1), we have screened for lethal, semi-lethal and visible mutations following diepoxybutane (DEB) or ethyl methanesulfonate (EMS) mutagenesis. Our data confirm than DEB is mor efficient than EMS at inducing deletions. The mutations obtained in this region define 14 complementation groups. One of them, l(2)37Dh, appears to be a general enhancer of Minute and Minute-like mutations. None of the mutations were allelic to the ref(2)P locus. Loss-of-function alleles of ref(2)P (called null) were selected following DEB mutagenesis. Homozygous or hemizygous ref(2)P nullflies are male sterile. These flies, like homozygous or hemizygous ref(2)P 0flies, are fully permissive for sigma virus replication. We suggest that the ref(2)P products interact with viral products, but that this interaction is not necessary for an efficient viral cycle.  相似文献   

4.
Summary Distinction between Drosophila strains, differing their capacity for supporting multiplication of sigma virus, arises essentially from comparison of the incubation time after inoculation of a viral suspension. This is the most general and the most useful characteristic. By this mean five allelic differences with the reference Drosophila strain Oregon have been found. Corresponding genes, ref(1)H, ref(2)M, ref(2)P, ref(3)O and ref(3)D are located all over Drosophila chromosomes. The specific spectra of viral strains sensitive to the one or the other allele was determined for each gene.Some characteristic properties of flies in which the virus has been brought by injection or heredity were compared between heterozygotes and homozygotes for the permissive and for the non permissive allele:time of incubation as a function of the size of the inoculum,probability of initiating infection,kinetics of the virus multiplication in inoculated fly,efficiency of a viral genome brought by a spermatozoa in infecting an egg,perpetuation of the carrier state of sigma virus in germ line cells of stabilized females or males and in somatic cells.The properties concerning the perpetuation of sigma virus carrier state allow to distinguish two classes of viral functions in which the considered ref gene product can intervene: 1) functions necessary for viral genome replication and, of course, for perpetuation of carrier state, 2) other functions, (late functions — necessary for maturation - and functions necessary for cell penetration of inoculated virus).Homozygotes for each of the two alleles of a gene which acts on incubation time can show no difference in one property which is specific of a differenciated cell type only because the considered gene is not expressed in the cell type involved. Conversely genes can exist which act on such a property and which have no action on incubation time. Probably such a gene has been discovered; it intervenes in the transmission of sigma virus by stabilized males; this gene is named ref(3)V.Discussion of all the properties of flies homozygotes for each allele permits us to conclude that ref(1)H, ref(2)M, ref(2)P, ref(3)D and possibly ref(3)V genes (if this last gene intervenes directly in sigma's physiology) are involved in a function necessary for replication. No conclusive evidence has been found for ref(3)O, still it seems to intervene in a late function. Problems of functional interactions between products of the first five ref genes have been mentioned.  相似文献   

5.
F Wyers  P Dru  B Simonet    D Contamine 《Journal of virology》1993,67(6):3208-3216
The ref(2)P gene is one of the Drosophila melanogaster genes involved in the inhibition of sigma rhabdovirus multiplication. The partial restriction of viral replication varies according to the ref(2)P alleles and virus strains and involves intracellular interactions between parasite and host products. We identified the protein encoded by the ref(2)P gene and produced polyclonal antibodies directed against the whole ref(2)P protein obtained from a recombinant baculovirus and against a part of the protein expressed as a fusion protein. These antibodies were used to study the interactions with sigma virus proteins by different immunoprecipitation techniques. We showed that the native ref(2)P protein shared conformation-dependent common epitopes with the viral structural genome-associated N protein. Furthermore, the cellular protein was found to be associated in complexes with the viral P protein required for RNA polymerase activity. The significance of these observations in the control of sigma virus multiplication by its host is discussed.  相似文献   

6.
Fleuriet A 《Genetics》1999,153(4):1799-1808
A minority of flies in natural populations of Drosophila melanogaster are endemically infected by a rhabdovirus, sigma. The virus is vertically transmitted through male and female gametes. Two alleles of a fly locus, the ref(2)P locus, are present as a polymorphism in all populations: O permissive, and P restrictive for viral multiplication and transmission. Two viral types are known, Type I, which is very sensitive to the P allele, and Type II, which is more resistant. Previous observations have shown that, in presence of the P allele, viral Type II is selected for, in both natural and experimental populations. The aim of the present study was to determine whether, in the absence of P, Type I is selected for, or whether the two types are equivalent. For this purpose, experimental populations deprived of the P allele and differing in the initial proportions of the two viral types were established. After several generations, and despite a possible bias toward Type I, the frequencies of Type I and Type II clones differed in the various populations, depending on their initial values. These findings do not rule out selective advantage of viral Type I in the absence of P, but suggest that, if any, this advantage is in no way comparable to that displayed by viral Type II in the presence of P.  相似文献   

7.
The ref(2)P gene of Drosophila melanogaster is implicated in sigma rhabdovirus multiplication. Two common alleles of ref(2)P are known, ref(2)P 0 which permits sigma virus multiplication and ref(2)P pwhich is restrictive for most sigma virus strains. This gene maps to the cytogenetic region 37E3-F3. Using Df(2L)E55 (=Df(2L)37D2-El;37F5-38A1), we have screened for lethal, semi-lethal and visible mutations following diepoxybutane (DEB) or ethyl methanesulfonate (EMS) mutagenesis. Our data confirm than DEB is mor efficient than EMS at inducing deletions. The mutations obtained in this region define 14 complementation groups. One of them, l(2)37Dh, appears to be a general enhancer of Minute and Minute-like mutations. None of the mutations were allelic to the ref(2)P locus. Loss-of-function alleles of ref(2)P (called null) were selected following DEB mutagenesis. Homozygous or hemizygous ref(2)P nullflies are male sterile. These flies, like homozygous or hemizygous ref(2)P 0flies, are fully permissive for sigma virus replication. We suggest that the ref(2)P products interact with viral products, but that this interaction is not necessary for an efficient viral cycle.  相似文献   

8.
9.
Different characteristics of flies relating to sigma virus allow us to class the following drosophila genotypes according to their permissivity for the virus strains which are sensitive to the Pp allele: (formula: see text). It is concluded 1) that the two alleles Po and Pp of ref(2)P gene are active and 2) that the viral protein which interact with the product of ref(2)P is effective, or effectively transformed, without interaction with the product of ref(2)P. The delayed appearance of CO2 sensitivity symptom in flies which are issued from stabilized maternal lines, while they are immune to a superinfection non Pp sensitive virus, leads us to believe that ref(2)P is active not only on a function necessary to viral genome replication, as assumed by preceding workers, but also on a function necessary to maturation for the viral strain which was used.  相似文献   

10.
Polymorphism for two alleles of the ref(2)P locus is a very constant feature of French natural populations of Drosophila melanogaster. One of these alleles interferes with the multiplication of the hereditary sigma virus in the fly. An equilibrium, quite similar to the natural one, has been observed previously in experimental populations, whether the sigma virus is present or not. Evidence is given that one of the selection components involved in the maintenance of this equilibrium affects adult stages when flies have not suffered severe larval competition. In conditions of severe larval competition, a maternal effect seems to be involved in the differential egg-to-adult viability of heterozygotes.  相似文献   

11.
12.
A. Fleuriet 《Genetica》1986,70(3):167-177
In natural populations of Drosophila melanogaster, about 10% of the individuals are infected by a virus, sigma, which is not contagious but is transmitted through gametes. These populations are also regularly polymorphic for two alleles, O and P, of a locus ref(2)P; the P allele interferes with the multiplication of the virus. Two viral Types are found in populations, differing in their sensitivity to the P allele. Many samples of flies have been collected in different parts of the world and for each of them, the P frequency has been measured and the viral Type determined. A clear geographical differentiation appears for both these traits; they present a mutual adaptation leading to relatively low frequencies of infected flies in natural populations. Most viruses are only known from highly selected laboratory strains. The observations reported in this paper give evidence of the self restraint exercised by the sigma virus at the population level; they indicate that the characteristics of wild viral clones are likely to differ from those of laboratory strains and also from one population to another.The sigma virus is comparable to other genetical elements, that can be more efficiently transmitted than a mendelian allele, such as transposable elements. The discussion illustrates some of the factors involved in the perpetuation of such elements in a population and points out the difficulty of taking them all into consideration in theoretical models dealing with their perpetuation.  相似文献   

13.
14.
Summary In natural populations of D. melanogaster, usually, a minority of individuals are infected by a Rhabdovirus called sigma. This virus is not contagious but is vertically transmitted through the gametes. In D. melanogaster, a polymorphism for two alleles (O, permissive and P, restrictive) of a gene responsible for resistance to the virus is regularly observed in the wild. On the virus side two types are found, which differ in their sensitivity to the P allele: Type I is very sensitive, and Type II more resistant. Previous findings had led to the hypothesis that an invasion of Type II clones, starting from central France, might be spreading over European populations. This replacement of viral Type I by viral Type II in natural populations could be observed in Languedoc (southern France), where it led to a dramatic increase in the frequency of infected flies. The invasion hypothesis is confirmed by the data from samples collected at Tübingen, where the frequency of Type II clones increased from 0.27 to 0.93 over a 6-year period (1985–1991). However, over the same period, no increase in the frequency of infected flies was observed. The evolution of other viral characteristics is discussed.  相似文献   

15.
16.
The ref(2)P gene is a Drosophila gene which acts on Sigma virus multiplication. From recombination experiments the ref(2)P gene was located between hk and pr. This location was confirmed by the study of eight chromosomic aberrations, without ref(2)P gene activity, obtained following × irradiation. From the cytological study of three of these chromosomes and from the study of the ref(2)P gene activity of chromosomic aberrations obtained by other workers in the same region of the second chromosome, the ref(2)P gene was cytologically located in 37E3-37F3.  相似文献   

17.
18.
Subversion or appropriation of cellular signal transduction pathways is a common strategy employed by viruses to promote an environment within infected cells that supports the viral replicative cycle. Using subsets of 3T3 murine fibroblasts previously shown to differ in their ability to support myxoma virus (MV) replication, we investigated the role of host serine-threonine kinases (STKs) as potential mediators of the permissive phenotype. Both permissive and nonpermissive 3T3 cells supported equivalent levels of virion binding, entry, and early virus gene expression, indicating that MV tropism in 3T3 cells was not determined by receptor-mediated entry. In contrast, late virus gene expression and viral DNA replication were selectively compromised in restrictive 3T3 cells. Addition of specific protein kinase inhibitors, many of which shared the ability to influence the activity of the STKs p21-activated kinase 1 (PAK-1) and Raf-1 attenuated MV replication in permissive 3T3 cells. Western blot detection of the phosphorylated forms of PAK-1 (Thr423) and Raf-1 (Ser338) confirmed activation of these kinases in permissive cells after MV infection or gamma interferon treatment, but the activated forms of both kinases were greatly reduced or absent in restrictive 3T3 cells. The biological significance of these activations was demonstrated by using the autoinhibitory domain of PAK-1 (amino acids 83 to 149), expression of which reduced the efficiency of MV infection in permissive 3T3 cells concurrent with a decrease in PAK-1 activation. In comparison, overexpression of a constitutively active PAK-1 (T423E) mutant increased MV replication in restrictive 3T3 cells. These observations suggest that induced signaling via cellular STKs may play important roles in determining the permissiveness of host cells to poxvirus infection.  相似文献   

19.
Autophagy is a critical regulator of organellar homeostasis, particularly of mitochondria. Upon the loss of membrane potential, dysfunctional mitochondria are selectively removed by autophagy through recruitment of the E3 ligase Parkin by the PTEN-induced kinase 1 (PINK1) and subsequent ubiquitination of mitochondrial membrane proteins. Mammalian sequestrome-1 (p62/SQSTM1) is an autophagy adaptor, which has been proposed to shuttle ubiquitinated cargo for autophagic degradation downstream of Parkin. Here, we show that loss of ref(2)P, the Drosophila orthologue of mammalian P62, results in abnormalities, including mitochondrial defects and an accumulation of mitochondrial DNA with heteroplasmic mutations, correlated with locomotor defects. Furthermore, we show that expression of Ref(2)P is able to ameliorate the defects caused by loss of Pink1 and that this depends on the presence of functional Parkin. Finally, we show that both the PB1 and UBA domains of Ref(2)P are crucial for mitochondrial clustering. We conclude that Ref(2)P is a crucial downstream effector of a pathway involving Pink1 and Parkin and is responsible for the maintenance of a viable pool of cellular mitochondria by promoting their aggregation and autophagic clearance.  相似文献   

20.
We identified a postentry restriction, termed Lv2, which determines the cellular tropism of two related human immunodeficiency virus type 2 (HIV-2) isolates and is dependent on the sequence of the capsid (CA) and envelope (Env) proteins. To explain the reliance on both CA and Env, we proposed that restrictive Envs deliver susceptible capsids to a compartment where Lv2 is active whereas nonrestrictive Envs deliver capsids into a compartment where Lv2 is either absent or less active. To test this model, we used compounds that affect endocytic pathways (ammonium chloride, bafilomycin A1, hypertonic sucrose) or lipid rafts (methyl-beta-cyclodextrin) to treat restrictive cells and show that restricted virus can be rescued from Lv2 if a lipid-raft-dependent, pH-independent endocytic pathway is inhibited. Furthermore, viral entry into HeLa/CD4 cells containing a tailless CD4 receptor, located outside lipid rafts, was fully permissive. Finally, we show that a variety of primary HIV-1 and HIV-2 viruses are susceptible to Lv2. Thus, we show that the route of entry, determined by the viral envelope, can influence cellular tropism by avoiding intracellular blocks to infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号