首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The autologous mixed lymphocyte reaction (AMLR) can be detected in older NZB mice after treatment of the responding cell population with monoclonal anti-I-Ad and complement and supplementation of the culture medium with T-cell growth factor (TCGF) from young animals. The addition of TCGF to cultures containing responding cells alone that had not been pretreated with anti-I-A plus complement resulted in high levels of background proliferation. This is indicative of a high number of preexisting I-A-positive, activated, TCGF-responsive T cells in these mice. These activated cells could also be removed by treatment with anti-I-A antibody and panning on anti-mouse Ig plates, or by BUdR and light killing of those cells proliferating in the presence of TCGF or purified IL-2. Prior treatment of the responding cells with anti-Lyt 2 and complement did not effect the AMLR. An NZB AMLR responding cell line was established using these methods. This line retained haplotype specificity in a proliferation assay. Limiting dilution analysis of the precursor frequency of AMLR responding cells in the nonautoimmune C58 and BALB/C strains in culture medium with TCGF gave a frequency of between 1 in 35,000 and 1 in 88,000. In young, AMLR-positive, NZB mice, supplementation with TCGF yielded precursor frequencies within the normal range. In older NZB mice, the addition of TCGF resulted in increased background proliferation of preactivated, IA+ T cells. After removal of these cells with anti-I-A plus complement, AMLR responding cells were found at normal frequency levels when stimulated in the presence of TCGF. In the oldest animals tested (greater than 18–20 weeks), normal precursor frequencies could not be demonstrated even after this treatment, representing a true decline in the AMLR responding cell number. AMLR deficiency in NZB mice appears therefore to be the result of the combined effects of decreased lymphokine production, excessive T-cell activation, and finally decreased numbers of AMLR responding cells.  相似文献   

2.
The in vitro production of antibodies to dsDNA was studied with spleen cells from normal and autoimmune mice. After culture for 4 days, the binding of dsDNA in the culture supernatant was measured by a radioimmunoprecipitation assay. The production of antibodies to dsDNA by spleen cells appeared at 15 hr after culture and reached a plateau at 24 hr. No antibodies were produced by thymus cells or splenic T cells. The specificity for dsDNA was shown by competitive inhibition with nonradioactive nucleic acids. Autoimmune strains of mice (NZB/NZW, BXSB, MRL/1) produced more antibodies to dsDNA than did several control strains. Young B/W mice and control strain mice produced mainly IgM antibodies, whereas older B/W mice produced predominantly IgG antibodies to dsDNA. The in vitro production of antibodies to dsDNA by aged B/W spleen cells was macrophage and T cell dependent.  相似文献   

3.
The ability of helper T cells from NZB mice to produce non-interleukin 2 (IL-2) lymphokines in the autologous mixed lymphocyte reaction (AMLR) was examined. Factors present in normal AMLR culture have been previously reported to mediate the development of a cytotoxic T-cell response to trinitrophenyl (TNP)-modified syngeneic thymocytes. Young NZB mice, like the normal strains, were able to produce the helper factors in the AMLR and to utilize these mediators in the cytotoxic induction system. Old autoimmune NZB mice demonstrated a poor proliferative response in the AMLR and were unable to activate hapten-specific cytotoxic cells in the presence of AMLR culture supernatant from either young or old mice. This was not due to a lack of cytotoxic precursors, nor was it a normal consequence of aging, but may be related to decreased IL-2 production by helper T cells. Interestingly, supernatant from AMLR proliferation deficient old NZB mice contained normal amounts of the AMLR helper factor. These data suggest that AMLR helper factor production is not directly related to the proliferative response and that two different helper-T-cell subpopulations may be responsible for these activities. The production of these mediators in mice which cannot utilize them raise questions about their role in autoimmunity.  相似文献   

4.
Regression of B cell proliferation in co-cultures of EBV-infected B cells (BEBV) and autologous T cells at 1:4 ratio was studied. 3H-TdR incorporation was used to measure proliferation by the participating lymphocyte populations and a 51Cr release assay was used to document the generation of cells capable of killing autologous EBV-transformed B lymphoblastoid cell lines (LCLEBV). EBV-infected B cells cultured alone transformed to blasts by culture day 10, and continued to proliferate throughout the 22 day observation period. When EBV-infected B cells were co-cultured with E rosetted cells from VCA-positive donors, there was a characteristic proliferative response on day 10 (an augmented autologous mixed lymphocyte reaction; AMLR), followed by the development of T8+ cells capable of killing autologous LCLEBV, as well as over 90% suppression of EBV growth by day 22 as assessed by 3H-TdR incorporation, and confirmed in a visual outgrowth assay. Negative and positive selection techniques were used to define the regulatory components in the T cell population. Depletion of T8+ cells from the blood lymphocytes of VCA-positive donors did not significantly reduce the 10 day proliferative response, but the subsequent development of cytotoxic cells and the regression of BEBV outgrowth was not observed. Thus, the circulating T8+ cells are required for the subsequent appearance of autologous LCLEBV cytotoxicity and BEBV growth regulation. However, when the responder population consisted only of T8+ cells, the augmented AMLR response was absent, cytotoxic cell development was weak or absent, and there was no regression of EBV outgrowth. Therefore, the cells participating in the AMLR, as well as T8+ memory cells from VCA-positive donors, are necessary for the control of the in vitro EBV infection. Growth regression is dependent on the proliferation of the regulatory T cells. Mitomycin C treatment of fresh E rosetting cells or those exposed to BEBV for up to 10 days in culture abrogates growth regression and the subsequent appearance of LCLEBV killer cells. However, E rosetting cells exposed to BEBV for 14 days or more already have developed the ability to kill LCLEBV and no longer need to proliferate to induce growth regression when cultured with newly infected BEBV. These results lend additional support to the view that the control of EBV-induced B cell expansion requires a AMLR-dependent clonal amplification of EBV-specific, T8+ cytotoxic cells.  相似文献   

5.
To investigate the specific nature of the autologous mixed lymphocyte reaction (AMLR), we applied a method in which mixtures of NY-nonadherent responder cells and NY-adherent stimulator cells were treated with neuraminidase before culture and then cultured to assay the AMLR. This method produced a marked enhancement of DNA replication in the responder cells and the results were reproducible, regardless of the individuals tested. Using this method, we were able to make the following observations regarding the specific nature of the AMLR. (i) The AMLR is an IL-2-independent reaction, as revealed by bioassay to detect the presence of IL-2 by a blocking test using anti-IL-2R sera and as shown by the absence of mRNA for IL-2 in Northern hybridization. (ii) It is also HLA-DR dependent as proven by the fact that anti-DR sera almost completely inhibited the reaction. (iii) The AMLR was also found to induce the generation of activated CD4+ helper T cells in direct response to stimulation by NY-adherent cells, in which HLA-DR antigens were involved. (iv) Also, it induced the generation of CD4-CD8- double-negative (DN) lymphocytes, including gamma delta T cells with a cytotoxic activity against NK-resistant target cells and with a variety of lymphocyte activation markers (CD56, HLA-DR, CD25, transferrin receptors, CD38, and LFA-1). However, the AMLR did not induce the generation of NK cell markers CD16 and CD57. (v) The DN lymphocytes and gamma delta T cells appeared to be generated from the precursors of CD4-CD8- DN cells, in direct response to the stimulator cells. These results strongly suggest that the AMLR may be a phenomenon which induces the proliferative response of gamma delta T cells and their precursors, in addition to that of alpha beta T cells, particularly of CD4+ helper T cells.  相似文献   

6.
T cell proliferative responses to Mycobacterium leprae were measured by immunization of mice at the base of the tail with Ag and challenging lymphocytes from draining lymph nodes in culture with M. leprae. C57BL/10J and B10.BR mice were identified as low responder mice and the congenic strains B10.M, B10.Q, and B10.AKM as high responders whereas F1 (high x low) hybrid mice were found to be low responders. The cellular basis of low responsiveness did not appear to result from a defect in Ag-presenting cells or the activation of suppressor T cells by M. leprae. The influence of the environment in which T cells developed on responsiveness to M. leprae was analyzed in chimeric mice prepared by irradiating F1(C57BL/10J x B10.M) mice and reconstituting with bone marrow from C57BL/10J, B10.M, or F1 donors. Six weeks later, chimeric mice were immunized with M. leprae, lymph node cells were subsequently prepared, and H-2 phenotyped and challenged in culture with M. leprae Ag. T cell proliferative responses were found to be low in all cases, similar to those observed using lymph node cells from F1 hybrid mice. These results suggested that high responder B10.M lymphocytes developing in the irradiated F1 mice became tolerized to antigenic determinants found on M. leprae. This implied cross-reactive epitopes existed between some mouse strains and M. leprae. Low responsiveness to M. leprae in low responder and F1 hybrid mice may result from tolerance to H-2-encoded Ag that show cross-reactivity with M. leprae.  相似文献   

7.
Experiments have been carried out to examine the potential helper T cell repertoire specific for the random terpolymer GAT on responder, nonresponder, and (responder x nonresponder)F1 murine strains. The ability of GAT-MBSA immunized T cells to collaborate with DNP-specific primary and secondary B lymphocytes of each strain in response to the antigen DNP-GAT was tested with the splenic fragment culture system. The results of these experiments show that there are GAT-specific T lymphocytes in the responder, nonresponder, and F1 strains but that these 3 GAT-specific T cell populations differ in their collaborative potential. In sum, these findings present new evidence that the nonresponder status to the terpolymer GAT is due, in part, to a functional deletion of helper T cells capable of recognizing the antigen in the context of the nonresponder haplotype. Further, a new responsive phenotype is evidenced when F1 secondary B cells are stimulated in nonresponder GAT-MBSA-primed recipients. In this case, rather than the IgG1 responses observed in such strain combinations to other antigens such as DNP-Hy or DNP-Gl phi 9, only IgM responses were obtained. This new phenotype may be the result of GAT-specific suppression of isotype switching by B cells bearing the nonresponder cell surface alloantigens.  相似文献   

8.
Cell-free supernatants from broth cultures of Mycoplasma arthritidis (MAS) induce vigorous proliferative responses in thymus-derived T lymphocytes from H2k or H2d strains of mice. Populations of lymphoid cells from mice of H2b, H2q, or H2s haplotypes do not respond to this stimulus. Previous studies with lymphoid cells from congenic and recombinant strains of mice indicate that the T cell proliferative response induced by MAS is controlled by a gene(s) that maps to the I-E/C subregion of the murine major histocompatibility complex (MHC). The T cell proliferative response induced by MAS is dependent upon the presence of a population of la+, radioresistant accessory cells (AC). Data presented here demonstrates that responder strain AC that have been pulsed with MAS (followed by extensive washing) induced vigorous proliferative responses in subsequently added T cell populations. Pulsing of T cells with MAS, followed by the addition of AC, however, did not result in T cell proliferation. MAS was found to stimulate (responder X nonresponder) F1 T cells to proliferate if the MAS was presented in the context of either responder or (responder X nonresponder) F1 AC; nonresponder strain AC were ineffective in this regard. Nonresponder strain T cells were found to be capable of responding to MAS if it was presented in the context of responder strain AC, even if the T cells and AC were completely allogeneic. Thus, nonresponder strain T cells mounted vigorous proliferative responses if the MAS was presented in the context of responder strain AC. Conversely, responder strain T cells did not respond to MAS presented in the context of nonresponder strain AC. In addition, lymphoid cells from a B10 leads to B6AF1 radiation bone marrow chimera were also found to be capable of responding to MAS, but only in the presence of AC that expressed cell surface determinants controlled by the I-E/C subregion. The data presented here indicate that MAS-induced T cell proliferative responses are controlled at the level of the AC by a gene(s) that maps to the I-E/C subregion of the MHC.  相似文献   

9.
In the course of the culture of an autologous mixed lymphocyte reaction (AMLR), T cells proliferated in response to autologous non-T cells, and differentiated to cytotoxic T cells (AMLR killers). DNA synthesis was necessary to generate AMLR killers, as the elimination of autoreactive proliferating cells with BUdR and UV light completely abrogated AMLR killer cytolysis. Amlr killers lysed various lymphoid cell lines, including autologous B cell lines, autologous or allogeneic mitogen blasts stimulated by Con A, PHA, or pokeweed mitogen, variious nonlymphoid cell lines derived from human, mouse, or rat, and weakly normal autologous or allogeneic non-T cells. KMT-17, methylcholanthrene-induced rat fibrosarcoma, was the only resistant cell line to have been tested. AMLR killers had characteristics similar to NK cells, Major histocompatibility antigens were not the target antigens for AMLR killers. AMLR killers distinguished the blasts stimulated by alloantigens as self from the blasts stimulated by mitogens as non-self.  相似文献   

10.
The spontaneous in vitro anti-DNA antibody response generated by preautoimmune and many normal mouse spleen cells was suppressed by the addition of syngeneic thymocytes or splenic T cells. Suppressive activity was found in normal mice (DBA/2J) and to an equivalent degree in the autoimmune (New Zealand Black X New Zealand White)F1 (B/W) strain. The suppressor cells were cortisone-resistant, radiosensitive and carried Lyt 1 and Lyt 2 markers. Nonspecific suppression was not involved since the primary and primed in vitro anti-sheep erythrocyte (anti-SRBC) responses were unaffected. Both spontaneous and lipopolysaccharide-stimulated anti-DNA antibody responses could be suppressed. There was no difference in the suppressive activity of cells from young or old, normal or autoimmune mice. These T cells may therefore play a role in preventing the anti-DNA antibody response in normal and young B/W mice, but evidently fail to influence the development of in vivo anti-DNA autoimmune responses in the old B/W mice.  相似文献   

11.
An in vitro system was designed to measure anti-DNA antibody synthesis, and the cellular basis of this autoantibody production in NZB X NZW (B/W)F1 (B/W F1) mice was analyzed. The spleen cells from old B/W F1 mice contained a number of B cells that spontaneously produced anti-DNA antibodies of both IgM and IgG classes in the absence of stimulants, thereby demonstrating that these B cells had been activated in vivo. These activated B cells could be removed by Sephadex G-10 column (G-10) filtration. Such G-10-passed, homogeneously small B cells were activated by the stimulant lipopolysaccharide (LPS) and produced both IgM and IgG class anti-DNA antibodies. The G-10-passed cells contained both B and T cells, and the cytotoxic treatment of the cells with monoclonal antibodies to T cells, anti-Thy-1 and anti-L3T4, abolished the LPS-induced IgG class, but not IgM class, anti-DNA antibody syntheses. Thus, the LPS-induced production of IgG class anti-DNA antibodies in B/W F1 mice is regulated by T cells. Reconstitution experiments revealed the requirement of T-B cell contact but not of the proliferative response of T cells. Moreover, there was no apparent adherent cell requirement. Such IgG class anti-DNA antibodies were produced only by spleen cells from old B/W F1 mice, but not from young B/W F1, NZB, NZW, and C57BL/6 mice. Like IgM class anti-DNA antibodies, LPS-induced synthesis of polyclonal IgM was T cell-independent. Only a slight reduction in the polyclonal IgG synthesis was observed after the G-10-passed cells had been treated with anti-Thy-1 antibody plus complement. This study should facilitate investigation of cell to cell interactions in the formation of autoantibodies and their correlations to immunologic abnormalities in autoimmune disease.  相似文献   

12.
Human T cells are stimulated with an autologous mixed leukocyte reaction (AMLR) and can be propagated in interleukin-2. Staining of the cultured cells with the combination of two monoclonal antibodies was evaluated by two-dimensional flow cytometry at weekly intervals. AMLR activation resulted in an initial preservation of the CD4+ (helper/inducer T) subset predominance over the CD8+ (suppressor/cytotoxic T) cells, noted on normal circulating blood lymphocytes. However, during culture in interleukin-2, there was a progressive increase in the percentages of CD8+ Leu 15- cytotoxic T, CD4+ Leu 8- helper T, and CD3+ HLA-DR+ activated T cells, and a concomitant decrease in those of CD4+ Leu 8+ suppressor inducer T and CD8+ Leu 15+ suppressor T cells if the responder sheep red blood cell (SRBC)-rosetting T cells were made up by tris ammonium chloride, but not by hypotonic shock treatment to lyse SRBC. The significant difference between hypotonic shock-T cells and ammonium chloride-T cells in the phenotypic changes of T cell subsets after long-term culture in an interleukin-2 medium may suggest a regulatory role of the ammonium chloride-sensitive T cells in the AMLR.  相似文献   

13.
We determined if self-reactive T cells are able to escape thymic tolerance in autoimmune New Zealand mice. T cells utilizing V beta 17a and V beta 11 encoded receptors have been shown to be clonally eliminated in nonautoimmune mice expressing I-E because of their potential self-reactivity. Similarly, V beta 8.1+ and V beta 6+ T cells are tolerized in the thymus of nonautoimmune mice that express Mls-1a. These T cell subsets were quantitated in the lymph nodes and spleens of (NZB x NZW)F1 and (NZB x SWR)F1 mice. In young mice from both autoimmune strains, deletion was similar to that observed in control animals matched for I-Ed and Mls-1a expression. Furthermore, older female autoimmune mice with elevated levels of IgG antinuclear antibodies and severe lupus-like renal disease did not demonstrate evidence of a global tolerance defect. We also found that the levels of residual V beta 17a+ cells in MHC-matched control F1 strains were further reduced by up to 80% in autoimmune (NZB x SWR)F1 mice. The greater in vivo elimination corresponded to an enhanced ability of NZB spleen cells, compared with other H-2d spleen cells, to stimulate V beta 17a+ hybridomas in vitro. The increased stimulation in culture could not be attributed to quantitative differences in I-E Ag expression. The results suggest that autoreactive T cells have been eliminated in these autoimmune mice by normal mechanisms of self-tolerance. Furthermore, the data demonstrate the existence of an NZB minor locus not present in other H-2d strains that influences T cell repertoire and enhances stimulation of T cells potentially reactive to self class II MHC Ag.  相似文献   

14.
T cell subsets from rat strains that have been characterized as high and low responders to alloantigen were examined for their capacity to mediate lethal graft versus host disease (GVHD) across strain combinations incompatible for class I, class II, and non-MHC antigens. Inocula of 5 X 10(7) lymph node and spleen cells (LC) from low responder DA (RT1a) and high responder W/F (RT1u) strains caused lethal GVHD in (W/F X DA)F1 hybrids given 6 Gy whole body irradiation. W/F CD4+ (W3/25+) cells (2 X 10(7], equal to the number in 5 X 10(7) LC mediated lethal GVHD but 10(8) DA CD4+ cells were required to cause lethal GVHD. CD8+ (MRC OX8+) cells (5 X 10(7] from W/F rats alone caused lethal GVHD but those from DA rats could not. Mixtures of CD4+ and CD8+ DA T cells, equivalent to the number in 5 X 10(7) LC, did mediate lethal GVHD, demonstrating that synergy between the subsets was the predominant mechanism with DA cells. These results suggest that differences in alloreactivity between the strains tested may be due to alternate requirements for the alloactivation of T cell subsets; the high responder subsets being self-sufficient and the low responder subsets being dependent upon each other.  相似文献   

15.
T cell proliferative responses to Mycobacterium leprae were measured after immunization of mice at the base of the tail with antigen and challenging lymphocytes from draining lymph nodes in culture with M. leprae. This T cell response to M. leprae has been compared in 18 inbred strains of mice. C57BL/10J mice were identified as low responder mice. The congenic strains B10.M and B10.Q were found to be high responders, whereas B10.BR and B10.P were low responders. F1 (B10.M X C57BL/10J) and F1 (B10.Q X C57BL/10J) hybrid mice were found to be low responders, similar to the C57BL/10J parent, indicating that the low responsive trait is dominant. Whereas B10.BR mice were shown to be low responders to M. leprae, B10.AKM and B10.A(2R) were clearly high responders, indicating that the H-2D region influences the magnitude of the T cell proliferative response. Gene complementation within the H-2 region was evident. Genes outside the H-2 region were also shown to influence the response to M. leprae. C3H/HeN were shown to be high responder mice, whereas other H-2k strains, BALB.K, CBA/N, and B10.BR, were low responders. Gene loci that influence the T cell proliferation assay have been discussed and were compared to known background genes which may be important for the growth of intracellular parasites. Because mycobacteria are intracellular parasites for antigen-presenting cells, genes that affect bacterial growth in these cells will also influence subsequent immune responses of the host.  相似文献   

16.
In vitro and in vivo responses to the 18-kDa protein of Mycobacterium leprae have been analysed in different strains of mice. Lymphocytes from BALB/cJ (H-2d), BALB.B (H-2b), B10.BR (H-2k), and B10.M (H-2f) mice primed with 18-kDa protein yielded high T cell proliferative responses, while those from C57BL/10J (H-2b) mice yielded lower responses. Both H-2 and non-H-2 genes contributed to the magnitude of responsiveness. F1 mice from high and low responder strains showed high responsiveness to the 18-kDa protein. Supernatants from lymph node cell cultures prepared from 18-kDa protein-immunised BALB/cJ, B10.BR, and C57BL/10J mice contained IL-2 but no IL-4, indicating that activated T cells from both high and low responder mice were of a TH1 phenotype. Cell cultures from low responder C57BL/10J mice produced less IL-2 than those from high responders. The low responsiveness to the 18-kDa protein in proliferative assays might be due to a low frequency of antigen-specific T cells in the C57BL/10J mouse strain. BALB/cJ, C57BL/10J, and F1 (BALB/cJ x B10.BR) mouse strains were tested for in vivo DTH reactions to the 18-kDa protein. All strains, including C57BL/10J, were high DTH responders. Although DTH effector cells and 18-kDa protein-specific proliferative T cells belong to the TH1 subset, our data comparing high and low responder status indicate that distinct TH1 subpopulations are stimulated in response to the 18-kDa protein of M. leprae.  相似文献   

17.
We have examined T cell recognition of the nuclear autoantigen Sm. Rabbit Sm-primed cells from autoimmune MRL/Mp-+/+ (+/+) mice and from all normal strains tested were able to proliferate to rabbit Sm in vitro. In contrast, the reactivity of normal strains to Sm of murine origin was genetically restricted; only H-2f strains B10.M and A.CA, and H-2s strains B10.S and A.SW could recognize mouse Sm, suggesting that responsiveness to mouse Sm was under the control of H-2-linked Ir genes. Although five Iak-bearing normal strains (B10.A, B10.A(2R), B10.BR, A/Sn, and CBA) did not recognize mouse Sm, autoimmune +/+ (Iak) mice were responders. The responsiveness of the +/+ mice to Sm was probably not due to differences in their Iak region, compared with other strains, because the Iak region of normal strains and the autoimmune +/+ strain were indistinguishable by interstrain MLC, immune response gene product function, and recognition by anti-Iak mAb. Inhibition of Sm-induced proliferation by mAb demonstrated that T cells from autoimmune +/+ mice, responder normal strains, and nonresponder normal strains recognized rabbit and mouse Sm in the context of I region-encoded products. The T cell response to Sm antigen in normal mice is therefore Ia region restricted and, for the murine antigen, under Ir gene control. Autoimmune mice that spontaneously make anti-Sm antibodies (+/+) also perceive Sm in an Ia-restricted manner, but their responder status abrogates H-2-linked Ir gene control.  相似文献   

18.
We analyzed the mechanism of spontaneous B cell activation in lupus mice by using anticlass-II antibody in vitro. The in vitro culture of B cells from old NZB mice markedly produced Ig without any stimulation, while B cells from NZW mice did not. The addition of anticlass-II antibody (anti-Iad antibody) to the culture inhibited Ig production of NZB B cells in a concentration-dependent manner. On the other hand, the addition of anticlass-I antibody (anti-H-2Dd antibody) and anticlass-II antibody with different specificity (anti-Iak) gave no effect on the Ig production of NZB B cells. When mitomycin C-treated B cells were added to in vitro culture of responder B cells as a stimulator, Ig production of responder B cells was enhanced in a concentration-dependent manner. However, the enhancing effect of the stimulator B cells was abrogated by the pretreatment with anticlass-II antibody. The stimulator B-cell activity to NZB B cells was marked in NZB B cells, moderate in NZB/W F1 B cells, and weak in NZW B cells. Furthermore, the stimulator B-cell activity with regard to NZB B cells was marked in old female NZB B cells, moderate in old male NZB B cells, and weak in young NZB B cells. The expression of class II antigens on the surface of old female NZB B cells was significantly higher than that of old male NZB and young NZB B cells. These results suggest that in lupus mice the spontaneous B-cell activation is induced by an abnormal B-B cell interaction mediated by class II antigens.  相似文献   

19.
Responses of B cells from autoimmune mice to IL-5   总被引:5,自引:0,他引:5  
Three strains of mice (NZB/W F1 X NZW (NZB/W), BXSB, and MRL/Mp-lpr/lpr (MRL/lpr] develop an autoimmune disease that is clinically and immunologically similar to human SLE. A characteristic of these mice is polyclonal B cell hyperactivity. To explore whether this may be related to hyper-responsiveness to B cell stimulatory factors, we investigated the proliferative and secretory responses of B cells from these mice to semi-purified natural and rIL-5, a major regulator of B cell development in the mouse. As this lymphokine stimulates growth and differentiation of activated B cells, attention was focused on in vivo-activated B cell populations, obtained from the interface of 50/65% Percoll density gradients, from normal or autoimmune mice. This cell population from NZB/W mice secreted IgM and incorporated [3H]TdR at significantly higher levels in response to IL-5, and was more sensitive to IL-5, than a comparable population from several normal murine strains. NZB/W female and male mice displayed heightened responses to IL-5, indicating that this is characteristic of the strain in general and is not associated with the accelerated severe disease of the females. Small resting B cells from NZB/W and normal mice were insensitive to IL-5 stimulation. In contrast to NZB/W mice, no difference was observed in the magnitude of either proliferative or Ig secretory responses between in vivo-activated B cell populations from autoimmune BXSB and MRL/lpr or normal mice. Thus, B cell hyper-responsiveness to IL-5 is a characteristic of NZB/W mice but not of two other lupus-prone murine strains. As one unique feature of NZB/W mouse B cells compared to normal and other autoimmune B cells is an elevated proportion of Ly-1+ B cells, the possibility of IL-5 hyper-responsiveness being associated with this B cell subpopulation was investigated. Fluorescence-activated cell sorter sorted Ly-1+ and Ly-1- B cells both responded to IL-5, however Ly-1+ B cells consistently showed a higher stimulation index in both proliferative and Ig secretory responses to this lymphokine.  相似文献   

20.
The integrin surface molecule termed lymphocyte functional antigen-1 (LFA-1), and its physiological ligand intercellular adhesion molecule-1 (ICAM-1), have been proven to play a relevant role in several immune reactions where cell-to-cell contact is required: these reactions include allogeneic mixed lymphocyte reaction (MLR) and direct cytotoxicity. In the present study, we show that monoclonal antibodies (mAbs) directed to LFA-1 as well as to ICAM-1 molecules are able to inhibit T cell proliferation in autologous MLR (AMLR). Such an in vitro reaction is generally considered a functional model of Ia-mediated immunocompetent cell cooperation, and is impaired in several pathological conditions. It is noteworthy that the LFA-1 molecule is largely represented on the T cell surface, whereas ICAM-1 is poorly expressed on resting T cells: autologous stimulation slightly increases ICAM-1 expression. Pretreatment studies indicate that the inhibitory effect of anti-ICAM-1 mAb on T cell proliferation in AMLR is exerted on responder T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号