首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytogenetics of chromosome pairing in wheat   总被引:2,自引:0,他引:2       下载免费PDF全文
Riley R 《Genetics》1974,78(1):193-203
Meiotic chromosome pairing in Triticum aestivum is controlled by genetic systems promoting and reducing pairing. The pairing of homoeologous chromosomes is prevented principally by the activity of a single locus (Ph) distally located on the long arm of chromosome 5B. In certain hybrids, supernumerary chromosomes (B chromosomes) from Aegilops species can compensate for the absence of chromosome 5B preventing or reducing homoeologous pairing. Temperature-dependent variants and colchicine sensitivity have been used to show that there are at least two stages in the G1 of meiosis at which the occurrence of meiotic pairing is determined. Wheat may differ from lily in the detailed organization of meiosis.  相似文献   

2.
Comparisons were made of levels of chromosome pairing in pentaploid hybrids between normal and ph 1b -and ph 2 -mutant forms of Triticum aestivum ssp. vulgare cv. Chinese Spring each crossed with Triticum kotschyi and T. turgidum var. dicoccoides. Higher levels of multivalent formation in the ph 1b -kotschyi, compared with the ph 1b -dicoccoides pentaploid was attributed mainly to the absence of allelic buffering, by the Ph 1 allele, in the Kotschyi pentaploid and its presence in the dicoccoides pentaploid. The higher level of homoeologous pairing in the ph 2 -dicoccoides pentaploid compared with that of kotschyi was believed to be due to differential levels of homoe-and non-homoallelic buffering in the two pentaploids. The high level of homoeologous pairing caused by the ph 2 -mutant in the dicoccoides pentaploid indicates a potential use of pairing promoters, free of homoallelic buffering, as a means of increasing thelevel of homoeologous pairing in wheat and in certain of its hybrids with alien species.  相似文献   

3.
Driscoll CJ  Bielig LM  Darvey NL 《Genetics》1979,91(4):755-767
Presynaptic association of homologous chromosomes is a prerequisite to the sequence of events that lead to chiasma formation. This association of homologous chromosomes, as entire units, occurs with probability a, and chiasma formation occurs independently in opposite chromosome arms with probability c. a and c have been estimated from frequencies of different chromosome configurations at metaphase I of euhexaploid wheat and several derived lines. In the euploid, a is essentially unity and c is of the order of 95%. All changes in the aneuploidy studied involved c rather than a, whereas the change induced by colchicine application primarily involved a.—Observed and expected frequencies of configurations were compared in wheat hybrids in which only homoeologues were present. The expected frequencies of configurations were estimated from the data, based on a being unity for entire groups of homoeologues and c being the probability of chiasma formation between random homoeologous arms. Observed and expected frequences of configurations were in general agreement; however, an excess of observed closed bivalents at the expense of multivalents is interpreted to mean that not all homoeologues are effectively associated in all cells.—In euhexaploid wheat, we suggest that homologues associate with almost certainty, whereas homoeologous pairs of chromosomes associate less efficiently. The aneuploidy examined in this study does not appear to affect the association of chromosomes, but rather the number of chiasmata that eventuate and, in the case of deficiency of chromosome 5B, the distribution of chiasmata within homoelogues, perhaps by way of rendering sites for chiasma formation of homoelogues more similar.  相似文献   

4.
Genomic in-situ hybridization (GISH) was used to determine the amount of wheat-rye chromosome pairing in wheat (Triticum aestivum) x rye (Secale cereale) hybrids having chromosome 5B present, absent, or replaced by an extra dose of chromosome 5D. The levels of overall chromosome pairing were similar to those reported earlier but the levels of wheat-rye pairing were higher than earlier determinations using C-banding. Significant differences in chromosome pairing were found between the three genotypes studied. Both of the chromosome-5B-deficient hybrid genotypes showed much higher pairing than the euploid wheat hybrid. However, the 5B-deficient hybrid carrying an extra chromosome 5D had significantly less wheat-rye pairing than the simple 5B-deficient genotype, indicating the presence of a suppressing factor on chromosome 5D. Non-homologous/non-homoeologous chromosome pairing was observed in all three hybrid genotypes. The value of GISH for assessing the level of wheat-alien chromosome pairing in wheat/alien hybrids and the effectiveness of wheat genotypes that affect homoeologous chromosome pairing is demonstrated.  相似文献   

5.
Somatic cell cycle is a dynamic process with sequential events that culminate in cell division. Several physiological activities occur in the cytoplasm and nucleus during each of the cell cycle phases which help in doubling of genetic content, organized arrangement of the duplicated genetic material and perfect mechanism for its equal distribution to the two daughter cells formed. Also, the cell cycle checkpoints ensure that the genetic material is devoid of damages thus ensuring unaltered transmission of genetic information. Two important phenomena occurring during the cell cycle are the DNA condensation and decondensation cycles in the nucleus along with the cyclic expression and functioning of certain specific proteins that help in the same. Several protein families including Cyclins, cyclin dependent kinases, condensins, cohesins and surivins ensure error free, stage specific DNA condensation and decondensation by their highly specific, controlled orchestrated presence and action. Understanding the molecular mechanisms of chromatin compaction towards formation of the structural units, the chromosomes, give us valuable insights into the cellular physiology and also direct us to techniques such as premature chromosome condensation. The techniques of inducing ‘prophasing’ of interphase cells are undergoing rapid advances which have multidimensional applications for basic research and direct applications.  相似文献   

6.
7.
Non-isotopic high resolution in sity hybridization was applied to cytological preparations of sporulating yeast cells. Ribosomal DNA (rDNA) and chromosome V-specific recombinant lambda clones were used to tag individual chromosomes and chromosome subregions. This allowed the study of chromosome behaviour during early meiotic prophase. It was found that chromatin becomes condensed and homologous DNA sequences then appear to become aligned prior to synaptonemal complex formation.by E.R. Schmidt  相似文献   

8.
Molecular analysis of Arachis interspecific hybrids   总被引:1,自引:0,他引:1  
Incorporation of genetic resistance against several biotic stresses that plague cultivated peanut, Arachis hypogaea (2n=4x=40), is an ideal option to develop disease resistant and ecologically safe peanut varieties. The primary gene pool of peanut contains many diploid wild species (2n=2x=20) of Arachis, which have high levels of disease and insect resistances. However, transfer of resistant genes from these species into A. hypogaea is difficult due to ploidy level differences and genomic incompatibilities. This study was conducted to monitor alien germplasm transmission, using Random Amplified Polymorphic DNA (RAPD) markers, from two diploid wild species, A. cardenasii and A. batizocoi, into A. hypogaea. Triploid interspecific hybrids were produced by crossing two A. hypogaea cultivars (NC 6 and Argentine) with the two species and by colchicine-treating vegetative meristems, fertility was restored at the hexaploid (Co) level in the four hybrids. Hexaploids were allowed to self-pollinate for four generations, each referred to as a cycle (C1, C2, C3, and C4). At each cycle, a backcross was made with the respective A. hypogaea cultivar as the maternal parent and only lineages tracing back to a single hexaploid hybrid were used for RAPD analysis. Analysis of mapped, species-specific RAPD markers in BC1F1 to BC1F3 hybrids indicated that alien germplasm retention decreased every generation of inbreeding, especially in Argentine and in A. batizocoi crosses. A similar trend was also observed for every cycle in BC1F2 and BC1F3 families, possibly, due to the loss of alien chromosomes following selfing of hexaploids. RAPD marker analysis of 40–chromosome interspecific hybrid derivatives from the four crosses supported previous reports that reciprocal recombination and/or translocations are the predominant mechanisms for exchange of chromosomal segments. No evidence was found for preferential transfer of alien chromosomal regions to specific linkage groups. The implications for developing disease resistant peanut breeding lines are discussed in light of these findings.  相似文献   

9.
Summary When crossing Drosophila virilis females with D. littoralis males, the elimination of D. littoralis sixth chromosome (microchromosomes) was often observed. The absence of the sixth chromosome of D. littoralis was revealed when studying F1 hybrids, because of the mosaic expression of the recessive gene gl, located in the sixth chromosome of D. virilis. In the reciprocal cross the elimination of the sixth chromosome of D. littoralis did not take place (Sokolov 1959).Genetic analysis enabled the authors to conclude that the observed maternal effect on mitosis is controlled by recessive genes located on the second and fourth chromosome of D. virilis. The genes located on the second chromosome, differ from those on the fourth chromosome both in temperature sensitivity and in the time and/ or the mechanism controlling the mitotic behaviour of the chromosomes.By means of back-crosses a new stock was established where all chromosomes except the sixth belonged to D. virilis. The sixth pair (microchromosomes) in this line was represented by one D. virilis and one D. littoralis chromosome. It was shown that the sixth chromosome of D. littoralis might be eliminated or undergo non-disjunction in D. virilis germline but the frequency of such atypical behaviour was very low (about 2 %). Low temperature treatment was not effective for increasing the frequency of either elimination or non-disjunction of the D. littoralis sixth chromosome in D. virilis germ-line.  相似文献   

10.
Intra- and inter-specific variation in CO2 assimilation rate (A) in Triticum spp. is well documented for reproductive growth stages. Research was conducted to characterize early vegetative photosynthetic variation in a diverse set of cultivated hexaploid wheat (T. aestivum L.) germplasm and in wild tetraploid (T. dicoccoides Korn) and hexaploid x tetraploid populations. Choice of hexaploid genotypes was based on maximum genetic distance between cultivars within the HRW and SRW wheat classes of the USA. The tetraploid material was produced by hybridizing two accessions of T. dicoccoides previously shown to differ widely in A and A/Chl but with similar leaf morphology. Genetic variability in the HRW and SRW gene pools was attributed to more recently developed descendent lines and unrelated lines rather than parental lines. Phenotypic distributions for A, stomatal conductance (gs), and internal CO2 concentration (Ci) in the F2 tetraploid population were continuous and showed transgressive segregation, reflecting quantitative inheritance with intermediate heritability. Variability in A was not associated with chlorophyll content or CO2 supply to the mesophyll measured as Ci. Genetic variability in A was also observed in the interspecific backcross population, 2*TAM W-101/PI 428109, thereby providing a germplasm pool to select for high A while restoring the D genome of hexaploid wheat. These results suggest that genetic improvement of vegetative assimilation rate is feasible in hexaploid wheat via homologous transfer from an alien source.Abbreviations HRW hard red winter - LA leaf area - rG genotypic correlation - rP phenotypic correlation - SRW soft red winter  相似文献   

11.
The relationship between histone phosphorylation and chromosome condensation was investigated by determining changes in phosphorylation levels of histones H1 and H3 following fusion between mitotic and interphase cells and subsequent premature chromosome condensation. We detected significant increases in the levels of phosphorylation of H1 and H3 from interphase chromatin in which a majority of nuclei had undergone premature chromosome condensation. In addition, we noted significant decreases in the phosphate content of the highly phosphorylated mitotic H1 and H3, presumably resulting from phosphatase activity contributed by the interphase component of mitotic/interphase fused cells. These observations further strengthen the correlation between histone phosphorylation and the changes in chromosome condensation associated with the initiation of mitosis. This study also suggests that maintenance of the mitotic chromosomes in a highly condensed state does not require the continued presence of histones in a highly phosphorylated form.  相似文献   

12.
Miura T  Blakely WF 《Cytometry. Part A》2011,79(12):1016-1022
Calyculin A-induced premature chromosome condensation (PCC) assay is a simple and useful method to assess structural and numerical chromosome aberrations in cells. Our hypothesis in this study is that suboptimum calyculin A induction of PCC resulting in fuzzy compactness and/or shortened length chromosomes would decrease the detection sensitivity of numerical and structural chromosome aberrations such as small PCC rings and small excess fragments. In this study, an optimization of calyculin A exposure on chromosome morphology and PCC induction frequency was investigated using a human peripheral blood lymphocyte (PBL) ex vivo irradiation ((60) Co-γ rays; ~0.6 Gy/min; 0-30 Gy) model. Treatment with calyculin A (50 nM) for 15 and 30 min resulted in 11.3 ± 2.7 and 9.9 ± 1.6-fold increases in the frequency of G(2) /M-PCC cells with extended length chromosomes compared with the 60-min treated group over a broad dose range (0 to 20 Gy), respectively. The G(2) /M-PCC scoring index per PCC in 15- and 30-min treated groups was increased by 1.9 ± 0.2 (P = 0.001) and 1.8 ± 0.2 (P = 0.001) compared with the 60-min treated group over 0-20 Gy, respectively. The G(2) /M-PCC efficiency of 30-min treated group was highest in the three conditions (i.e., 15-, 30-, and 60-min treatment) of calyculin A exposure. Calyculin A (50 nM) treatment for 30 min before the 48-h harvest of mitogen-stimulated human PBL is optimum for the formation of suitable chromosome morphology necessary to assess structural chromosome aberrations induced by exposure to radiation using the chemical induced-PCC assay. Published 2011 Wiley Periodicals, Inc.  相似文献   

13.
Hao M  Luo J  Yang M  Zhang L  Yan Z  Yuan Z  Zheng Y  Zhang H  Liu D 《Génome》2011,54(12):959-964
The ph-like genes in the Chinese common wheat landrace Kaixian-luohanmai (KL) induce homoeologous pairing in hybrids with alien species. In the present study, meiotic phenotypic differences on homoeologous chromosome pairing at metaphase I between hybrids of wheat genotypes Chinese Spring ph1b (CSph1b) and KL with rye were studied by genomic in situ hybridization (GISH). The frequency of wheat-wheat associations was higher in CSph1b×rye than in KL×rye. However, frequencies of wheat-rye and rye-rye associations were higher in KL×rye than in CSph1b×rye. These differences may be the result of different mechanisms of control between the ph-like gene(s) controlling homoeologous chromosome pairing in KL and CSph1b. Wheat-wheat associations were much more frequent than wheat-rye pairing in both hybriods. This may be caused by lower overall affinity, or homoeology, between wheat and rye chromosomes than between wheat chromosomes.  相似文献   

14.
The normal course of meiosis depends on regular pairing of homologous chromosomes. In intergeneric hybrids, including those of wheat, there is no chromosome pairing because there are no homologs. In F1 wheat/rye hybrids, pairing is largely prevented by the pairing homoeologous1 (Ph1) gene. In its presence, there are only rare instances of pairing; most chromosomes are univalent, and their orientation at metaphase I initiates different pathways of the meiotic cycle. The meiotic-like pathway includes a combination of the reductional and the equational + reductional steps at AI followed by the second division. The resulting gametes are mostly non-functional. The mitotic-like pathway involves equational division of univalents at AI and the absence of the second division. Any fertility of wheat/rye hybrids depends on the production of unreduced gametes arising from meiotic restitution (mitotic-like division). We examined the meiotic pairing in wheat/rye hybrids created from wheat lines with single rye chromosome substitutions and Ph1 present. This guaranteed F1 meiosis with one pair of rye homologs. All hybrids formed bivalents, but proportions of meiocytes with bivalents varied. In the meiocytes where bivalents were present, there was a higher tendency for the meiotic-like pathway, while in meiocytes where bivalent pairing failed, the tendency was stronger for the mitotic-like pathway. Among the equationally dividing cells, we observed more than 90 % of meiocytes without bivalents, where rye homologs did not form bivalents, too. The data indicate a potential application of wheat/rye lines in producing genetic stocks of amphidiploids with designated genomic constitutions.  相似文献   

15.
Previous studies of Epstein-Barr virus (EBV) replication focused mainly on the viral and cellular factors involved in replication compartment assembly and controlling the cell cycle. However, little is known about how EBV reorganizes nuclear architecture and the chromatin territories. In EBV-positive nasopharyngeal carcinoma NA cells or Akata cells, we noticed that cellular chromatin becomes highly condensed upon EBV reactivation. In searching for the possible mechanisms involved, we found that transient expression of EBV BGLF4 kinase induces unscheduled chromosome condensation, nuclear lamina disassembly, and stress fiber rearrangements, independently of cellular DNA replication and Cdc2 activity. BGLF4 interacts with condensin complexes, the major components in mitotic chromosome assembly, and induces condensin phosphorylation at Cdc2 consensus motifs. BGLF4 also stimulates the decatenation activity of topoisomerase II, suggesting that it may induce chromosome condensation through condensin and topoisomerase II activation. The ability to induce chromosome condensation is conserved in another gammaherpesvirus kinase, murine herpesvirus 68 ORF36. Together, these findings suggest a novel mechanism by which gammaherpesvirus kinases may induce multiple premature mitotic events to provide more extrachromosomal space for viral DNA replication and successful egress of nucleocapsid from the nucleus.  相似文献   

16.
The cross compatibility within and between Yulania Spach and Michelia L.(Magnoliaceae) is relatively good and various such hybrids,obtained by conventional artificial hybridization,are available.The aim of the present study was to determine the extent of genome differentiation between the species involved in these crosses through the observation of chromosome pairing during meiosis in pollen mother cells (PMCs) of the hybrids.Chromosome pairing behavior was studied in five species (2n =38) and two interspecific hybrids of Michelia,eight species (2n =38,76 and 114) and 10 interspecific hybrids of Yulania,and three intergeneric hybrids between Michelia and Yulania.The results showed that chromosome pairing was normal with bivalent formation in diploid parental species and in interspecific hybrids.In addition to bivalents,multivalents were encountered in polyploid parental species and polyploid interspecific hybrids.In the intergeneric hybrids between a tetraploid Yulania and two diploid Michelia,19 chromosomes,most likely originating from Michelia,were unable to synapse from zygotene to metaphase I.Meiotic chromosome pairing indicated a high degree of homology between species within Michelia and Yulania and less homology between the genomes of these two genera.The differentiation of morphological characters and the distinctness of natural distribution also support the conclusion that these two genera are likely independent monophyletic groups.This suggests that the two genera were split at early evolution of Magnoliaceae and the overlapping characteristics in external morphology and internal structures of the two genera may be the result of parallel evolution or ancient common ancestry.  相似文献   

17.
Rye B chromosomes, which are supernumerary chromosomes dispensable for the host but increase in number by non-disjunction after meiosis, have been reported to affect meiotic homoeologous pairing in wheat-rye hybrids. The effect of a rye B chromosome (B) and its segments (B-9 and B-10) on homoeologous pairing was studied in hybrids between common wheat (2n=42) and Aegilops variabilis (2n=28), with reference to the Ph1 gene located on wheat chromosome 5B. The B-9 and B-10 chromosomes are derived from reciprocal translocations between a wheat and the B chromosomes, and the former had the B pericentromeric segment and the latter had the B distal segment. Both the B and B-9 chromosomes suppressed homoeologous pairing when chromosome 5B was absent. On the other hand, the B-9 and B-10 chromosomes promoted homoeologous pairing when 5B was present. On pairing suppression, B-9 had a greater effect in one dose than in two doses, and B-9 had a greater effect than B-10 had in one dose. These results suggested that the effect of the B chromosomes on homoeologous pairing was not confined to a specific region and that the intensity of the effect varied depending on the presence or absence of 5B and also on the segment and dose of the B chromosome. The mean chiasma frequency (10.23) in a hybrid (2n=36) possessing 5B and one B-9 was considerably higher than that (2.78) of a hybrid (2n=35) possessing 5B alone, and was comparable with that (14.09) of a hybrid (2n=34) lacking 5B. This fact suggested that the B chromosome or its segment can be used in introducing alien genes into wheat by inducing homoeologous pairing between wheat and alien chromosome.  相似文献   

18.
We found that the formation of multilayer rosettes by transformed human blood lymphocytes after phytohemagglutinin (PHA) stimulation is correlated with conformational changes of the chromatin as seen by premature chromosome condensation (PCC). The frequency distribution of grades of PCC and multilayer rosette formation suggests that changes in chromatin are a prerequisite for rosette formation. Rosette formation was most pronounced for 24-h and 48-h cultures. Chromatin decondensation and rosette formation showed identical patterns. The possibility that multilayer rosette formation is directly dependent on conformational changes of chromatin is discussed.  相似文献   

19.
The pairing of polytene chromosomes was investigated in Drosophila melanogaster, Drosophila simulans and their hybrids as well as in species of the D. virilis group and in F1 hybrids between the species of this group. The study of frequency and extent of asynapsis revealed non-random distribution along chromosome arms both in interspecific hybrids and pure Drosophila species. It is suggested that definite chromosome regions exhibiting high pairing frequency serve as initiation sites of synapsis in salivary gland chromosomes.  相似文献   

20.
Morphological changes in interphase nuclei were cytologically studied in heterophasic dinucleate cells formed by the fusion of mitotic and interphase plant protoplasts. Mitotic protoplasts were isolated from a partially synchronized suspension culture of wheat (Triticum monococcum). The mitotic cells were accumulated by colchicine after release of hydroxyurea block. Treatment of protoplast populations with polyethylene glycol-dimethyl sulphoxide solution resulted in metaphase-interphase fusion. Three hours after fusion, the appearance of chromosomes with single chromatid as well as of fragmented, pulverized chromatin in heterophasic cells indicated the induction of premature chromosome condensation (PCC) in somatic wheat cells. Condensation in interphase nuclei of mitotically inactive rice protoplasts was also detected after fusion with mitotic wheat protoplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号