首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a new, high-throughput, competition-based tagged-internal standard (TIS) assay to measure the levels of blood proteins in human serum. In this assay, target proteins in the sample serum compete with tagged-internal standard proteins for binding to an antibody array. Antibody arrays are fabricated by immobilizing a target protein-specific antibody on the carboxylate-modified latex bead surface of well-type arrays. A solution of Alexa 546-conjugated target protein is added to a sample of human serum and applied to the well-type antibody array. The array is then analyzed with a fluorescence scanner and the level of unlabeled target protein in the human sera is inferred from the amount of tagged protein bound to the array. We successfully applied this assay to measure the level of C-reactive protein (CRP) in 92 unlabeled human sera. The TIS assay was found to be specific and reproducible for the quantitative analysis of CRP. The antibody array data from the TIS assay correlate well with clinical laboratory data obtained using the commercialized latex-enhanced turbidimetry immunoassay (n=3, r=0.967, CV=0.32%). Thus, the antibody array-based TIS assay system is high-throughput, quantitative, and label-free and may be useful in the rapid serodiagnosis of human disease.  相似文献   

2.
3.
Wang Y 《Proteomics》2004,4(1):20-26
The availability of a large number of biological materials such as cDNA, antibodies, recombinant proteins, and tissues has promoted the development of microarray technologies that make use of these materials in high-throughput screening assays. However, because microarray technologies have been less successful in examining proteins than DNA and mRNA, there is a need for improved protein microarray systems. To address this need, we developed an antibody microarray-based immunostaining method that can analyze the properties of a large number of proteins simultaneously. In this method, antibodies are arrayed and immobilized on a solid support and cells bearing antigens of interest are attached to a second support. Apposition of the two supports allows the antibodies to dissociate from the array support and bind to the cellular antigens. After separation of the supports, antigen-bound antibodies can be detected by standard secondary antibody techniques. These "dissociable" antibody arrays were used to detect both the expression and subcellular localization of a large number of specific proteins in various cultured cell types.  相似文献   

4.
Miyaji T  Hewitt SM  Liotta LA  Star RA 《Proteomics》2002,2(11):1489-1493
DNA microarrays are powerful tools for high throughput analysis of gene expression; however, they do not measure protein expression. Current methods for producing protein arrays require sophisticated equipment or extensive protein modification. We developed a low overhead, customizable assay platform called frozen protein arrays that can detect native proteins in protein lysates. Frozen protein arrays were formed from a block of frozen histologic embedding compound containing an array of wells. The wells were filled with samples, which freeze and bond to the block. Cryosections were cut and transferred to nitrocellulose-coated slides. The reproducibility, linearity, and sensitivity was confirmed using frozen protein arrays filled with prostate specific antigen. Frozen protein arrays could detect native tissue proteins. The alpha1 subunit of NaK-ATPase was detected in rat kidneys with a coefficient of variation of 4.3-6.6%. Frozen protein array analysis indicated that the protein abundance decreased by 48.7% following renal ischemia, similar to the 40% decrease by Western blotting. We conclude that frozen protein arrays are a low cost, moderate size platform for arraying samples including protein lysates. Production of many identical frozen protein arrays is easy, inexpensive, and requires only small sample volumes. The method is gentle on proteins as they remain frozen during production.  相似文献   

5.
Over the recent years, antibodies against surface and conformational proteins involved in neurotransmission have been detected in autoimmune CNS diseases in children and adults. These antibodies have been used to guide diagnosis and treatment. Cell-based assays have improved the detection of antibodies in patient serum. They are based on the surface expression of brain antigens on eukaryotic cells, which are then incubated with diluted patient sera followed by fluorochrome-conjugated secondary antibodies. After washing, secondary antibody binding is then analyzed by flow cytometry. Our group has developed a high-throughput flow cytometry live cell-based assay to reliably detect antibodies against specific neurotransmitter receptors. This flow cytometry method is straight forward, quantitative, efficient, and the use of a high-throughput sampler system allows for large patient cohorts to be easily assayed in a short space of time. Additionally, this cell-based assay can be easily adapted to detect antibodies to many different antigenic targets, both from the central nervous system and periphery. Discovering additional novel antibody biomarkers will enable prompt and accurate diagnosis and improve treatment of immune-mediated disorders.  相似文献   

6.
Development of an internally controlled antibody microarray   总被引:2,自引:0,他引:2  
Antibody microarrays are a high throughput technology used to concurrently screen for protein expression. Most antibody arrays currently used are based on the ELISA sandwich approach that uses two antibodies to screen for the expression of a limited number of proteins. Also because antigen-antibody interactions are concentration-dependent, antibody microarrays need to normalize the amount of antibody that is used. In response to the limitations with the currently existing technology we have developed a single antibody-based microarray where the quantity of antibody spotted is used to standardize the antigen concentration. In addition, this new array utilizes an internally controlled system where one color represents the amount of antibody spotted, and the other color represents the amount of the antigen that is used to quantify the level of protein expression. When compared with median fluorescence intensity alone, normalization for antibody spot intensity decreased variability and lowered the limits of detection. This new antibody array was tested using standard cytokine proteins and also cell lysates obtained from mouse macrophages stimulated in vitro and evaluated for the expression of the cytokine proteins interleukin (IL)-1beta, IL-5, IL-6, and macrophage inflammatory proteins 1alpha and 1beta. The levels of protein expression seen with the antibody microarray was compared with that obtained with Western blot analysis, and the magnitude of protein expression observed was similar with both technologies with the antibody array actually showing a greater degree of sensitivity. In summary, we have developed a new type of antibody microarray to screen for protein expression that utilizes a single antibody and controls for the amount of antibody spotted. This type of array appears at least as sensitive as Western blot analysis, and the technology can be scaled up for high throughput screening for hundreds of proteins in complex biofluids such as blood.  相似文献   

7.

Purpose

Our objective was to develop a system to simultaneously and quantitatively measure the expression levels of the insulin-like growth factor (IGF) family proteins in numerous samples and to apply this approach to profile the IGF family proteins levels in cancer and adjacent tissues from patients with hepatocellular carcinoma (HCC).

Experimental Design

Antibodies against ten IGF family proteins (IGF-1, IGF-1R, IGF-2, IGF-2R, IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-4, IGFBP-6, and Insulin) were immobilized on the surface of a glass slide in an array format to create an IGF signaling antibody array. Tissue lysates prepared from patient''s liver cancer tissues and adjacent tissues were then applied to the arrays. The proteins captured by antibodies on the arrays were then incubated with a cocktail of biotinylated detection antibodies and visualized with a fluorescence detection system. By comparison with standard protein amount, the exact protein concentrations in the samples can be determined. The expression levels of the ten IGF family proteins in 25 pairs of HCC and adjacent tissues were quantitatively measured using this novel antibody array technology. The differential expression levels between cancer tissues and adjacent tissues were statistically analyzed.

Results

A novel IGF signaling antibody array was developed which allows the researcher to simultaneously detect ten proteins involved in IGF signal pathway with high sensitivity and specificity. Using this approach, we found that the levels of IGF-2R and IGFBP-2 in HCC tissues were higher than those in adjacent tissues.

Conclusion

Our IGF signaling antibody array which can detect the expression of ten IGF family members with high sensitivity and specificity will undoubtedly prove a powerful tool for drug and biomarker discovery.  相似文献   

8.
As we transition from genomics to the challenges of the functional proteome, new tools to explore the expression of proteins within tissue are essential. We have developed a method of transferring proteins from a formalin fixed, paraffin embedded tissues section to a stack of membranes which is then probed with antibodies for detection of individual epitopes. This method converts a traditional tissue section into a multiplex platform for expression profiling. A single tissue section can be transferred to up to ten membranes, each of which is probed with different antibodies, and detected with fluorescent secondary antibodies, and quantified by a microarray scanner. Total protein can be determined on each membrane, hence each antibody has its own normalization. This method works with phospho-specific antibodies as well as antibodies that do not readily work well with paraffin embedded tissue. This novel technique enables archival paraffin embedded tissue to be molecularly profiled in a rapid and quantifiable manner, and reduces the tissue microarray to a form of protein array. This method is a new tool for exploration of the vast archive of formalin fixed, paraffin embedded tissue, as well as a tool for translational medicine.  相似文献   

9.
Proteomics aspires to elucidate the functions of all proteins. Protein microarrays provide an important step by enabling high-throughput studies of displayed proteins. However, many functional assays of proteins include untethered intermediates or products, which could frustrate the use of planar arrays at very high densities because of diffusion to neighboring features. The nucleic acid programmable protein array (NAPPA) is a robust in situ synthesis method for producing functional proteins just-in-time, which includes steps with diffusible intermediates. We determined that diffusion of expressed proteins led to cross-binding at neighboring spots at very high densities with reduced interspot spacing. To address this limitation, we have developed an innovative platform using photolithographically etched discrete silicon nanowells and used NAPPA as a test case. This arrested protein diffusion and cross-binding. We present confined high density protein expression and display, as well as functional protein-protein interactions, in 8000 nanowell arrays. This is the highest density of individual proteins in nanovessels demonstrated on a single slide. We further present proof of principle results on ultrahigh density protein arrays capable of up to 24000 nanowells on a single slide.  相似文献   

10.
Yuk JS  Jung SH  Jung JW  Hong DG  Han JA  Kim YM  Ha KS 《Proteomics》2004,4(11):3468-3476
We have investigated whether surface plasmon resonance (SPR) sensors based on the wavelength interrogation are able to analyze protein interactions on protein arrays. The spectral SPR sensor was self-constructed and its detection limit, expressed as the minimal refractive index variation, was calculated to be 6.6x10(-5) with the signal fluctuation of 1.0x10(-5). The protein array surface was modified by a mixed thiol monolayer to immobilize proteins. Protein arrays were analyzed by the line-scanning mode of the SPR sensor, which scanned every 100 microm along the central line of array spots and the scanned results were presented by color spectra from blue to red. Glutathione S-transferase (GST)-rac1 caused a concentration-dependent increase of SPR wavelength shift on protein arrays. The surface structure of the protein arrays was analyzed by atomic force microscopy. Specific interactions of antigens with antibodies were analyzed on the protein arrays by using three antibodies and eight proteins. These results suggest that the wavelength interrogation-based SPR sensor can be used as the biosensor for the high-throughput analysis of protein interactions on protein arrays.  相似文献   

11.
Protein microarray that consists of virulence-associated proteins of Yersinia pestis is used to compare antibody profiles elicited by the wild-type and quorum sensing (QS) mutant strain of this bacterium to define the immunogens that are impacted by QS. The results will lead the way for future functional proteomics studies. The antibody profile that was induced by the QS mutant differed from that of the parent strain. Detailed comparison of the antibody profiles, according to the proteins' functional annotations, showed that QS affects the expression of many virulence-associated proteins of Y. pestis. The antibodies to many virulence-associated proteins were not detected or lower titers of antibodies to many proteins were detected in the sera of rabbits immunized with the QS mutant, relative to those of the wild type, which indicated that these proteins were not expressed or expressed at relatively lower levels in the QS mutant. The results demonstrated that antibody profiling by protein microarrays is a promising high-throughput method for revealing the interactions between pathogens and the host immune system.  相似文献   

12.
The widespread use of DNA microarrays has led to the discovery of many genes whose expression profile may have significant clinical relevance. The translation of this data to the bedside requires that gene expression be validated as protein expression, and that annotated clinical samples be available for correlative and quantitative studies to assess clinical context and usefulness of putative biomarkers. We review two microarray platforms developed to facilitate the clinical validation of candidate biomarkers: tissue microarrays and reverse-phase protein microarrays. Tissue microarrays are arrays of core biopsies obtained from paraffin-embedded tissues, which can be assayed for histologically-specific protein expression by immunohistochemistry. Reverse-phase protein microarrays consist of arrays of cell lysates or, more recently, plasma or serum samples, which can be assayed for protein quantity and for the presence of post-translational modifications such as phosphorylation. Although these platforms are limited by the availability of validated antibodies, both enable the preservation of precious clinical samples as well as experimental standardization in a high-throughput manner proper to microarray technologies. While tissue microarrays are rapidly becoming a mainstay of translational research, reverse-phase protein microarrays require further technical refinements and validation prior to their widespread adoption by research laboratories.  相似文献   

13.
Bertone P  Snyder M 《The FEBS journal》2005,272(21):5400-5411
Numerous innovations in high-throughput protein production and microarray surface technologies have enabled the development of addressable formats for proteins ordered at high spatial density. Protein array implementations have largely focused on antibody arrays for high-throughput protein profiling. However, it is also possible to construct arrays of full-length, functional proteins from a library of expression clones. The advent of protein-based microarrays allows the global observation of biochemical activities on an unprecedented scale, where hundreds or thousands of proteins can be simultaneously screened for protein-protein, protein-nucleic acid, and small molecule interactions. This technology holds great potential for basic molecular biology research, disease marker identification, toxicological response profiling and pharmaceutical target screening.  相似文献   

14.
Cancer is a result of complex changes that occur in normal cells as they transform to become malignant and further when they become metastatic. These changes are not a consequence of a single protein but rather involve multiple proteins that function in pathways and networks. Thus, profiling cancer-associated changes requires simultaneous measurement of many proteins in a single sample. Identifying these changes may lead to the discovery of cancer-associated biomarkers that may assist in diagnosis, prognosis, patient monitoring and possibly for therapeutic purposes. Antibody arrays are a relatively new technology that enables one to perform multiplex high-throughput protein expression profiling. This review describes current technologies in antibody array and assay design, and presents a survey of the current literature on the use of these arrays in cancer research.  相似文献   

15.

Background  

Reverse phase protein arrays (RPPA) emerged as a useful experimental platform to analyze biological samples in a high-throughput format. Different signal detection methods have been described to generate a quantitative readout on RPPA including the use of fluorescently labeled antibodies. Increasing the sensitivity of RPPA approaches is important since many signaling proteins or posttranslational modifications are present at a low level.  相似文献   

16.
Insoluble expression of heterologous proteins in Escherichia coli is a major bottleneck of many structural genomics and high-throughput protein biochemistry projects. Many of these proteins may be amenable to refolding, but their identification is hampered by a lack of high-throughput methods. We have developed a matrix-assisted refolding approach in which correctly folded proteins are distinguished from misfolded proteins by their elution from affinity resin under non-denaturing conditions. Misfolded proteins remain adhered to the resin, presumably via hydrophobic interactions. The assay can be applied to insoluble proteins on an individual basis but is particularly well suited for high-throughput applications because it is rapid, automatable and has no rigorous sample preparation requirements. The efficacy of the screen is demonstrated on small-scale expression samples for 15 proteins. Refolding is then validated by large-scale expressions using SEC and circular dichroism.  相似文献   

17.
For many infectious agents, the detection of antibodies is critical for diagnosing, monitoring and understanding vaccine responses. To facilitate the highly quantitative and simultaneous analysis of antibodies against multiple proteins from infectious agents, we have developed Luciferase Immunoprecipitation Systems (LIPS) arrays. By configuring microtiter plates with multiple antigens and testing control and infected serum samples at one time in solution, LIPS arrays provided highly reproducible antibody titers to panels of antigens with a wide dynamic range of detection. While all serum samples showed similar positive and negative immunoreactivity with internal control antigens derived from Influenza and Renilla luciferase-alone protein, respectively, antibody titers to many HCV and HIV antigens were generally 10 to over 400-fold higher in the infected versus uninfected samples. Additional screening of 18 proteins from the EBV proteome with serum samples from healthy EBV-infected individuals showed statistically significant antibody titers to 50% of the proteins tested. Antibody titers for the different EBV antigens in the healthy EBV-infected individuals were markedly heterogeneous highlighting the complexity of host humoral responses. These results suggest that LIPS arrays offer a highly discriminating platform for simultaneously profiling a wide spectrum of antibodies associated with many infectious agents.  相似文献   

18.
Diagnosis of infectious diseases often requires demonstration of antibodies to the microbe (serology). A large set of antigens, covering viruses, bacteria, fungi and parasites may be needed. Recombinant proteins have a prime role in serological tests. Suspension arrays offer high throughput for simultaneous measurement of many different antibodies. We here describe a rational process for preparation, purification and coupling to beads of recombinant proteins prepared in Escherichia coli derivate Origami B, to be used in a serological Luminex suspension array. All six Gag and Env proteins (p10, p12, p15, p30, gp70 and p15E), from the xenotropic murine leukemia virus-related virus (XMRV), were prepared, allowing the creation of a multiepitope XMRV antibody assay. The procedure is generic and allows production of protein antigens ready for serological testing in a few working days. Instability and aggregation problems were circumvented by expression of viral proteins fused to a carrier protein (thioredoxin A; TrxA), purification via inclusion body formation, urea solubilization, His tag affinity chromatography and direct covalent coupling to microspheres without removal of the elution buffer. The yield of one preparation (2–10 mg fusion protein per 100 ml culture) was enough for 20–100 coupling reactions, sufficing for tests of many tens of thousands of sera. False serological positivity due to antibodies binding to TrxA and to traces of E. coli proteins remaining in the preparation could be reduced by preabsorption of sera with free TrxA and E. coli extract. The recombinant antigens were evaluated using anti-XMRV antibodies. Although hybrid proteins expressed in E. coli in this way will not have the entire tertiary structure and posttranslational modifications of the native proteins, they contain a large subset of the epitopes associated with them. The described strategy is simple, quick, efficient and cheap. It should be applicable for suspension array serology in general.  相似文献   

19.
Reverse-phase protein array (RPPA) is a high-throughput antibody-based targeted proteomics platform that can quantify hundreds of proteins in thousands of samples derived from tissue or cell lysates, serum, plasma, or other body fluids. Protein samples are robotically arrayed as microspots on nitrocellulose-coated glass slides. Each slide is probed with a specific antibody that can detect levels of total protein expression or post-translational modifications, such as phosphorylation as a measure of protein activity. Here we describe workflow protocols and software tools that we have developed and optimized for RPPA in a core facility setting that includes sample preparation, microarray mapping and printing of protein samples, antibody labeling, slide scanning, image analysis, data normalization and quality control, data reporting, statistical analysis, and management of data. Our RPPA platform currently analyzes ∼240 validated antibodies that primarily detect proteins in signaling pathways and cellular processes that are important in cancer biology. This is a robust technology that has proven to be of value for both validation and discovery proteomic research and integration with other omics data sets.  相似文献   

20.
Elements from DNA microarray analysis, such as sample labeling and micro-spotting of capture reagents, have been successfully adapted to multiplex measurements of soluble cytokines. Application in cell biology is hampered by the lack of mono-specific antibodies and the fact that many proteins occur in complexes. Here, we incorporated a principle from Western blotting and resolved protein size as an additional parameter. Proteins from different cellular compartments were labeled and separated by size exclusion chromatography into 20 fractions. All were analyzed with replicate antibody arrays. The elution profiles of all antibody targets were compiled to color maps that resemble Western blots with bands of antibody reactivity across the size separation range (670-10 kDa). A new solid phase designed for processing in microwell plates was developed to handle the large number of samples. Antibodies were bound to protein G-coupled microspheres surface-labeled with 300 combinations of four fluorescent dyes. Fluorescence from particle color codes and the protein label were measured by high-speed flow cytometry. Cytoplasmic protein kinases were detected as bands near predictable elution points. For proteins with atypical elution characteristics or multiple contexts, two or more antibodies were used as internal references of specificity. Membrane proteins eluted near the void volume, and additional bands corresponding to intracellular forms were detected for several targets. Elution profiles of cyclin-dependent kinases (cdks), cyclins, and cyclin-dependent kinase inhibitors, were compatible with their occurrence in complexes that vary with the cell cycle phase and subcellular localization. A two-dimensional platform circumvents the need for mono-specific capture antibodies and extends the utility of antibody array analysis to studies of protein complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号