首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Social stressors evolving from individual and population interactions produce stress reactions in many organisms (including humans), influencing homeostasis, altering the activity of the immunological system, and thus leading to various pathological states including cancer and their progression. The present study sought to validate the effectiveness of chronic unpredictable stress (CUS) in cancer promotion and to assess oxidative stress outcomes in terms of various in vivo biochemical parameters, oxidative stress markers, DNA damage, and the development of skin tumors in Swiss albino mice. Animals were randomized into different groups based on their exposure to CUS alone, 7,12-dimethylbenz(a)anthracene (DMBA) alone (topical), and DMBA-12-O-tetradecanoylphorbol-13-acetate (TPA) (topical) and exposure to CUS prior to DMBA or DMBA-TPA treatments and sacrificed after 16 weeks of treatment. Prior exposure to CUS significantly increased the pro-oxidant effect of carcinogen, depicted by compromised levels of antioxidants in the circulation and skin, accompanied by enhanced lipid peroxidation, plasma corticosterone, and marker enzymes as compared to DMBA-alone or DMBA-TPA treatments. DNA damage results corroborated the above biochemical outcomes. Also, the development of skin tumors (in terms of their incidence, tumor yield, and tumor burden) in mice in the presence and absence of stress further strongly supported our above biochemical measurements. CUS may work as a promoter of carcinogenesis by enhancing the pro-oxidant potential of carcinogens. Further studies may be aimed at the development of interventions for disease prevention by identifying the relations between psychological factors and DNA damage.  相似文献   

2.
Oxidative stress, a pervasive condition induced by stress has been implicated and recognized to be a prominent feature of various pathological states including cancer and their progression. The present study sought to validate the effectiveness of chronic unpredictable stress (CUS) on hepatic and renal toxicity in terms of alterations of various in vivo biochemical parameters, oxidative stress markers and the extent of DNA damage in Swiss albino mice. Animals were randomized into different groups based on their exposure to CUS alone, 7,12-dimethylbenz (a) anthracene (DMBA) alone (topical), DMBA-12-O-tetradecanoylphorbol-13-acetate (TPA) (topical), and exposure to CUS prior to DMBA or DMBA-TPA treatment, and sacrificed after 16 weeks of treatment. Prior exposure to CUS increased the pro-oxidant effect of carcinogen as depicted by significantly compromised levels of antioxidants; superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase, reduced glutathione in hepatic and renal tissues accompanied by a significant elevation of thiobarbituric acid reactive species (TBARS) as compared to DMBA alone or DMBA-TPA treatments. Loss of structural integrity at the cellular level due to stress-induced oxidative damage was demonstrated by significant increases in the hepatic levels of intracellular marker enzymes such as glutamate oxaloacetate transaminase, glutamate pyruvate transaminase and alkaline phosphatase, and significantly reduced levels of uric acid in kidney tissues. The results of DNA damage studies further positively correlated with all the above biochemical measurements. Thus, exposure to physical or psychological stress may significantly enhance the hepatotoxic and nephrotoxic potential of carcinogens through enhanced oxidative stress even if the treatment is topical.  相似文献   

3.
Diabetes patients often show increased production of reactive oxidative species (ROS) together with vascular complications. The presence of these ROS may lead to increased DNA damage in peripheral blood lymphocytes that may be revealed by the comet assay. To test whether DNA is damaged in diabetes, peripheral blood samples were taken from 30 control individuals and 63 diabetic patients (15 insulin dependent (IDDM) and 48 non-insulin dependent (NIDDM)) and the alkaline comet assay was used to evaluate background levels of DNA damage. Significant differences were detected between control and diabetic patients in terms of frequencies of damaged cells. The extend of DNA migration was greater in NIDDM patients by comparison with IDDM patients which might indicate that IDDM patients are handling more oxidative damage on a regular basis. Smoker individuals had higher frequencies of cells with migration by comparison with the non-smokers in both groups. Also, clear differences between patients on placebo and on Vitamin E supplementation for 12 weeks were observed on the basis of the extend of DNA migration during single cell gel electrophoresis.  相似文献   

4.
Diabetes patients often show increased production of reactive oxidative species (ROS) together with vascular complications. The presence of these ROS may lead to increased DNA damage in peripheral blood lymphocytes that may be revealed by the comet assay. To test whether DNA is damaged in diabetes, peripheral blood samples were taken from 30 control individuals and 63 diabetic patients (15 insulin dependent (IDDM) and 48 non-insulin dependent (NIDDM)) and the alkaline comet assay was used to evaluate background levels of DNA damage. Significant differences were detected between control and diabetic patients in terms of frequencies of damaged cells. The extend of DNA migration was greater in NIDDM patients by comparison with IDDM patients which might indicate that IDDM patients are handling more oxidative damage on a regular basis. Smoker individuals had higher frequencies of cells with migration by comparison with the non-smokers in both groups. Also, clear differences between patients on placebo and on Vitamin E supplementation for 12 weeks were observed on the basis of the extend of DNA migration during single cell gel electrophoresis.  相似文献   

5.
Type 2 diabetes mellitus is associated with elevated level of oxidative stress, which is one of the most important factors responsible for the development of chronic complications of this disease. Moreover, it was shown that diabetic patients had increased level of oxidative DNA damage and decreased effectiveness of DNA repair. These changes may be associated with increased risk of cancer in T2DM patients, since DNA damage and DNA repair play a pivotal role in malignant transformation. It was found that gliclazide, an oral hypoglycemic drug with antioxidant properties, diminished DNA damage induced by free radicals. Therefore, the aim of the present study was to evaluate the in vitro impact of gliclazide on: (i) endogenous basal and oxidative DNA damage, (ii) DNA damage induced by hydrogen peroxide and (iii) the efficacy of DNA repair of such damage. DNA damage and DNA repair in peripheral blood lymphocytes of 30 T2DM patients and 30 non-diabetic individuals were evaluated by alkaline single cell electrophoresis (comet) assay. The extent of oxidative DNA damage was assessed by DNA repair enzymes: endonuclease III and formamidopyrimidine-DNA glycosylase. The endogenous basal and oxidative DNA damages were higher in lymphocytes of T2DM patients compared to non-diabetic subjects and gliclazide decreased the level of such damage. The drug significantly decreased the level of DNA damage induced by hydrogen peroxide in both groups. Gliclazide increased the effectiveness of DNA repair in lymphocytes of T2DM patients (93.4% (with gliclazide) vs 79.9% (without gliclazide); P< or =0.001) and non-diabetic subjects (95.1% (with gliclazide) vs 90.5% (without gliclazide); P< or =0.001). These results suggest that gliclazide may protect against the oxidative stress-related chronic diabetes complications, including cancer, by decreasing the level of DNA damage induced by reactive oxygen species.  相似文献   

6.
Since epidemiological studies have firmly implied the co-exposition between iron oxides and polycyclic aromatic hydrocarbons (PAH) as potential etiological factor involved in the excess of mortality by lung cancer in miners, experimental studies have been performed to investigate the role of iron particles on benzo[a]pyrene (B[a]P)-induced lung pathogenesis. In the present study, the alkaline single-cell gel electrophoresis (SCGE; Comet Assay) was used to measure DNA single-strand breaks in four cell types (alveolar macrophages, lung cells, peripheral lymphocytes and hepatocytes) of OFA Sprague-Dawley rats 24h after endotracheal administration of a single dose of an iron oxide (hematite; Fe(2)O(3)) (0.75mg) or B[a]P (0.75mg) or B[a]P (0.75mg) coated onto hematite particles (0.75mg). No damage was observed in cell from the four investigated organs in rats treated with iron oxide alone, while a statistically significant increase in DNA damage was observed compared with control animals in all tested cell types of rats treated with B[a]P alone or in association with hematite. The highest levels of damage were observed in lung cells and peripheral lymphocytes; the levels of damage in alveolar macrophages and hepatocytes were increased, but to a lesser extent compared with the first two cell types.The main finding was to notice a statistically significant increase of the damage in all organs of rats treated with B[a]P coated onto hematite (approximately two-fold increases; P<0.001), versus B[a]P alone. The current study shows that iron particles increase the genotoxic properties of B[a]P in the respiratory tract of endotracheally treated OFA Sprague-Dawley rats. Hence, our data may contribute to explain the excess mortality by lung cancer in epidemiological studies and overall why exposures to B[a]P coated onto Fe(2)O(3) particles resulted in higher toxicity in rodents compared with exposure to B[a]P alone.  相似文献   

7.
Increased production of reactive oxygen species under diabetic condition underlines the higher oxidatively damaged DNA in different tissues. However, it is practically difficult to assess the oxidatively damaged DNA in different internal organs. Therefore, the present study was aimed to evaluate the extent of oxidative stress-induced DNA damage in different organs with the progression of diabetes. Diabetic and control Sprague Dawley rats were sacrificed in time-dependent manner and the lung, liver, heart, aorta, kidney, pancreas and peripheral blood lymphocytes (PBL) were analyzed for both alkaline and modified comet assay with endonuclease-III (Endo III) and formamidopyrimidine-DNA glycosylase (FPG) (hereafter called modified comet assay) for the detection of oxidative DNA damage. The statistically significant increase in olive tail moment (OTM) was found in all the tested tissues. The extent of DNA damage was increased with the progression of diabetes as revealed by the parameter of OTM in alkaline and modified comet assay. Further, the positive correlations were observed between OTM of the lung, liver, heart, aorta, kidney and pancreas with PBL of diabetic rat in the alkaline and modified comet assay. Moreover, significant increase in the 8-oxodG positive nuclei in the lung, liver, heart, aorta, kidney and pancreas was observed in 4th and 8th week diabetic rat as compared to control. Results of the present study clearly indicated the suitability of alkaline and modified comet assay for the detection of multi-organ oxidative DNA damage in streptozotocin (STZ)-induced diabetic rat and showed that damaged DNA of PBL can be used as a suitable biomarker to assess the internal organs response to DNA damage in diabetes.  相似文献   

8.
The present study was designed to determine the modulatory effect of aqueous Azadirachta indica leaf extract (AAILE) on cell cycle–associated proteins during two‐stage skin carcinogenesis in mice. Considering the dual role of reactive oxygen species in cancer and its chemoprevention, the levels of lipid peroxidation (index of peroxidative damage) were also determined. Skin tumours were induced by topical application of 7,12‐dimethylbenz(a)anthracene (DMBA) as a carcinogen followed by the repetitive application of 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA) as a promoter. Skin tumours obtained in the DMBA/TPA group exhibited enhanced expression of proliferating cell nuclear antigen (PCNA, index of proliferation), p21 and cyclin D1, with no alterations in p53 expression in comparison to the control group. Tumours in AAILE + DMBA/TPA group exhibited low PCNA and cyclin D1 expression and enhanced expression of p53 and p21 in comparison to the DMBA/TPA group. The skin tumours obtained in the AAILE + DMBA/TPA group exhibited high lipid peroxidation levels in comparison to the tumours obtained in the DMBA/TPA group. The observations of the present study suggest that AAILE behaves as a pro‐oxidant in the tumours, thereby rendering them susceptible to damage, which eventually culminates into its anti‐neoplastic action. Also, cell cycle regulatory proteins may be modulated by AAILE and could affect the progression of cells through the cell cycle. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The study was aimed to estimate whether rat's exposure to cadmium (Cd; 50 mg/l in drinking water for 12 weeks) and/or ethanol (EtOH; 5 g/kg b.wt./24 h p.o. for 12 weeks), noted by us to induce oxidative stress and stimulate lipid peroxidation, can cause oxidative damage to proteins and DNA, and whether and to what extent the effects of co-exposure differ from those observed under the treatment with each substance alone. Protein carbonyl groups (PC) and protein thiol groups (PSH) in the serum, liver and kidney, as markers of oxidative protein damage, and 8-hydroxy-2′-deoxyguanosine (8-OHdG) in the serum, as a marker of DNA oxidation, were determined. The exposure to Cd or/and EtOH led to oxidative protein damage (increased PC and decreased PSH concentrations in the serum and/or liver), and to DNA oxidation (increased 8-OHdG concentration in the serum). The effects were more advanced at the co-exposure than at the treatment with each substance alone. The more serious damage to proteins and DNA at the co-exposure to Cd and EtOH seems to be the effect of independent action of both xenobiotics. The results of the present paper together with our recent findings in the same rats seem to indicate that at co-exposure to Cd and EtOH proteins and DNA may be more vulnerable to oxidation than lipids. The paper is the first report suggesting that excessive EtOH consumption during exposure to Cd may increase the risk of health damage via enhancing protein and DNA oxidation.  相似文献   

10.
Astaxanthin, a natural and nutritional red carotenoid pigment, is used as a dietary supplement. The intention of the present study was to investigate the beneficial effects of dietary pigment astaxanthin, against cyclophosphamide-induced oxidative stress and DNA damage. The end points of evaluation of the study included: (a) malondialdehyde, glutathione and superoxide dismutase concentration in liver to detect oxidative stress; (b) normal and modified alkaline comet assays (the latter includes lesion-specific enzymes formamidopyrimidine-DNA glycosylase and endonuclease-III) to detect normal and oxidative stress-induced DNA damage by cyclophosphamide in the mouse bone marrow and the peripheral blood lymphocytes. In addition, micronucleus assay and chromosomal aberration test capable of detecting the DNA damage were also carried out in peripheral blood and bone marrow of mice. Cyclophosphamide (100 mg/kg intra-peritoneal) treatment led to significant increase in liver malondialdehyde and decreased the antioxidant enzymes glutathione and superoxide dismutase. Further, cyclophosphamide also significantly increased the DNA damage as observed from normal and modified comet assays as well as micronucleus and chromosomal aberration assay. Pre-treatment with astaxanthin (12.5, 25 and 50 mg/kg/day for 5 days per oral) resulted in the restoration of oxidative stress markers such as malondialdehyde, glutathione and superoxide dismutase in liver. The amelioration of oxidative stress with astaxanthin pre-treatment correlated well with the decreased DNA damage as evident from normal and modified alkaline comet assays of bone marrow cells and peripheral blood lymphocytes. Further astaxanthin pre-treatment also reduced the frequency of chromosomal breakage and micronucleus formation in the mouse bone marrow cells and peripheral blood reticulocytes. It is thus concluded that pre-treatment with astaxanthin attenuates cyclophosphamide-induced oxidative stress and subsequent DNA damage in mice and it can be used as a chemoprotective agent against the toxicity of anticancer drug cyclophosphamide.  相似文献   

11.
Since chromium(III) was demonstrated to have antioxidative action, we have decided to study the effect of this element on V-induced LPO in liver and kidney of rats. Outbred 2-month-old, albino male Wistar rats received daily, for a period of 12 weeks: group I (control), deionized water to drink; group II, sodium metavanadate (SMV) solution at a concentration of 0.100mgV/mL; group III, chromium chloride (CC) solution at a concentration of 0.004mgCr/mL and group IV, SMV-CC solution at a concentration of 0.100mgV and 0.004mgCr/mL. The particular experimental groups took up with drinking water about 8.6mgV/kg b.w./24h (group II), 0.4mgCr/kg b.w./24h (group III), 9mgV and 0.36mgCr/kg b.w./24h (group IV). The V- or Cr-treated groups had higher concentrations of these two elements in liver and kidney compared to the controls. The administration of vanadium alone caused a significant decrease in fluid intake and in body weight gain compared to the controls. In liver supernatants obtained from all tested rats a statistically significant increase in MDA concentration was demonstrated in spontaneous LPO in comparison with the control rats. Moreover, in rats intoxicated with vanadium alone a statistically significant increase in liver MDA level was observed in the presence of 100microM NaVO(3). Instead, in supernatants of liver received from rats treated with chromium alone, a statistically significant increase in MDA concentration in comparison with the controls was found in the presence of 400microM NaVO(3). In kidney supernatants obtained from rats treated with chromium alone, a statistically significant increase in lipid peroxidation was shown in the presence of 30microM FeSO(4) and 400microM NaVO(3). These results show that the tested doses of vanadium(V) and chromium(III) ingested by rats with their drinking water caused significant alterations in internal organs, especially in liver. Under the conditions of our experiment, Cr(III) did not demonstrate antioxidant action, it rather had an oxidant effect.  相似文献   

12.
We evaluated the chemopreventive effects of ethanolic neem leaf extract in the initiation and post-initiation phases of 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis. The frequency of bone marrow micronuclei as well as the concentrations of lipid peroxides, ratio of reduced to oxidized glutathione (GSH/GSSG), and the activities of the GSH-dependent enzymes glutathione peroxidase (GPx) and glutathione-S-transferase (GST) in the buccal pouch, liver and erythrocytes were used as biomarkers of chemoprevention. All the hamsters painted with DMBA alone for 14 weeks developed buccal pouch carcinomas that showed diminished lipid peroxidation and enhanced antioxidant status associated with increased frequencies of bone marrow micronuclei. In the liver and erythrocytes of tumour-bearing animals, enhanced lipid peroxidation was accompanied by compromised antioxidant defences. Administration of ethanolic neem leaf extract effectively suppressed DMBA-induced HBP carcinogenesis as revealed by the absence of tumours in the initiation phase and reduced tumour incidence in the post-initiation phase. In addition, ethanolic neem leaf extract modulated lipid peroxidation and enhanced antioxidant status in the pouch, liver and erythrocytes and reduced the incidence of bone marrow micronuclei. The results of the present study, demonstrate that ethanolic neem leaf extract inhibits the development of DMBA-induced HBP tumours by protecting against oxidative stress.  相似文献   

13.
Streptozotocin (STZ) is an antibiotic which can be used to induce diabetes in experimental animals in order to have an insight into pathogenesis of this disease. To use STZ as a diabetogenic substance, its molecular mode of action should be elucidated. Using the alkaline comet assay, we showed that STZ at concentrations in the range 0.01-100 micromol/L induced DNA damage in normal human lymphocytes and HeLa cancer cells in a dose-dependent manner. Lymphocytes were able to remove damage to their DNA within a 30-min repair incubation, whereas HeLa cells completed the repair in 60 min. Vitamins C and E at 10 and 50 micromol/L diminished the extent of DNA damage induced by 50 micromol/L STZ. Pretreatment of the lymphocytes with the nitrone spin trap, alpha-(4-pyridil-1-oxide)-N-tert-butylnitrone (POBN) or ebselen, which mimics glutathione peroxidase, or pyrrolidine dithiocarbamate (PDTC) reduced the extent of DNA damage evoked by STZ. The cells exposed to STZ and treated with endonuclease III (Endo III), formamidopyrimidine-DNA glycosylase (Fpg) and 3-methyladenine-DNA glycosylase II (AlkA), the enzymes recognizing oxidized and alkylated bases, displayed greater extent of DNA damage than those not treated with these enzymes. These results suggest that free radicals may be involved in the formation of DNA lesions induced by streptozotocin. The drug can also alkylate DNA bases. This broad range of DNA damage induced by STZ indicates that the drug may seriously affect genomic stability in normal and pathological cells.  相似文献   

14.
Loss of TGF-beta dependent growth control during HSC transdifferentiation   总被引:2,自引:0,他引:2  
Liver injury induces activation of hepatic stellate cells (HSCs) comprising expression of receptors, proliferation, and extracellular matrix synthesis triggered by a network of cytokines provided by damaged hepatocytes, activated Kupffer cells and HSCs. While 6 days after bile duct ligation in rats TGF-beta inhibited DNA synthesis in HSCs, it was enhanced after 14 days, indicating a switch from suppression to DNA synthesis stimulation during fibrogenesis. To delineate mechanisms modulating TGF-beta function, we analyzed crosstalk with signaling pathways initiated by cytokines in damaged liver. Lipopolysaccharide and tumor necrosis factor-alpha enhanced proliferation inhibition of TGF-beta, whereas interleukin-6, oncostatin M, interleukin-1alpha, and interleukin-1beta did not. Hepatocyte growth factor (HGF) counteracted TGF-beta dependent inhibition of DNA synthesis in quiescent HSCs. Since expression of c-met is induced during activation of HSCs and HGF is overrepresented in damaged liver, crosstalk of HGF and TGF-beta contributes to loss of TGF-beta dependent inhibition of DNA synthesis in HSCs.  相似文献   

15.
Rothfuss A  Speit G 《Mutation research》2002,508(1-2):157-165
Hyperbaric oxygen (HBO) treatment of cell cultures is a well suited model for studying genetic and cellular consequences of oxidative stress. We have previously shown that exposure of isolated human lymphocytes to HBO induces DNA damage and leads to the development of an adaptive response which protects lymphocytes from oxidative DNA damage induced by a repeated HBO exposure or by treatment with H(2)O(2). Our earlier studies also provided evidence for a functional involvement of the inducible enzyme heme oxygenase-1 (HO-1) in this adaptive protection. In contrast, V79 Chinese hamster cells did neither show a comparable adaptive protection nor an induction of HO-1 after HBO exposure. We now investigated possible mechanism(s) by which HO-1 contributes to an enhanced resistance of lymphocytes against oxidative stress. HO-1 catalyzes the rate-limiting step in heme degradation to form carbon monoxide (CO), biliverdin and free iron. We can now show that supplementation with exogenous CO does not protect V79 cells from HBO-induced oxidative DNA damage suggesting that increased generation of CO cannot account for the observed adaptive protection. On the other hand, HBO-exposed lymphocytes showed a small but reproducible increase in cellular ferritin levels, which might indicate that the underlying protective mechanism is based on an induction of ferritin, which may act antioxidatively by preventing the generation of the DNA-damaging hydroxyl radical via Fenton reaction. Our results further show that isolated lymphocytes also induce HO-1 and develop an adaptive protection when the first HBO exposure does not induce DNA damage, indicating that DNA damage is not the trigger for the development of the adaptive protection.  相似文献   

16.
Glycyrrhetinic acid is an aglycone of glycyrrhizic acid, another major active component of licorice roots. Licorice root extract has been used for a long time as a medicine and a natural sweetening additive. In the present study, we found that glycyrrhetinic acid inhibits 12-O-tetradecanoylphorbol-13-acetate (TPA) mediated oxidative stress and tumor promotion in murine skin. Topical application of TPA alone in mouse skin enhances ornithine decarboxylase activity and also increases [3H]-thymidine incorporation in DNA. Topical application of TPA also resulted in the depletion of glutathione, activities of glutathione metabolizing and antioxidant enzymes. Application of glycyrrhetinic acid prior to TPA treatment reduces this enhanced ODC activity, [3H]-thymidine incorporation in DNA and oxidative stress. Glycyrrhetinic acid was also found to inhibit DMBA/TPA-induced skin tumor formation at doses of 1.25 and 2.5 mg by reducing the number of tumors per mouse by 24% (P < 0.05) and 62% (P < 0.05), respectively. These results suggest that glycyrrhetinic acid, an antioxidant, is a potential chemopreventive agent that can inhibit DMBA/TPA-induced cutaneous oxidative stress and tumor promotion.  相似文献   

17.
Dilek Pandir  Ozlem Kara 《Biologia》2014,69(6):811-816
The aim of this study was to evaluate the chemopreventive effect of bilberry on cisplatin induced oxidative stress and DNA damage in rat blood. Twenty-one female Wistar-Albino rats were divided into three groups: group I — untreated; group II — treated with cisplatin (single dose 7.5 mg/kg b.w.); and group III — treated with cisplatin (single dose 7.5 mg/kg b.w.) and bilberry (200 mg/kg b.w. for 10 days). Antioxidant enzyme systems including superoxide dismutase, catalase, glutathione peroxidase and the level of malondialdehyde (MDA) that might occur on erythrocytes have been determined and single cell gel electrophoresis (comet) was utilized to evaluate the DNA damage in lymphocytes. Treatment with cisplatin has increased the levels of MDA and decreased antioxidant enzymes in erythrocytes. Comet assay showed significantly higher values at dose of 7.5 mg/kg cisplatin as the result of oxidative DNA damage when compared to the control group. Cisplatin treatment with bilberry resulted in a highly significant (P < 0.05) decreased in the lymphocytes DNA when compared to the cisplatin group. Bilberry has been effective on antioxidant enzyme systems and MDA level and significantly decreased the comets. Our results indicate that bilberry is capable of preventing genotoxic and cytotoxic damage caused by cisplatin in peripheral blood cells in rats.  相似文献   

18.
The impact of DNA damage-induced replication blockage for early activation of stress kinases [stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK)] is largely unknown. Here, we show that induction of dual phosphorylation of SAPK/JNK by the DNA polymerase inhibitor aphidicolin was not ameliorated by additional exposure to ultraviolet (UV) light, indicating that overlapping mechanisms participate in signaling to SAPK/JNK triggered by both agents. UV-induced DNA replication blockage, cyclobutane pyrimidine dimer formation and DNA strand break induction coincided with SAPK/JNK phosphorylation at early (≤ 30 min) but not late (≥ 2 h) time points after exposure. Genotoxin-stimulated SAPK/JNK activation was attenuated in nonproliferating cells, indicating that S phase-dependent mechanisms are involved in signaling to SAPK/JNK. Correspondingly, UV-induced phosphorylation of SAPK/JNK was higher in S-phase cells as compared with G1-phase cells. Activation of SAPK/JNK by genotoxins was below detection limit in nonproliferating human peripheral blood lymphocytes, whereas peripheral blood lymphocytes stimulated to proliferation displayed clear SAPK/JNK activation. UV-induced phosphorylation of SAPK/JNK was attenuated in XPC-defective cells, ameliorated in BRCA2 mutated cells and not changed in cells lacking ATM, DNA-PK, CSB, XPA, p53, ERCC1 or PARP as compared with the corresponding wild types. Based on these data, we suggest that DNA replication blockage caused by genotoxin-induced DNA damage contributes to early activation of SAPK/JNK.  相似文献   

19.
The aim of this investigation was to evaluate overall DNA damage induced by experimental paradoxical sleep deprivation (PSD) in estrous-cycling and ovariectomized female rats to examine possible hormonal involvement during DNA damage. Intact rats in different phases of the estrous cycle (proestrus, estrus, and diestrus) or ovariectomized female Wistar rats were subjected to PSD by the single platform technique for 96 h or were maintained for the equivalent period as controls in home-cages. After this period, peripheral blood and tissues (brain, liver, and heart) were collected to evaluate genetic damage using the single cell gel (comet) assay. The results showed that PSD caused extensive genotoxic effects in brain cells, as evident by increased DNA migration rates in rats exposed to PSD for 96 h when compared to negative control. This was observed for all phases of the estrous cycle indistinctly. In ovariectomized rats, PSD also led to DNA damage in brain cells. No significant statistically differences were detected in peripheral blood, the liver or heart for all groups analyzed. In conclusion, our data are consistent with the notion that genetic damage in the form of DNA breakage in brain cells induced by sleep deprivation overrides the effects related to endogenous female sex hormones.  相似文献   

20.
In this report we studied DNA damage and lipid peroxidation in rat liver nuclei incubated with iron ions for up to 2 hrs in order to examine whether nuclear DNA damage was dependent on membrane lipid peroxidation. Lipid peroxidation was measured as thio-barbituric acid-reactive substances (TBARS) and DNA damage was measured as 8-OH-deoxyguanosine (8-OH-dG). We showed that Fe(II) induced nuclear lipid peroxidation dose-dependently but only the highest concentration (1.0 mM) used induced appreciable 8-OH-dG. Fe(II1) up to 1 mM induced minimal lipid peroxidation and negligible amounts of 8-OH-dG. Ascorbic acid enhanced Fe(II)-induced lipid peroxidation at a ratio to Fe(II) of 1:l but strongly inhibited peroxidation at ratios of 2.5:l and 5:l. By contrast, ascorbate markedly enhanced DNA damage at all ratios tested and in a concentration-dependent manner. The nuclear DNA damage induced by 1 niM FeSO4/5 mM ascorbic acid was largely inhibited by iron chelators and by dimethylsulphoxide and manni-tol, indicating the involvement of OH. Hydrogen peroxide and superoxide anions were also involved, as DNA damage was partially inhibited by catalase and, to a lesser extent, by superoxide dismutase. The chain-breaking antioxidants butylated hydroxytoluene and diphenylamine (an alkoxyl radical scavenger) did not inhibit DNA damage. Hence, this study demonstrated that ascorbic acid enhanced Fe(II)-induced DNA base modification which was not dependent on lipid peroxidation in rat liver nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号