首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The Arabidopsis thaliana genome is currently being sequenced, eventually leading towards the unravelling of all potential genes. We wanted to gain more insight into the way this genome might be organized at the ultrastructural level. To this extent we identified matrix attachment regions demarking potential chromatin domains, in a 16 kb region around the plastocyanin gene. The region was cloned and sequenced revealing six genes in addition to the plastocyanin gene. Using an heterologous in vitro nuclear matrix binding assay, to search for evolutionary conserved matrix attachment regions (MARs), we identified three such MARs. These three MARs divide the region into two small chromatin domains of 5 kb, each containing two genes. Comparison of the sequence of the three MARs revealed a degenerated 21 bp sequence that is shared between these MARs and that is not found elsewhere in the region. A similar sequence element is also present in four other MARs of Arabidopsis.Therefore, this sequence may constitute a landmark for the position of MARs in the genome of this plant. In a genomic sequence database of Arabidopsis the 21 bp element is found approximately once every 10 kb. The compactness of the Arabidopsis genome could account for the high incidence of MARs and MRSs we observed.  相似文献   

5.
Matrix Attachment Regions (MARs) are DNA elements that are thought to influence gene expression by anchoring active chromatin domains to the nuclear matrix. When flanking a construct in transgenic plants, MARs could be useful for enhancing transgene expression. Naturally occurring MARs have a number of sequence features and DNA elements in common, and using different subsets of these sequence elements, three independent synthetic MARs were created. Although short, these MARs were able to bind nuclear scaffold preparations with an affinity equal to or greater than naturally occurring plant MARs. One synthetic MAR was extensively tested for its effect on transgene expression, using different MAR orientations, plant promoters, transformation methods and plant species. This MAR was able to increase average transgene expression and produced integration patterns of lower complexity. These data show the potential of making well defined synthetic MARs and using them to improve transgene expression.  相似文献   

6.
S/MAR与基因表达   总被引:3,自引:0,他引:3  
在真核生物的细胞核内,基因组是通过DNA的核骨架附着(SAR)或称核基质附着区(MAR)(简记为S/MAR)锚定在核骨架网状系统上的.S/MAR既有一定的特征,又有多样性,研究认为它参与了DNA复制调控和转录调控等多种核内生化过程,通过重组,在目的基因一侧或两侧带上S/MAR后作基因转染或基因动植物,发现整合后的基因表达有时可增强几倍,甚至上万倍和/或显示位置独立效应,有些研究还报道,S/MAR能  相似文献   

7.
8.
There is abundant evidence that the DNA in eukaryotic cells is organized into loop domains that represent basic structural and functional units of chromatin packaging. To explore the DNA domain organization of the breast cancer loss-of-heterozygosity region on human chromosome 16q22.1, we have identified a significant portion of the scaffold/matrix attachment regions (S/MARs) within this region. Forty independent putative S/MAR elements were assigned within the 16q22.1 locus. More than 90% of these S/MARs are AT rich, with GC contents as low as 27% in 2 cases. Thirty-nine (98%) of the S/MARs are located within genes and 36 (90%) in gene introns, of which 15 are in first introns of different genes. The clear tendency of S/MARs from this region to be located within the introns suggests their regulatory role. The S/MAR resource constructed may contribute to an understanding of how the genes in the region are regulated and of how the structural architecture and functional organization of the DNA are related.  相似文献   

9.
Interstrand cross-links at T(A/T)4A sites in cellular DNA are associated with hypercytotoxicity of an anticancer drug, bizelesin. Here we evaluated whether these lethal effects reflect targeting critical genomic regions. An in silico analysis of human sequences showed that T(A/T)4A motifs are on average scarce and scattered. However, significantly higher local motif densities were identified in distinct minisatellite regions (200-1000 base pairs of approximately 85-100% AT), herein referred to as "AT islands." Experimentally detected bizelesin lesions agree with these in silico predictions. Actual bizelesin adducts clustered within the model AT island naked DNA, whereas motif-poor sequences were only sparsely adducted. In cancer cells, bizelesin produced high levels of lesions (approximately 4.7-7.1 lesions/kilobase pair/microM drug) in several prominent AT islands, compared with markedly lower lesion levels in several motif-poor loci and in bulk cellular DNA (approximately 0.8-1.3 and approximately 0.9 lesions/kilobase pair/microM drug, respectively). The identified AT islands exhibit sequence attributes of matrix attachment regions (MARs), domains that organize DNA loops on the nuclear matrix. The computed "MAR potential" and propensity for supercoiling-induced duplex destabilization (both predictive of strong MARs) correlate with the total number of bizelesin binding sites. Hence, MAR-like AT-rich non-coding domains can be regarded as a novel class of critical targets for anticancer drugs.  相似文献   

10.
The eukaryotic genome is compacted in the form of chromatin within the nucleus. Whether the spatial distribution of the genome is ordered or not has been a longstanding question. Answering this question would enable us to understand nuclear organization and cellular processes more deeply. Here, we applied a modified CRISPR/dCas9 system to label the randomly selected genomic loci in diploid living cells, which were visualized by high-resolution wide-field imaging. To analyze the spatial positions of three pairs of genomic loci, three sets of parameters were progressively measured: i) the linear distance between alleles; ii) the radial distribution of the genomic loci; and iii) the linear distances between three pairs of genomic loci on nonhomologous chromosomes. By accurate labeling, geometric measuring and statistical analysis, we demonstrated that the distribution of these genomic loci in the 3D space of the nucleus is relatively stable in both late G1 and early S phases. Collectively, our data provided visual evidence in live cells, which implies the orderly spatial organization of chromatin in the nucleus. The combination of orderliness and flexibility ensures the methodical and efficient operation of complex life systems. How the nucleus adopts this ordered 3D structure in living cells is thought-provoking.  相似文献   

11.
12.
Recent approaches have failed to detect nucleotide sequence motifs in Scaffold/Matrix Attachment Regions (S/MARs). The lack of any known motifs, together with the confirmation that some S/MARs are not associated to any peculiar sequence, indicates that some structural elements, such as DNA curvature, have a role in chromatin organization and on their efficiency in protein binding. Similar to DNA curvature, S/MARs are located close to promoters, replication origins, and multiple nuclear processes like recombination and breakpoint sites. The chromatin structure in these regulatory regions is important to chromosome organization for accurate regulation of nuclear processes. In this article we review the biological importance of the co-localization between bent DNA sites and S/MARs. Published in Russian in Biokhimiya, 2006, Vol. 71, No. 5, pp. 598–606.  相似文献   

13.
14.
15.
16.
Although a gene's location can greatly influence its expression, genome sequencing has shown that orthologous genes may exist in very different environments in the genomes of closely related species. Four genes in the maize alcohol dehydrogenase (adh1) region represent solitary genes dispersed among large repetitive blocks, whereas the orthologous genes in sorghum are located in a different setting surrounded by low-copy-number DNAs. A specific class of DNA sequences, matrix attachment regions (MARs), was found to be in comparable positions in the two species, often flanking individual genes. If these MARs define structural domains, then the orthologous genes in maize and sorghum should experience similar chromatin environments. In addition, MARs were divided into two groups, based on the competitive affinity of their association with the matrix. The "durable" MARs retained matrix associations at the highest concentrations of competitor DNA. Most of the durable MARs mapped outside genes, defining the borders of putative chromatin loops. The "unstable" MARs lost their association with the matrix under similar competitor conditions and mapped mainly within introns. These results suggest that MARs possess both domain-defining and regulatory roles. Miniature inverted repeat transposable elements (MITEs) often were found on the same fragments as the MARs. Our studies showed that many MITEs can bind to isolated nuclear matrices, suggesting that MITEs may function as MARs in vivo.  相似文献   

17.
Matrix attachment regions are DNA sequences found throughout eukaryotic genomes that are believed to define boundaries interfacing heterochromatin and euchromatin domains, thereby acting as epigenetic regulators. When included in expression vectors, MARs can improve and sustain transgene expression, and a search for more potent novel elements is therefore actively pursued to further improve recombinant protein production. Here we describe the isolation of new MARs from the mouse genome using a modified in silico analysis. One of these MARs was found to be a powerful activator of transgene expression in stable transfections. Interestingly, this MAR also increased GFP and/or immunoglobulin expression from some but not all expression vectors in transient transfections. This effect was attributed to the presence or absence of elements on the vector backbone, providing an explanation for earlier discrepancies as to the ability of this class of elements to affect transgene expression under such conditions.  相似文献   

18.
19.
20.
Scaffold or matrix-attachment regions (S/MARs) are thought to be involved in the organization of eukaryotic chromosomes and in the regulation of several DNA functions. Their characteristics are conserved between plants and humans, and a variety of biological activities have been associated with them. The identification of S/MARs within genomic sequences has proved to be unexpectedly difficult, as they do not appear to have consensus sequences or sequence motifs associated with them. We have shown that S/MARs do share a characteristic structural property, they have a markedly high predicted propensity to undergo strand separation when placed under negative superhelical tension. This result agrees with experimental observations, that S/MARs contain base-unpairing regions (BURs). Here, we perform a quantitative evaluation of the association between the ease of stress-induced DNA duplex destabilization (SIDD) and S/MAR binding activity. We first use synthetic oligomers to investigate how the arrangement of localized unpairing elements within a base-unpairing region affects S/MAR binding. The organizational properties found in this way are applied to the investigation of correlations between specific measures of stress-induced duplex destabilization and the binding properties of naturally occurring S/MARs. For this purpose, we analyze S/MAR and non-S/MAR elements that have been derived from the human genome or from the tobacco genome. We find that S/MARs exhibit long regions of extensive destabilization. Moreover, quantitative measures of the SIDD attributes of these fragments calculated under uniform conditions are found to correlate very highly (r2>0.8) with their experimentally measured S/MAR-binding strengths. These results suggest that duplex destabilization may be involved in the mechanisms by which S/MARs function. They suggest also that SIDD properties may be incorporated into an improved computational strategy to search genomic DNA sequences for sites having the necessary attributes to function as S/MARs, and even to estimate their relative binding strengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号