首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patterns of root cortex cell development and ultrastructurewere analysed in Sagittaria lancifolia L., Thalia geniculataL. and Pontederia cordata L. using scanning and transmissionelectron microscopy (SEM, TEM). In all three species, cortexcells were arranged in radial columns extending from the endodermisto the hypodermis/epidermis. During gas space formation, thecortex cells elongated parallel to the root radius and shrankin the plane perpendicular to the radius leaving long and thinrows of cortex cells extending from the endodermis to the epidermis.Although the cortex cells appeared collapsed in tissue withwell-developed gas spaces, TEM revealed that the cortical cellsas well as the epidermal cells maintained intact membranes andmany normal organelles. Formation of root cortex tissue withwell-developed gas spaces does not require cell death in thesespecies. Living cortex cells in root tissue with mature gasspaces could provide a symplastic pathway for transport betweenthe root stele and the living epidermal cells. Copyright 2000Annals of Botany Company Sagittaria lancifolia, Thalia geniculata, Pontederia cordata, aerenchyma, root, wetland, development  相似文献   

2.
洞庭湖四种优势湿地植物茎、叶通气组织的比较研究   总被引:2,自引:0,他引:2  
对通气组织的解剖观察有助于了解湿地植物的生长、分布及对不同生境的适应。采用石蜡切片技术,在光学显微镜下对洞庭湖湿地沿水位高程梯度分布的4种优势植物——荻Miscanthus sacchariflorus、水蓼Polygonum hydropiper、红穗苔草Carex argyi、虉草Phalaris arundinacea的茎和叶解剖结构进行了比较研究。结果表明:茎通气组织的形成部位主要在皮层、维管束和髓腔,其中髓腔所占比例最大(〉77%)。茎通气组织大小为:水蓼(57.8%)〉红穗苔草(45.5%)≥虉草(41.7%)≥荻(37.8%)。4种湿地植物的叶均在叶肉组织和(或)维管束内形成通气组织,如荻、虉草的形成部位是维管束,水蓼的是叶肉组织,而红穗苔草在叶肉组织和维管束内均可以形成,但以叶肉组织中为主,占99%。红穗苔草叶通气组织最发达,为33.8%,其它3种植物相对不发达,仅为0.13%~1.68%。除虉草外,其它3种植物通气组织大小与其分布位置具有很好的一致性。可见,湿地植物通气组织与其分布有较好的相关性。  相似文献   

3.
Photosynthetic Response of Barley Plants to Soil Flooding   总被引:1,自引:0,他引:1  
Yordanova  R.Y.  Popova  L.P. 《Photosynthetica》2001,39(4):515-520
72 to 120 h of soil flooding of barley plants (Hordeum vulgare L. cv. Alfa) led to a noticeable decrease in the rates of CO2 assimilation and transpiration, and in chlorophyll and dry mass contents. Stomatal conductance decreased following flooding without appreciable changes in the values of intercellular CO2 concentrations. A drop in the activity of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) and of the photorespiratory enzymes phosphoglycollate phosphatase (EC 3.1.3.18) and glycollate oxidase (EC 1.1.3.1) was observed, while the activity of phosphoenolpyruvate carboxylase (EC 4.1.1.31) increased in all flooded plants. Flooding of barley plants caused an increase in proline content and in leaf acidity.  相似文献   

4.
Morphological and anatomical factors such as aerenchyma formation in roots and the development of adventitious roots are considered to be amongst the most important developmental characteristics affecting flooding tolerance. In this study we investigated the lengths of adventitious roots and their capacity to form aerenchyma in three- and four-week-old seedlings of two maize (Zea mays ssp. mays, Linn.) inbred accessions, B64 and Na4, and one teosinte, Z. nicaraguensis Iltis & Benz (Poaceae), with and without a flooding treatment. Three weeks after sowing and following a seven day flooding treatment, both maize and teosinte seedlings formed aerenchyma in the cortex of the adventitious roots of the first three nodes. The degree of aerenchyma formation in the three genotypes increased with a second week of flooding treatment. In drained soil, the two maize accessions failed to form aerenchyma. In Z. nicaraguensis, aerenchyma developed in roots located at the first two nodes three weeks after sowing. In the fourth week, aerenchyma developed in roots of the third node, with a subsequent increase in aerenchyma in the second node roots. In a second experiment, we investigated the capacity of aerenchyma to develop in drained soil. An additional three teosinte species and 15 maize inbred lines, among them a set of flooding-tolerant maize lines, were evaluated. Evaluations indicate that accessions of Z. luxurians (Durieu & Asch. Bird) and two maize inbreds, B55 and Mo20W, form aerenchyma when not flooded. These materials may be useful genetic resources for the development of flooding-tolerant maize accessions.  相似文献   

5.
山东滨海盐生植物根结构及通气组织的比较研究   总被引:7,自引:0,他引:7  
对山东滨海14种盐生植物的根及根中的通气组织进行了解剖不的比较研究。研究表明:除了少数植物的根中产生发达的机械组织,通气组织不发达以外,绝大多数植物的根中都具有发达的通气组织。这些通气组织的胞间隙非常明显,形成多个通气道,特别是一些根状茎,平卧茎发达的植物,如沙滩黄芩(Scutellaria strigillosa Heml.),海边香豌豆(Lathyrus maritimus(L.)Bigel.),肾叶打碗花(Calystegia,soldanella(L.)R.Br.),其通气道较大。胞间隙的发生主要有二种情况;(1)裂生胞间隙;(2)溶生胞间隙,这是大多数胞间隙形成的方式。通气组织大多分布于靠近表皮的皮层和靠近周皮的次生韧怪部中,即位于保护组织的内侧。  相似文献   

6.
The effect of flooding on aerobic and anaerobic respirationas well as on the internal levels of ethanol, lactic, succinicand malic acids were compared in three flood-tolerant and twonon-flood-tolerant species. In the non-flood-tolerant speciesKielmeyera coriacea and Pseudobombax marginatum, which comefrom the ‘ cerrado’ vegetation, there was a uniformityof response with ethanol being the only one of the above productsto accumulate substantially during flooding. In the flood-tolerantspecies, Sebastiana klotzchyana, Hymenaea courbaril var. stilbocarpaand Chorisia speciosa, flooding induced a variety of responseswhich indicate that the tolerant species have evolved differingstrategies to overcome flooding stress.  相似文献   

7.
Abstract: Enhanced development of gas-spaces beyond that due to the partial cell separation normally found in ground parenchymas and their derivatives creates tissue commonly termed "aerenchyma". Aerenchyma can substantially reduce internal impedance to transport of oxygen, nitrogen and various metabolically generated gases such as carbon dioxide and ethylene, especially between roots and shoots. Such transport lessens the risk of asphyxiation under soil flooding or more complete plant submergence, and promotes radial oxygen loss from roots leading to oxidative detoxification of the rhizo-sphere. Aerenchyma can also increase methane loss from waterlogged sediments via plants to the atmosphere. This review of the formation and functioning of aerenchyma particularly emphasises research findings since 1992 and highlights prospects for the future. Regarding formation, attention is drawn to how little is known of the regulation and processes that create schizogenous aerenchyma with its complex cell arrangements and differential cell to cell adhesion. More progress has been made in understanding lysigenous aerenchyma development. The review highlights recent work on the processes that sense oxygen deficiency and ethylene signals, subsequent transduction processes which initiate cell death, and steps in protoplast and wall degeneration that create the intercellular voids. Similarities between the programmed cell death and its causes in animals and the predictable patterns of cell death that create lysigenous aerenchyma are explored. Recent findings concerning function are addressed in terms of the diffusion aeration of roots, rhizosphere oxygenation and sediment biogeochemistry, photosynthesis and ventilation, pressurised gas-flows and greenhouse gas emissions and aspects of ventilation related to secondary thickening.  相似文献   

8.
Cho MJ  Harper JE 《Plant physiology》1991,96(4):1277-1282
It was previously reported that the hypernodulating soybean (Glycine max [L.] Merr.) mutants, derived from the cultivar Williams, had higher root concentration of isoflavonoid compounds (daidzein, genistein, and coumestrol) than did Williams at 9 to 12 days after inoculation with Bradyrhizobium japonicum. These compounds are known inducers of nod genes in B. japonicum and may be involved in subsequent nodule development. The current study involving reciprocal grafts between NOD1-3 (hypernodulating mutant) and Williams showed that root isoflavonoid concentration and content was more than twofold greater when the shoot genotype was NOD1-3. When grafted, NOD1-3 shoots also induced hypernodulation on roots of both Williams and NOD1-3, while Williams shoots induced normal nodulation on both root genotypes. This shoot control of hypernodulation may be causally related to differential root isoflavonoid levels, which are also controlled by the shoot. In contrast, the nonnodulating characteristic of the NN5 mutant was strictly root controlled, based on reciprocal grafts. Delayed inoculation (7 days after planting) resulted in greater nodule numbers on both NOD1-3 and Williams, compared with a seed inoculation treatment. The nodulation pattern of grafted plants was independent of whether the shoot portion was derived from inoculated seed or uninoculated seed, when grafted at day 7 onto seedling roots derived from inoculated seed. This observation, coupled with the fact that no difference existed in nodule number of NOD1-3 and Williams until after 9 days from seed inoculation, indicated that if isoflavonoids play a role in differential nodulation of the hypernodulating mutant and the wild type, the effect is on advanced stages of nodule ontogeny, possibly related to autoregulation, rather than on initial infection stages.  相似文献   

9.
Resprouting ability may increase a plant??s resistance to recurrent disturbances in aquatic ecosystems. We investigated the effect of mechanical disturbances on survival and regrowth patterns in three clonal aquatic species of similar growth form but with different ecological ranges in terms of flooding (Myriophyllum verticillatum, Myriophyllum spicatum and Potamogeton coloratus). P. coloratus prefers to colonize stable habitats, whereas M. verticillatum occurs in intermediately flooded habitats and M. spicatum is tolerant to a high flooding frequency. Two cutting treatments (single cuts or repeated cuts) were applied under controlled conditions. We hypothesized that M. verticillatum and M. spicatum would be resistant to cutting displaying either a tolerant or an escape strategy whereas P. coloratus would be sensitive to cutting. Our hypothesis was validated, as the three species displayed contrasting responses to disturbance. M. verticillatum displayed efficient clonal propagation following breakage (escape strategy), but its growth rate decreased after recurrent disturbances. P. coloratus displayed a close response but was unable to compensate biomass loss even after one cut. M. spicatum maintained a similar growth rate by developing a densely branched form despite recurrent disturbances but with a low investment in clonal growth (tolerance strategy). Both biomass compensation and clonal propagation influence plant fitness, but their relative advantage differs depending on the flooding frequency experienced by plants in their natural habitats. Clonal propagation may promote recolonization after disturbances in infrequently flooded sites, but seems less efficient than a tolerance strategy for survival in frequently flooded sites.  相似文献   

10.
This study characterized the morphological and photosynthetic responses of two wetland plant species when they were subject to 2–6°C fluctuations in growth temperature and ±50% of precipitation, in order to predict the evolution of natural wetlands in Sanjiang Plain of North-eastern China. We investigated the morphological and photosynthetic responses of two dominant and competitive boreal freshwater wetland plants in Northeastern China to manipulation of warming (ambient, +2.0°C, +4.0°C, +6.0°C) and altered precipitation (−50%, ambient, +50%) simultaneously by incubating the plants from seedling to senescence within climate-controlled environmental chambers. Post-harvest, secondary growth of C. angustifolia was observed to explore intergenerational effects. The results indicated that C. angustifolia demonstrated a greater acclimated capacity than G. spiculosa to respond to climate change due to higher resistance to temperature and precipitation manipulations. The accumulated effect on aboveground biomass of post-harvest secondary growth of C. angustifolia was significant. These results explain the expansion of C. angustifolia during last 40 years and indicate the further expansion in natural boreal wetlands under a warmer and wetter future. Stability of the natural surface water table is critical for the conservation and restoration of G. spiculosa populations reacting to encroachment stress from C. angustifolia expansion.  相似文献   

11.
Root hydraulic conductivity has been shown to decrease under phosphorus (P) deficiency. This study Investigated how the formation of aerenchyma is related to this change. Root anatomy, as well as root hydraulic conductivity was studied In maize (Zea mays L.) roots under different phosphorus nutrition conditions. Plant roots under P stress showed enhanced degradation of cortical cells and the aerenchyma formation was associated with their reduced root hydraulic conductivity, supporting our hypothesis that air spaces that form in the cortex of phosphorusstressed roots Impede the radial transport of water in a root cylinder. Further evidence came from the variation In aerenchyma formation due to genotypic differences. Five maize inbred lines with different porosity in their root cortex showed a significant negative correlation with their root hydraulic conductivity. Shoot relative water content was also found lower In P-deficient maize plants than that in P-sufficient ones when such treatment was prolonged enough, suggesting a limitation of water transport due to lowered root hydraulic conductivity of P-deficient plants.  相似文献   

12.
Needles of 20-year-old Scots pine trees (Pinus silvestris L.) were permitted to photoassimilate 14CO2 for 1 h on different dates during the growing season. The loss of radioactivity from current, 1-year-old, and 2-year-old needles was followed, and the translocation of photoassimilated 14CO2 from older needle age-classes to the elongating new needles studied. The effects of good mineral and water supply on translocation were also considered. In the spring, 1-year-old and 2-year-old needles accumulated 14C. These reserves, together with current photosynthate, were utilized when the trees started growing. The 1-year-old needles exported 14C to the current needles during the first weeks of elongation of the later, while no such translocation occurred from the 2-year-old needles. Removal of the 1-year-old needles resulted in translocation of assimilates from the 2-year-old needles to the current needles. The general pattern of translocation observed in the control trees was not changed when the trees were fertilized and irrigated. The new needles started to export assimilates in the middle of July when the photosynthetic rate per needle was comparable with that of the older age-classes. This occurred about 4 weeks after positive net photosynthesis was first measured for the current shoot. The current needles of trees with good nutrient and water supply seemed to become self-sufficient in photoassimilates earlier than the current needles of the control trees.  相似文献   

13.
Increasing evidence supports the existence of variations in the association of plant roots with symbiotic fungi that can improve plant growth and inhibit pathogens. However, it is unclear whether intraspecific variations in the symbiosis exist among plant cultivars and if they can be used to improve crop productivity. In this study, we determined genotype-specific variations in the association of chickpea roots with soil fungal communities and evaluated the effect of root mycota on crop productivity. A 2-year field experiment was conducted in southwestern Saskatchewan, the central zone of the chickpea growing region of the Canadian prairie. The effects of 13 cultivars of chickpea, comprising a wide range of phenotypes and genotypes, were tested on the structure of root-associated fungal communities based on internal transcribed spacer (ITS) and 18S rRNA gene markers using 454 amplicon pyrosequencing. Chickpea cultivar significantly influenced the structure of the root fungal community. The magnitude of the effect varied with the genotypes evaluated, and effects were consistent across years. For example, the roots of CDC Corrine, CDC Cory, and CDC Anna hosted the highest fungal diversity and CDC Alma and CDC Xena the lowest. Fusarium sp. was dominant in chickpea roots but was less abundant in CDC Corrine than the other cultivars. A bioassay showed that certain of these fungal taxa, including Fusarium species, can reduce the productivity of chickpea, whereas Trichoderma harzianum can increase chickpea productivity. The large variation in the profile of chickpea root mycota, which included growth-promoting and -inhibiting species, supports the possibility of improving the productivity of chickpea by improving its root mycota in chickpea genetic improvement programs using traditional breeding techniques.  相似文献   

14.
Root architectural responses to phosphorus (p) availability may be an important trait for P acquisition efficiency. In the present study, The authors examined the effects of P availability on root architectural responses of different common bean genotypes. Five common bean (Phaseolus vulgaris L.) genotypes representing different origins and ecotypic races were compared both in a specially designed paper pouch system and a stratified P buffer sand culture system with computer image analysis. The results showed that root architecture was regulated by P availability. P deficiency led to form a shallower root system, as indicated by increased relative distribution of basal root length in the upper layers and decreased the growth angle of basal roots. There was significant genetic variation in root architecture in response to P deficiency both in the paper pouch system and the stratified sand culture system. Under low P conditions some genotypes were more gravitropically sensitive to low P availability, resulting in producing a shallower root system and enhanced root exploration into the surface soil, where soil available P is more concentrated. G19833 and DOR364, which were most contrasting in P efficiency, were also very different in root architectural response to P availability. The results from this study suggest that P availability regulates root architecture and P deficiency leads to shallower root architecture in beans. The genetic potential of root architecture provides the possibility of selecting this trait for improving P acquisition efficiency in common bean.  相似文献   

15.
The objective of this study was to evaluate the role of enzymeinduction and aerenchyma formation in prolonged tolerance tosoil flooding in a variety of underground clover (Trifoliumsubterraneum ‘Park’) previously selected for resistance.Seedlings were grown in hydroponic tanks, initially with aerationfor 3 weeks and subsequently in the absence of aeration forup to 3 weeks. After 1 h in the absence of aeration, theoxygen concentration in the hydroponic medium had decreasedto 1·5 %. During the 3 weeks of extreme oxygen deficiency,primary roots died and were replaced by considerable numbersof adventitious roots. Activities of many glycolytic and fermentativeenzymes increased in adventitious roots. Excised adventitiousroots were capable of immediate induction of ethanol in theabsence of lactate production, in association with energy chargehigher than that in excised roots of aerobically maintainedcontrols. Energy charge was even higher when measured in adventitiousroots in planta. Interestingly, haemoglobin protein could becorrelated with energy charge. Aerenchyma was readily visualizedin adventitious roots by optical microscopy of longitudinaland transverse sections. We conclude that avoidance of rootanoxia via aerenchyma is the major mechanism for prolonged roottolerance in Trifolium subterraneum ‘Park’.  相似文献   

16.
菜豆根构型对低磷胁迫的适应性变化及基因型差异   总被引:48,自引:0,他引:48  
利用特殊设计的营养袋纸培养和分层式磷控释砂培等根系生长系统结合计算机图像分析技术,以基根根长在生长介质各层的相对分布和基根平均生长角度为指标,定量测定菜豆(Phaseolus vulgaris L.)根构型在低磷胁迫下的适应性变化及其与磷效率的关系。结果表明,菜豆根构型对低磷胁迫具有适应性反应,在缺磷条件下基根向地性减弱,基根在生长介质表层相对分布增多、基根平均生长角度(与水平线夹角)变小,从而导  相似文献   

17.
Variations among Woody Angiosperms in Response to Flooding   总被引:2,自引:0,他引:2  
Effects of flooding on young Populus deltoides, Salix nigra, Eucalyptus camaldulensis, E. globulus, Ulmus americana, Quercus rubra and Fraxinus pennsylvanica plants were studied. Flooding variously induced several sequential physiological disturbances, with stomatal closure among the earliest responses. Subsequent responses included inhibition of root growth, alterations in root and stem morphology, formation of adventitious roots, and leaf senescence. In amphistomatous species (Populus deltoides, Salix nigra, Eucalyptus camaldulensis) flooding rapidly induced stomatal closure on the adaxial leaf surface. It also significantly induced stomatal closure on the abaxial epidermis of Populus deltoides but not that of Salix nigra or Eucalyptus camaldulensis. In hypostomatous species (Eucalyptus globulus, Ulmus americana) flooding significantly induced stomatal closure on the abaxial surface within 3 days. Stomatal responses to flooding were not correlated with leaf water stress. In both long- and short-term experiments, flooding did not significantly increase plant water stress. These results deemphasized the importance of plant water stress in inducing plant responses to flooding. The importance of various hormones in inducing flooding symptoms is discussed.  相似文献   

18.
Multitrophic interactions are likely to be altered by climate change but there is little empirical evidence relating the responses of herbivores and parasitoids to abiotic factors. Here we investigated the effects of drought on an above/below-ground system comprising a generalist and a specialist aphid species (foliar herbivores), their parasitoids, and a dipteran species (root herbivore).We tested the hypotheses that: (1) high levels of drought stress and below-ground herbivory interact to reduce the performance of parasitoids developing in aphids; (2) drought stress and root herbivory change the profile of volatile organic chemicals (VOCs) emitted by the host plant; (3) parasitoids avoid ovipositing in aphids feeding on plants under drought stress and root herbivory. We examined the effect of drought, with and without root herbivory, on the olfactory response of parasitoids (preference), plant volatile emissions, parasitism success (performance), and the effect of drought on root herbivory. Under drought, percentage parasitism of aphids was reduced by about 40–55% compared with well watered plants. There was a significant interaction between drought and root herbivory on the efficacy of the two parasitoid species, drought stress partially reversing the negative effect of root herbivory on percent parasitism. In the absence of drought, root herbivory significantly reduced the performance (e.g. fecundity) of both parasitoid species developing in foliar herbivores. Plant emissions of VOCs were reduced by drought and root herbivores, and in olfactometer experiments parasitoids preferred the odour from well-watered plants compared with other treatments. The present work demonstrates that drought stress can change the outcome of interactions between herbivores feeding above- and below-ground and their parasitoids, mediated by changes in the chemical signals from plants to parasitoids. This provides a new insight into how the structure of terrestrial communities may be affected by drought.  相似文献   

19.
Exposure of barley plants (Hordeum vulgare L.) to soil flooding for 72 – 120 h led to decrease in the content of the both subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase. The effect was more pronounced on the small subunit. Further, the changes in protein pattern were observed, mainly proteins with molecular masses 30 – 85 kD were down-regulated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Temporal changes and spatial variation of soil drainage and understory light availability in 2001 and 2002, small stem (5 ≤ dbh (diameter at breast height) < 10 cm) density, forest successional phase and large stem (dbh ≥ 10 cm) spatial distribution were investigated in 1 ha of tropical swamp forest in southeastern Brazil. Building patches and treefall gaps comprised, respectively, 69.75 and 7.5% of the area in 2002. Semivariograms indicated spatial segregation of successional phases, with mature areas predominating in the North and gaps aggregated into the South. Exclusion of outliers showed large unpredictability of background variation in canopy openness, but patches with high canopy openness values concentrated along the South and East plot borders. Overall canopy openness increased from 2001 to 2002, and was locally autocorrelated between years. In 2001, well-drained and flooded sites comprised 46.75 and 38.19% of the study area, respectively, and were not spatially autocorrelated. In the study period, the number of flooded sites decreased by 40.4%. Canopy openness and small stem density were independent from drainage and were not correlated. Large trees aggregated at scales larger than 40 m, while arborescent palms were aggregated at all scales. Our findings suggest that tropical swamp forests have architectural characteristics similar to that of young, secondary forests and treefall gaps in old-growth forests. Patterns at larger scales pointed to the occurrence of widespread forest degradation, which seems to be particularly advanced in some forest sectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号