首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Human insulin-like growth factor I, IGF-I, was produced in Escherichia coli fused to a synthetic IgG-binding peptide The fusion protein is secreted into the medium during fermentation and was initially purified on an IgG-Sepharose column. After hydroxylamine cleavage, IGF-I was purified to homogeneity. During purification, impurities in the form of modified variants of IGF-I were detected and characterized. The closely related impurities were identified to be a misfolded form of IGF-I, having mismatched disulphide bonds, a form with the single methionine residue in IGF-I oxidized to methionine sulphoxide and a variant in which the methionine residue was substituted by a norleucine residue during protein synthesis. A form proteolytically cleaved between two arginine residue was also detected. These impurities were separated from the major component, native IGF-I, by using reverse-phase h.p.l.c. The modified molecules as well as native IGF-I were characterized both as intact molecules and as fragments, after pepsin digestion, using the techniques of plasma desorption m.s., N-terminal sequencing and amino acid analysis. The oxidized form was 90%, and the norleucine analogue was 70%, as potent as native IGF-I in a biological radioreceptor assay, and the form having mismatched disulphides lacked receptor affinity.  相似文献   

2.
A gene fusion system for generating antibodies against short peptides   总被引:7,自引:0,他引:7  
A novel method to obtain specific antibodies against short peptides is described, involving synthesis of the corresponding oligodeoxynucleotides followed by cloning into a new set of fusion vectors, pEZZ8 and pEZZ18, based on two synthetic IgG-binding domains (ZZ) of Staphylococcus aureus protein A. The soluble gene fusion product thus obtained, can be collected from the culture medium of Escherichia coli and rapidly recovered in a one-step procedure by IgG affinity chromatography. The system was used to express a fusion protein consisting of the two Z fragments and the C-terminal part [amino acids (aa) 57-70] of human insulin-like growth factor I (IGF-I). This 16-kDa protein was purified by affinity chromatography on IgG Sepharose and antibodies were raised in rabbits. The fusion protein elicited peptide-specific antibodies, as measured by solid-phase radioimmuno assay and Western blotting, reactive with both synthetic C-terminal peptide and the native human IGF-I protein. The results suggests that the gene fusion system can be used for efficient antibody production against short peptides encoded by synthetic oligodeoxynucleotides.  相似文献   

3.
We have produced a naturally occurring variant of human insulin-like growth factor I, truncated by three amino acids at the amino terminus. The polypeptide is obtained as a fusion protein in Escherichia coli. The fusion partner is a synthetic IgG-binding peptide. During fermentation the fusion protein is secreted into the medium, and is purified on IgG--Sepharose prior to cleavage. Two different genes for the fusion protein were used, allowing chemical cleavage at either a tryptophan linker or a methionine linker between the fusion partner and the growth factor, using N-chlorosuccinimide (NCS) or cyanogen bromide (CNBr) respectively. A partial CNBr cleavage yielded the native peptide, whereas the NCS cleavage yielded a product in which the single methionine had been oxidized to the sulfoxide. The forms from both cleavage methods exhibited biological activity and were characterized after purification to homogeneity. Both cleavage methods gave products having correct N- and C-terminal ends. The purified product had a biological activity equal to that of corresponding material from natural sources, 15 000 U/mg. Modified forms of truncated IGF-I were also identified, purified and characterized. Modifications such as proteolysis and misincorporation of norleucine for methionine occurred during biosynthesis, while oxidation of methionine took place during both fermentation and chemical cleavage.  相似文献   

4.
Fu YJ  Yin LT  Wang W  Chai BF  Liang AH 《Biotechnology letters》2005,27(20):1597-1603
A gene, rBmK Cta, encoding a chlorotoxin-like peptide from the scorpion, Buthus martensii Karsch, was synthesized according to the sequence optimized for codon usage in Escherichia coli and was expressed in E.␣coli BL21 (DE3) using a pExSecI expression system in which the IgG-binding domain-ZZ of protein A is fused to the N-terminal of rBmK CTa. The fusion protein, ZZ-rBmK CTa, was expressed in soluble form (7.8 mg l−1) and was purified to give a single band on SDS-PAGE. The domain-ZZ of fusion protein ZZ-rBmK CTa was removed by cleavage of an Asn–Gly peptide bond with hydroxylamine. The rBmK CTa was separated from the IgG-binding moiety by a second passage through the IgG affinity column. Western blot analysis demonstrated that this protein was rBmK CTa. Acute toxicity assay in mice demonstrated that the rBmK CTa had an LD50 value of 4.3 mg kg−1.  相似文献   

5.
Genetic approaches have been used to facilitate purification of recombinant proteins, on both a large and a small scale. Based on developments in three different areas: (i) affinity chromatography; (ii) specific cleavage of fusion proteins and (iii) secretion of fusion proteins, a coupled expression/secretion system was designed. It was further improved by protein engineering. Using a synthetic DNA fragment, encoding two IgG-binding domains derived from staphylococcal protein A, gene products were secreted to the culture medium of Escherichia coli and purified with a one-step affinity procedure. The system has been used for large-scale production of biologically active human peptide hormones, to generate peptides for antibody production and to immobilize proteins on solid supports.  相似文献   

6.
A novel approach for production of small polypeptides, using a staphylococcal protein A vector, is described. This system is used to express, secrete and purify human insulin-like growth factor I (IGF-I). A fusion protein consisting of protein A and IGF-I is recovered in high yield by passing the culture medium through an IgG affinity column. Using site-specific mutagenesis an acid labile asp-pro cleavage site was introduced at the fusion point between the two proteins. The protein A "tail" can thereby be removed from the affinity purified fusion protein by chemical cleavage releasing biologically active IGF-I molecules.  相似文献   

7.
Various methods have been investigated for the isolation and purification of fusion proteins of precursors of human insulin in the form of S-sulfonates, from the biomass of transformed Escherichia coli cells. Fusion proteins were prepared with different sizes and structures of the leader peptide and the poly-His position (inserted for purification by metal chelate affinity chromatography). The fusion proteins contained an IgG-binding B domain of protein A from Staphylococcus aureus at the N-terminus and an Arg residue between the leader peptide of the molecule and the proinsulin sequence, for trypsin cleavage of the leader peptide. Six residues of Cys in proinsulin allow the chemical modification of the protein as a (Cys-S-SO(-)(3))(6) derivative (S-sulfonate), which increases its polyelectrolytic properties and improves the efficiency of its isolation. Various methods of oxidative sulfitolysis were compared with catalysis by sodium tetrathionate or cystine and Cu2+ or Ni2+ ions. An optimum scheme for the isolation and purification of S-sulfonated fusion proteins was developed by the combination of metal-chelating affinity and ion-exchange chromatography. Highly purified (95%) S-sulfonated fusion protein was recovered which was 85% of the fusion protein contained in the biomass of E. coli cells. Folding of fusion protein S-sulfonate occurred with high yield (up to 90-95%). We found that the fusion protein-S-sulfonate has proinsulin-like secondary structure.This structure causes highly efficient fusion protein folding.  相似文献   

8.
A novel protein able to bind with high affinity to the Fc fragment of IgG from a variety of animals has been produced by a gene synthesis approach. The IgG binding is accomplished by the presence of a single or two consecutive domains based upon domain B from protein A of Staphylococcus aureus. The IgG-binding moiety is fused to a peptide containing 21, 53 or 81 amino acids derived from the N-terminus of bovine DNase I. The latter is present to guide the expression of the protein in Escherichia coli into an inclusion body. This facilitates the high expression and recovery of the IgG-binding domains. The binding activity of this fusion protein is very close to that of the native protein A. Site-directed mutagenesis of the fusion protein and subsequent identification of changed binding interactions is reported.  相似文献   

9.
The application of gene fusion technology for the production of heterologous proteins in Escherichia coli has required the development of specific cleavage methods to separate the coexpressed fusion protein partner from the protein of interest. When hydroxylamine is used to cleave Asn-Gly fusion protein linkages, undesirable chemical modification of asparagine and glutamine amino acids can also occur. In this study, hydroxylamine cleavage conditions were modified to minimize unwanted chemical heterogeneity that occurred during the cleavage of the fusion protein [Met(1)]-pGH(1-11)-Val-Asn-IGF-I (Long-IGF-I). The cleavage reaction was shown to be dependent on the hydroxylamine concentration, temperature, and pH. Optimal cleavage conditions were identified that resulted in very low levels of chemical heterogeneity, but under these mild conditions that cleavage of the labile Asn-Gly bond was reduced. Therefore, the reaction was further modified to improve the yield of IGF-I while minimizing chemical heterogeneity. The yield of unmodified IGF-I was improved from less than 25% to greater than 70%. Analysis of the heterogeneity produced using the modified cleavage technique showed that Asn(26) was converted to a hydroxamate. This variant was characterized in refolding and biological assays where it was equivalent to IGF-I. To further assess the effectiveness of the modified cleavage technique and to evaluate the potential for process scale-up, a gram-scale cleavage reaction of Long-IGF-I was carried out. The process yielded IGF-I with a low level of chemical heterogeneity that was easily removed by ion-exchange chromatography. Moreover, this work shows that the production of unmodified IGFs using hydroxylamine cleavage of fusion proteins is facilitated using the mild cleavage reaction. (c) 1996 John Wiley & Sons, Inc.  相似文献   

10.
万一  訾静  张琨  张志敏  张月娟  王琰  王军 《生物工程学报》2012,28(12):1500-1510
筛选一种高效重组金黄色葡萄球菌蛋白A(SpA)用于制备抗体纯化亲和介质。首先通过基因操作获得金黄色葡萄球菌蛋白A(SpA)的Z结构域单体、二串体、三串体、四串体和五串体基因,将目的基因分别克隆至pET-22b表达载体并转化至大肠杆菌BL21(DE3)感受态细胞,获得不同串联个数的Z结构域基因工程菌,经诱导表达和Ni2+亲和层析纯化得到Z结构域单体和二-五串体蛋白。纯化后的目的蛋白偶联至琼脂糖凝胶作为亲和层析介质,对人免疫球蛋白G(IgG)进行分离纯化。分析比较Z结构域串联体蛋白产量及其偶联的亲和介质对抗体吸附载量的差异。结果表明,构建的Z结构域单体、二串体、三串体、四串体和五串体基因工程菌能有效表达目的蛋白,制备的凝胶亲和介质可特异性吸附人IgG。增加Z结构域串联数,重组蛋白产量和单位摩尔数多聚体蛋白吸附载量获得提高,其中,重组四串体蛋白产量大(160 mg/10 g湿菌体),对抗体的吸附载量高(34.4 mg人IgG/mL胶),更适合作为配基用于亲和层析介质的制备。  相似文献   

11.
A gene coding for one of the IgG-binding domains of Staphylococcal protein A, designated domain B, was chemically synthesized. This gene was tandemly repeated to give dimeric and tetrameric domain B genes by the use of two restriction enzymes which gave blunt ends. The genes were highly expressed in Escherichia coli to afford a large amount of dimeric and tetrameric domain B proteins. The single domain B protein was efficiently produced as a fusion protein with a salmon growth hormone fragment. The fusion protein was converted to monomeric domain B by cyanogen bromide cleavage. The CD spectra of the monomeric, dimeric and tetrameric domain B proteins were essentially the same as that of native form protein A, showing that their secondary structures were very similar. The dimeric and tetrameric domain B proteins formed precipitates with IgG as protein A. This system permits the efficient production of mutated single and multiple IgG-binding domains which can be used to study structural changes and protein A-immunoglobulin interactions.  相似文献   

12.
A novel gene fusion system to express and purify small recombinant proteins in Escherichia coli has been constructed. The concept allows for affinity purification of soluble gene products by sequential albumin- and Zn2(+)-affinity chromatography. The dual-affinity system is well suited for expression of unstable proteins as only full-length protein is obtained after purification and proteins gain proteolytic stability in the fusion protein. Here we show that the dual-affinity approach can be used for the expression of various unstable derivatives of a single IgG-binding domain based on staphylococcal protein A. Analysis of the proteolytic stabilities and the IgG-binding properties of the different mutant proteins suggest that the model for the structure of an IgG-binding domain must be re-evaluated.  相似文献   

13.
重组类胰岛素样生长因子-Ⅰ的纯化与复性   总被引:3,自引:0,他引:3  
目的 获得高纯度和高活性的胰岛素样生长因子(Insulin-like growth factor, IGF-1);方法 构建好的BL21大肠杆菌工程菌经IPTG诱导,以融合一段截短型半乳糖苷酶及His-tag形式表达IGF-1融合蛋白(约15,000Da),超声破碎,提取包涵体经镍柱亲和层析后, 用羟氨切割纯化的融合蛋白,纯化后的蛋白质在小分子保护剂及GSH/GSSG的存在下复性。结果 经Ni2+柱亲和层析, IGF-1纯度达90%以上,复性后得到有较高生物活性的IGF-1。结论 IGF-1发酵及纯化和复性方法的建立为大量生产IGF-1打下了基础。  相似文献   

14.
An antimicrobial peptide, piscidin, was overexpressed as a fused form with the ubiquitin molecule in Escherichia coli, and the fusion protein was purified using immobilized metal affinity chromatography (IMAC). The peptide was released from its fusion partner by using yeast ubiquitin hydrolase (YUH), and subsequently purified by reverse phase chromatography. The expression and purification process of piscidin encountered several problems such as the lysis of the bacterial cell upon induction of the peptide production, the unwanted cleavage of the fusion protein inside the bacterial cell, and high tendency to aggregate in the aqueous environment. Such problems were alleviated by employing ubiquitin as a fusion partner for piscidin, growing the cells at a lower temperature, and changing the order of the purification steps. The yields of the fusion protein and the peptide were around 15 and 1.5 mg per liter of LB or minimal medium, respectively. The recombinant expression and purification of piscidin will enable its structural and dynamic studies using multidimensional NMR spectroscopy.  相似文献   

15.
Human insulin-like growth factor II (IGF-II) was produced in an Escherichia coli ompT strain as a 22.5-kDa fusion protein. IGF-II was fused to the carboxy-terminal of a synthetic 15-kDa IgG-binding protein, originating from staphylococcal protein A, via a unique methionine linker. During fermentation, the fusion protein was exported to the growth medium at levels exceeding 900 mg/liter and subsequently affinity purified on IgG Sepharose followed by ion exchange on S Sepharose. After chemical cleavage with CNBr, yielding an authentic IGF-II molecule, the recombinant IGF-II was purified to homogeneity by a two step procedure involving ion-exchange and reverse-phase HPLC. A substantial fraction of the secreted protein was found to be biologically active, eliminating the need for complex refolding procedures. The yield of highly purified and biologically active IGF-II was 5-7 mg/liter of fermenter broth. The IGF-II produced by this method displayed biochemical, immunological, receptor binding, and biological activity properties equal to those of native IGF-II isolated from human serum.  相似文献   

16.
Streptococcal protein G. Gene structure and protein binding properties   总被引:7,自引:0,他引:7  
Protein G was solubilized from 31 human group C and G streptococcal strains with the muralytic enzyme mutanolysin. As judged by the mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the binding patterns of the solubilized protein G molecules in Western blot experiments, the strains could be divided into three groups, represented by the group G streptococcal strains G148 and G43 and the group C streptococcal strain C40. The 65-kDa G148 protein G and the 58-kDa C40 protein G showed affinity for both immunoglobulin G (IgG) and human serum albumin (HSA), whereas the 40-kDa G43 protein G bound only IgG. Despite the different molecular patterns, the three protein G species had identical NH2-terminal amino acid sequences. Apart from the 65-kDa peptide, digestion of G148 streptococci with mutanolysin also produced a 52-kDa IgG- and HSA-binding peptide and a 14-kDa HSA-binding peptide. It was demonstrated that these peptides resulted from cleavage of 65-kDa protein G by proteolytic components in the mutanolysin preparation. The protein G genes of the C40 and G43 strains were cloned and sequenced, and their structure was compared to the previously published sequence of the G148 protein G gene. As compared to G148, both the C40 and G43 genes lacked a 210-base pair fragment in the IgG-binding region, accounting for the 10-fold lower affinity of these proteins for IgG. The G43 gene also lacked a 450-base pair fragment in the 5'-end of the gene, explaining why the G43 protein G did not bind HSA. The differences in protein G structure did not correlate with the clinical origin of the strains used in this study. The IgG-binding region of protein G was further mapped. Thus, a peptide corresponding to a single IgG-binding unit was obtained by the cloning and expression of a 303-base pair polymerase chain reaction-generated DNA fragment. The affinity of this 11.5-kDa peptide for human IgG was 8.0 x 10(7) M-1, as determined by Scatchard plots. Finally, a 55-amino acid-long synthetic peptide, corresponding to one of the three repeated domains in the COOH-terminal half of strain G148 protein G, effectively blocked binding of protein G to IgG.  相似文献   

17.
Protein splicing elements (inteins), capable of catalyzing controllable peptide bond cleavage reactions, have been used to separate recombinant proteins from affinity tags during affinity purification. Since the inteins eliminate the use of a protease in the recovery process, the intein-mediated purification system has the potential to significantly reduce recovery costs for the industrial production of recombinant proteins. Thus far, the intein system has only been examined and utilized for expression and purification of recombinant proteins at the laboratory scale for cells cultivated at low cell densities. In this study, protein splicing and in vitro cleavage of intein fusion proteins expressed in high-cell-density fed-batch fermentations of recombinant Escherichia coli were examined. Three model intein fusion constructs were used to examine the stability and splicing/cleavage activities of the fusion proteins produced under high-cell-density conditions. The data indicated that the intein fusion protein containing the wild-type intein catalyzed efficient in vivo protein splicing during high-cell-density cultivation. Also, the intein fusion proteins containing modified inteins catalyzed efficient thiol-induced in vitro cleavage reactions. The results of this study demonstrated the potential feasibility of using the intein-mediated protein purification system for industrial-scale production of recombinant proteins.  相似文献   

18.
Many recombinant proteins are synthesized as fusion proteins containing affinity tags to aid in the downstream processing. After purification, the affinity tag is often removed by using a site-specific protease such as factor Xa (FXa). However, the use of FXa is limited by its expense and availability from plasma. To develop a recombinant source of FXa, we have expressed two novel forms of FXa using baby hamster kidney (BHK) cells as host and the expression vector pNUT. The chimeric protein FIIFX consisted of the prepropeptide and the Gla domain of prothrombin linked to the activation peptide and protease region of FXa, together with a cellulose-binding domain (CBD(Cex)) as an affinity tag. A second variant consisted of the transferrin signal peptide linked to the second epidermal growth factor-like domain and the catalytic domain of FX and a polyhistidine tag. Both FX variants were secreted into the medium, their affinity tags were functional, and following activation, both retained FXa-specific proteolytic activity. However, the yield of the FIIFX-CBD(Cex) fusion protein was 10-fold higher than that of FX-CBD(Cex) and other forms of recombinant FX reported to date. The FXa derivatives were used to cleave two different fusion proteins, including a biologically inactive alpha-factor-hirudin fusion protein secreted by Saccharomyces cerevisiae. After cleavage, the released hirudin demonstrated biological activity in a thrombin inhibition assay, suggesting that this method may be applicable to the production of toxic or unstable proteins. The availability of novel FX derivatives linked to different affinity tags allows the development of a versatile system for processing fusion proteins in vitro.  相似文献   

19.
20.
Addition of an N-terminal fusion partner can greatly aid the expression and purification of a recombinant protein in Escherichia coli. We investigated two genetically engineered proteases designed to remove the fusion partner after the protein of interest has been expressed. Recombinant human insulin-like growth factor-II (hIGF-II) has been produced from E. coli-derived fusion proteins using a novel enzymatic cleavage system that uses a mutant of alpha-lytic protease. Initially, two potential fusion protein linkers were designed, Pro-Ala-Pro-His (PAPH) and Pro-Ala-Pro-Met (PAPM), and were tested as substrates in the form of synthetic dodecapeptides. Using mass spectrometry and reverse-phase HPLC, the position of cleavage was confirmed and the kinetics of synthetic peptide cleavage were examined. Use of the linkers in hIGF-II fusion proteins produced in E. coli was then evaluated. The fusion proteins constructed consist of the first 11 amino acids of porcine growth hormone linked N-terminally to hIGF-II by six amino acids that include the dipeptide Val-Asn followed by a variable tetrapeptide protease cleavage motif. Mass spectrometry and N-terminal sequencing confirmed that proteolytic cleavage of the fusion proteins had occurred at the predicted sites. Using the fusion proteins as substrates, the cleavage of the rationally designed motifs by the alpha-lytic protease mutant was compared. The fusion protein containing the motif PAPM had a k(cat)/K(M) ratio indicating a 1.6-fold preference over the PAPH fusion protein for cleavage by this enzyme. Furthermore, when hIGF-II fusion proteins containing the designed cleavable linkers were processed with the engineered alpha-lytic protease, they gave greatly improved yields of native hIGF-II compared to an analogous fusion protein cleaved by H64A subtilisin. Comparison of the peptide and protein cleavage studies shows that the efficient proteolysis of the cleavage motifs is an inherent property of the designed sequences and is not determined by secondary or tertiary structure in the fusion proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号