首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Performance of young Phragmites australis plants was examined after 7 weeks on an artificial nutrient-enriched inorganic substrate and on the same substrate to which an organic sediment from a eutrophic lake was added, at three different water depth treatments. Growth decreased, and proportional allocation of biomass to roots increased, with the addition of sediment. These differences were significant in shallow and deep water, but not at a medium depth. Concentrations of phosphorus and nitrogen in plant biomass decreased, and concentration of iron increased, with addition of sediment.The effects of sediment addition may have resulted from a decreased availability of nutrients in the substrate or from an impaired root functioning. Nutrient exhaustion in the substrate, due to a fast plant growth, can explain the relatively strong effects in shallow water. Deep water, on the other hand, probably restricted oxygen transport to the roots, resulting in an impaired root functioning in the low-redox sediment environment. The results show that, especially in relatively deep water, growth of undisturbed plants of P. australis may be inhibited by eutrophication of sediments, probably because of an impaired root functioning in sediments containing reduced toxic compounds (e.g. ferrous iron).  相似文献   

2.
Human activities have resulted in arsenic (As) and heavy metals accumulation in paddy soils in China. Phytoremediation has been suggested as an effective and low-cost method to clean up contaminated soils. A combined soil-sand pot experiment was conducted to investigate the influence of red mud (RM) supply on iron plaque formation and As and heavy metal accumulation in two wetland plant species (Cyperus alternifolius Rottb., Echinodorus amazonicus Rataj), using As and heavy metals polluted paddy soil combined with three rates of RM application (0, 2%, 5%). The results showed that RM supply significantly decreased As and heavy metals accumulation in shoots of the two plants due to the decrease of As and heavy metal availability and the enhancement of the formation of iron plaque on the root surface and in the rhizosphere. Both wetland plants supplied with RM tended to have more Fe plaque, higher As and heavy metals on roots and in their rhizospheres, and were more tolerant of As and heavy metal toxicity. The results suggest that RM-induced enhancement of the formation of iron plaque on the root surface and in the rhizosphere of wetland plants may be significant for remediation of soils contaminated with As and heavy metals.  相似文献   

3.
Despite the fact that iron plaque formation is ubiquitous in aquatic macrophytes and has been known for several decades, there are few reports of plaque occurrence in seagrasses to date. Herein we present the first microscopical observation and chemical quantification of iron (Fe) plaques on the shoots, rhizomes and roots of the seagrass Cymodocea serrulata (R. Brown) Ascherson collected from intertidal seagrass beds in Thailand. Plaques were observed on shoot bases, rhizomes and roots with the highest concentrations of iron in the plaques from the roots, reaching an average of 509 μmol gDW−1. Interestingly, the most negative stable sulphur isotope (δ34S) values, indicating H2S intrusion into the plants occurred in the sampling site with the most intense root oxidizing capacity, as indicated by a greater Fe plaque formation. These apparently contradictory findings may be attributed to oxidizing capacity of root tips and root hairs sufficient to promote Fe(III) deposition in the rhizosphere, preceding deposition of plaques on the roots. While this rhizosphere oxidation may result in a more efficient sulphide detoxification during the day photosynthetic phase, root tips and hairs may serve as vulnerable sites for sulphide intrusion at night. The presence of Fe plaque on C. serrulata roots and rhizomes reveals the complexity of seagrass–sediment interactions and deserves further attention to understand if this is a local phenomenon or a newly discovered adaptive mechanism in seagrasses.  相似文献   

4.
Chen RF  Shen RF  Gu P  Dong XY  DU CW  Ma JF 《Annals of botany》2006,98(2):389-395
BACKGROUND AND AIMS: Rice (Oryza sativa) is an aquatic plant with a characteristic of forming iron plaque on its root surfaces. It is considered to be the most Al-tolerant species among the cereal crops. The objective of this study was to determine the effects of root surface iron plaque on Al translocation, accumulation and the change of physiological responses under Al stress in rice in the presence of iron plaque. METHODS: The japonica variety rice, Koshihikari, was used in this study and was grown hydroponically in a growth chamber. Iron plaque was induced by exposing the rice roots to 30 mg L(-1) ferrous iron either as Fe(II)-EDTA in nutrient solution (6 d, Method I) or as FeSO(4) in water solution (12 h, Method II). Organic acid in root exudates was retained in the anion-exchange resin and eluted with 2 m HCl, then analysed by high-performance liquid chromatography (HPLC) after proper pre-treatment. Fe and Al in iron plaque were extracted with DCB (dithionite-citrate-bicarbonate) solution. KEY RESULTS AND CONCLUSIONS: Both methods (I and II) could induce the formation of iron plaque on rice root surfaces. The amounts of DCB-extractable Fe and Al on root surfaces were much higher in the presence of iron plaque than in the absence of iron plaque. Al contents in root tips were significantly decreased with iron plaque; translocation of Al from roots to shoots was significantly reduced with iron plaque. Al-induced secretion of citrate was observed and iron plaque could greatly depress this citrate secretion. These results suggested that iron plaque on rice root surfaces can be a sink to sequester Al onto the root surfaces and Fe ions can pre-saturate Al-binding sites in root tips, which protects the rice root tips from suffering Al stress to a certain extent.  相似文献   

5.
Summary Plants ofAgrostis gigantea Roth collected from Cu/Ni tailings near Copper Cliff, Ontario, were contaminated by substrate particles, and also on roots by an iron hydroxide plaque. Three washing treatments were compared on shoots and six on roots, prior to analysis for Cu, Ni and Fe. K content was compared to detect leaching. For both shoots and roots, rinsing with de-ionized water was as effective as Extran-300 or ultrasound. These three treatments caused no measured leaching from shoots. DCB removed iron plaque from roots; hot or cold EDTA removed some plaque. All treatments caused leaching of K from roots.  相似文献   

6.
  • Cadmium (Cd) contamination occurs in paddy soils; hence it is necessary to reduce Cd content of rice. Application and mode of action of ferrous sulphate in minimizing Cd in rice was monitored in the present study.
  • Pot culture with Indian rice variety Swarna (MTU 7029) was maintained in Cd‐spiked soil containing ferrous sulphates, which is expected to reduce Cd accumulation in rice. Responses in rhizosphere pH, root surface, metal accumulation in plant and molecular physiological processes were monitored.
  • Iron plaque was induced on root surfaces after FeSO4 application and the amount of Fe in plaque reduced with increases in Cd in the soil. Rhizosphere pH decreased during plaque formation and became more acidic due to secretion of organic acids from the roots under Cd treatment. Moreover, iron chelate reductase activity increased with Cd treatment, but in the absence of Cd, activity of this enzyme increased in plaque‐induced plants. Cd treatment caused expression of OsYSL18, whereas OsYSL15 was expressed only in roots without iron plaque. Fe content of plants increased during plaque formation, which protected plants from Cd‐induced Fe deficiency and metal toxicity. This was corroborated with increased biomass, chlorophyll content and quantum efficiency of photo‐synthesis among plaque‐induced plants.
  • We conclude that ferrous sulphate‐induced iron plaque prevents Cd accumulation and Fe deficiency in rice. Iron released from plaque via organic acid mediated dissolution during Cd stress.
  相似文献   

7.
为了探究种间竞争对香蒲(Typha domingensis)与芦苇(Phragmites australis)生长的影响,利用根系分隔盆栽试验研究了3种不同分隔方式条件下香蒲与芦苇的种间竞争特性,包括塑料膜分隔(根系完全分隔,无相互作用,无物质交换)、尼龙网分隔(根系部分分隔,无相互作用,有物质交换)和不分隔(根系完全相互作用,有物质交换),分析了香蒲与芦苇根系形态和地上部生长的变化,探究香蒲与芦苇种间竞争的差异。结果发现(1)在尼龙网分隔和不分隔处理中芦苇具有明显的劣势。与塑料膜分隔处理相比,芦苇的总生物量、植株密度在尼龙网分隔和不分隔处理中分别减少了39.14%、49.41%和82.08%、79.22%,总根长、总根表面积、总根体积分别减少了40.53%、44.84%、62.52%和85.7%、82.45%、89.67%,且均具有极显著差异(P<0.01);根系分隔方式也影响芦苇的株高、茎粗和叶片数,表现为不分隔 > 塑料膜分隔 > 尼龙网分隔。(2)与塑料膜分隔处理相比,香蒲总生物量在尼龙网分隔和不分隔中虽有增加,但差异不显著,植株密度和株高在尼龙网分隔和不分隔处理中都有增加且具有显著差异(P<0.05),其总根长、总根表面积、总根体积在尼龙网分隔中分别增加了57.93%、26.5%、8.04%,但在不分隔处理中分别减少了11.57%、14.92%、11.39%(P<0.05),虽然根系的相互作用对香蒲根系的生长具有促进作用,但植物种间根系相互作用越强,对两者的生长越不利。(3)在不同的分隔方式中,芦苇与香蒲间也存在明显变化。在不分隔处理中,香蒲的生物量和植株密度是芦苇的1.7倍和6.74倍,与塑料膜分隔处理相比增加了6倍,表明芦苇与香蒲根系的完全相互作用,显著削减了芦苇的繁殖生长,增加了香蒲的根系分蘖。(4)通过种间相互作用强度(RII值)分析也表明,尼龙网分隔和不分隔处理下芦苇表现为抑制作用(RII值为负值),香蒲表现为促进作用(RII值为正值)。香蒲与芦苇互作对芦苇具有抑制作用,说明种间相互作用是能改变植物的适应性和植物群落的繁殖,同时也表明植物根系不仅在吸收土壤中的水和养分中起着关键作用,在种间关系中也起着重要作用。因此利用种间竞争控制植物生长,可以为保护生物多样性和生态系统的功能提供有效的技术支撑。  相似文献   

8.
Five three- to four-year old created palustrine/emergent wetland sites were compared with five nearby natural wetlands of comparable size and type. Hydrologic, soil and vegetation data were compiled over a nearly two-year period (1988-90). Created sites, which were located along major highways, exhibited more open water, greater water depth, and greater fluctuation in water depth than natural wetlands. Typical wetland soils exhibiting mottling and organic accumulation were wanting in created sites as compared with natural sites. Typha latifolia (common cattail) was the characteristic emergent vegetation at created sites, whereas a more diverse mosaic of emergent wetland species was often associated with Typha at the natural sites. Species richness was slightly higher in created (22–45) vs. natural (20–39) wetlands, but the mean difference (33 vs. 30) was not significant. Nearly half (44%) of the 54 wetland taxa found at the various study sites were more frequently recorded at created than natural wetlands. The presence of mycorrhizae in roots of Typha angustifolia (narrow-leaved cattail) and Phragmites australis (common reed) was greater at created than natural wetlands, which may be related to differential nutrient availability. Wildlife use at all sites ranged from occasional to rare, with more sightings of different species in the natural (39) than created (29) wetlands. The presence of P. australis and introduced Lythrum salicaria (purple loosestrife) may pose a threat to future species richness at the created sites. One created site has permanent flow-through hydrology, and its vegetation and wildlife somewhat mimic a natural wetland; however, the presence of P. australis and its potential spread pose an uncertain future for this site. This study suggests the possibility of creating small palustrine/emergent wetlands having certain functions associated with natural wetlands, such as flood water storage, sediment accretion and wildlife habitat. It is premature to evaluate fully the outcome of these wetland creation efforts. A decade or more is needed, emphasizing the importance of long term monitoring and the need to establish demonstration areas.  相似文献   

9.
Both solution culture and pot experiments were performed to investigate (a) the effects of external Fe (II) concentrations and forms on the formation of iron plaque on the roots of rice (Oryza sativa) and subsequent P adsorption on iron plaque and shoot P concentrations and (b) the effects of soil moisture regimes on the formation of iron plaque and P adsorption on root surfaces and P accumulation in shoots. The results showed that iron plaque was significantly increased with increasing Fe2+ concentrations in the solution culture. The amounts of P adsorbed on the iron plaque were increased significantly with external Fe2+ concentrations. Although shoot P concentration was not significantly affected by Fe2+ treatment after incubation for 2 days, it was significantly increased in the Fe‐treated plants compared with Fe‐deprived ones after incubation for 4 days. Soil culture experiment showed that the formation of iron plaque on root surfaces was promoted by exogenous iron, with greater amount of iron plaque being formed by addition of ferric hydroxide than of ferric oxide. Phosphorus adsorption on iron plaque also increased with the addition of iron oxides, and increasing soil P increased the amounts of P associated with the iron plaque and shoot P concentration. The amounts of iron plaque were almost sixfold higher under flooding condition than under field capacity condition. Plants pretreated under flooding condition generally had higher shoot P concentrations when they were transplanted to solutions with varying P levels, and this was most pronounced in the treatment with highest solution P concentration. The results suggest that iron plaque acts as a nutrient reservoir for phosphorus in the rhizosphere and helps enhance P acquisition by rice.  相似文献   

10.
Remediation of AMD Contaminated Soil by Two Types of Reeds   总被引:1,自引:0,他引:1  
Acid mine drainage (AMD) adversely impacts many regions in the world. The interactions among citric acid (CA), rhizosphere bacteria and metal uptake in different types of Phragmites australis cultured in spiked AMD contaminated soil were investigated. Compared with non-contaminated reeds cultured under the same conditions, wild reeds harvested from a contaminated site accumulated more metals into tissues. Rhizosphere iron oxidizing bacteria (Fe(II)OB) enhanced the development of Fe plaque but had no significant impact on the formation of Mn and Al plaque on the root surface of either reeds. Plaque may restrain the accumulation of Fe and Mn into tissues of reeds. CA inhibited the growth of Fe(II)OB, reduced the formation of metal plaque and significantly elevated metal accumulations into both underground and aboveground biomass of reeds. The concentrations of Fe, Al and Mn were higher in belowground organs than aboveground tissues. The roots contained 0.28 ± 0.01 mg/g Mn, 3.09 ± 0.51 mg/g Al, 94.47 ± 5.75 mg/g Fe, while the stems accumulated 0.19 ± 0.01 mg/g Mn, 1.34 ± 0.02 mg/g Al, 10.32 ± 0.60 mg/g Fe in wild reeds cultured in soil added with 33,616 ppm CA. Further field investigations may be required to study the effect of CA to enhance phytoremediation of metals from real AMD contaminated sites.  相似文献   

11.
We have investigated the extent of iron oxyhydroxide deposition on the roots of two common freshwater species, Vallisneria americana Michx. and Heteranthera dubia (Jacq.) MacM., collected from different sites in the St. Lawrence River, Québec, Canada, and have related metal concentrations in the root plaques both to the geochemical conditions prevailing in the host sediments (pH; metal partitioning) and to the metal concentrations within the plant root tissue. Possible effects of root plaque on sediment geochemistry are also discussed.At those sites where the two submerged plants co-existed, the amounts of Fe deposited on their respective root surfaces were positively correlated, indicating that sediment geochemistry (pH; concentration of labile metal) exerted a more important influence on plaque formation than did inter-species differences (root physiology, morphology). Iron and Mn concentrations in the root plaque were positively correlated with each other, and with the readily extractable fractions (F1, 172) of these metals in the adjacent sediments. In contrast, Zn concentrations in the root plaque of V. americana were not related to Zn concentrations in the sediments — the dominant geochemical process at the root surface is Fe deposition, such that the quantities of Zn deposited on the roots are determined not by Zn geochemistry per se but rather by the amount of Fe deposition. Indeed the Zn/Fe ratios in the root plaque were related to the Zn/Fe ratios in the surrounding sediments (NH2OHHCl extract).On a concentration basis (g/g), more Fe, Mn and Zn was found outside the root, in the iron plaque, than inside the root tissues. For all 3 metals, significant relationships were observed between the metal concentrations in the plaque and those inside the roots. For Zn, however, the best statistical relationship was not with [Zn]plaque, but rather with the [Zn]/[Fe] ratio in the plaque. It is hypothesized that the Zn/Fe ratio in the root plaque reflects the free Zn2+ concentration adjacent to the root surface, and that this in turn affects Zn uptake by the plant root. For a given value of Zn in the sediments or in the root plaque, the Zn content of the root is inversely related to the concentration of Fe oxyhydroxides, implying that Fe plays a protective role in regulating Zn bioavailability.  相似文献   

12.
The physico-chemical properties of iron oxyhydroxide plaquesformed on the roots of Phragmites australis under field andlaboratory conditions were determined using electron microscopyand energy dispersive spectrometry (EDS) analysis. Plaques werepresent as an amorphous coating on roots with an uneven distribution.They were shown to be composed of iron in both the field andlaboratory, and phosphorus was found to be adsorbed onto thesurface of plaques formed in the laboratory. The uptake of copperand manganese in the presence and absence of plaque was investigatedunder two different pH regimes. Concentrations of Cu were lowerin the shoots of P. australis in the presence of plaque (565mg kg-1) than when it was absent (1400 mg kg-1), under growthconditions of higher pH (6.0). The adsorption of Cu and Mn ontothe plaque surface was not the mechanism by which plaque reducedthe uptake of other metals. Alternatively, the plaque may simplyact as a physical barrier. Under conditions of lower pH (3.5)the activity of hydrogen ions at the root surface interferedwith the movement of metals into the root and masked any potentialeffect of iron plaque. Copyright 2000 Annals of Botany Company Phragmites australis, iron oxyhydroxide plaque, pH, manganese, copper, EDS, SEM, wetlands  相似文献   

13.
A pot experiment was conducted to investigate the effect of iron plaque on Pb uptake by and translocation in Carex cinerascens Kukenth. grown under open-air conditions. Using Scanning Electron Microscopy and Energy Dispersive X-Ray Spectrometry, iron plaque was present as an amorphous coating on root surfaces with uneven distribution. The amount of iron plaque increased significantly with increasing Fe additions regardless of Pb additions. The presence of iron plaque on the root surface of Carex cinerascens Kukenth. increased the concentrations of Pb adsorbed by iron plaque. The Pb percentage in whole roots increased by 14.52% at 500 mg kg?1 Fe treatment than at 0 mg kg?1 Fe, and the distribution coefficient (DC) of Pb and translocation factor (TF) root increased with Fe additions, but translocation factor (TF) shoot decreased with Fe additions. The results suggested that iron plaque could promote the translocation of Pb from soil to roots to some extent, and it played a role to reduce heavy metals pollution of Poyang Lake wetland.  相似文献   

14.
赵睿  卜红梅  宋献方 《生态学报》2021,41(6):2439-2450
在再生水补水河道内,芦苇(Phragmites australis)受高氮再生水的长期影响,具有独特的碳(C)、氮(N)化学计量特征。为查明芦苇C、N化学计量特征及其对高氮环境的响应,在芦苇生长季节(5、7、9月份),分析了再生水补水的潮白河顺义段内河水、土壤及芦苇各器官(根、茎和叶)中C、N含量及碳氮比(C/N)。结果表明:河水中C、N含量和C/N比分别在22.20-37.25 mg/L、2.24-11.20 mg/L和3.33-9.92之间。土壤中C、N含量和C/N比的范围为5.69-35.17、0.28-2.63、8.77-25.39。在整个生长季节的所有采样点内,芦苇根、茎和叶中C含量的平均值分别为(170.84±63.56)、(369.02±39.12)、(431.80±96.70) mg/g;N含量的平均值分别为(8.20±3.96)、(14.11±6.22)和(30.73±8.66) mg/g;C/N比的平均值分别为23.89±12.84、32.65±18.48、15.21±5.60。方差分析表明,芦苇各器官中C、N计量特征具有显著的季节性差异(P<0.05),这主要与芦苇在生长过程中的生理作用有关。环境中C、N计量特征具有显著的空间差异(P<0.05),受环境变量的影响,芦苇叶中N含量和C/N比从上游到下游显著降低(P<0.05)。逐步回归分析的结果显示,土壤和河水中的C、N含量能够解释芦苇叶中71.0%的变量(P<0.05);土壤中C、N含量和河水中N含量能够解释芦苇叶C/N比82.6%的变量(P<0.05)。相关分析指出,河水中N含量与土壤中N含量显著正相关(P<0.05),说明土壤受到高氮再生水的影响而具有较强的供N能力。高氮环境下,芦苇叶中N含量较高;相较于芦苇茎和叶,根中C含量较小。研究证明在再生水补水河道中,芦苇对环境中的N有良好的吸收能力,其C、N计量特征对高氮环境表现出明显的响应。  相似文献   

15.
以长期淹水环境下能生长更新的河竹为材料,调查测定了人工喷灌供水(CK)、淹水6个月(TR)的河竹一年生竹鞭的根生物量和主要养分元素含量,分析长期淹水对河竹鞭根养分化学计量特征的影响,为河竹在水湿地和消落带植被恢复中的应用提供理论依据。结果显示:(1)与CK相比,TR处理下的河竹土中根的N、P、Mg和Ca含量显著降低,Fe含量显著升高,且N、K和Ca含量显著低于TR处理下水中根的含量,而Fe含量显著高于水中根。(2)TR处理的河竹土中根的C/N、C/P、C/K和P/K较CK显著升高,且C/K、N/K和P/K显著高于TR处理的水中根。(3)TR处理的河竹水中根的C-N、C-P、N-P均呈极显著正相关关系,土中根的C-P、C-K、P-K均呈极显著正相关关系;CK河竹土中根的C-P、C-K呈极显著正相关关系,且N-P显著相关;从相关系数看,TR处理下土中根的C-N、N-P和N-K相关性减弱,C-P、C-K和P-K相关性增强,而C-N、C-P、N-P和N-K相关性较水中根减弱,C-K和P-K相关性较水中根增强。(4)TR处理下鞭根生物量和C、N、P、K、Mg、Ca积累量较CK分别显著降低19.46%、42.04%、36.55%、41.39%、60.06%和38.46%,而Fe积累量显著升高,为CK的5.5倍;TR处理下土中根养分积累量显著高于水中根。研究表明,长期淹水虽阻碍了河竹鞭根的养分平衡吸收,但能够提高养分利用效率,并且土中根和水中根具有克隆分工特征,水中根主要起到氧气吸收应对缺氧环境胁迫的功能,是河竹适应长期淹水环境的重要生态对策。  相似文献   

16.
焦亮  刘雪蕊  王圣杰  董小刚 《生态学报》2019,39(14):5317-5325
空间拓展是克隆植物响应环境的生态适应和权衡维度,以内陆盐沼湿地典型代表敦煌阳关国家级自然保护区内的芦苇(Phragmites australis)为研究对象,基于水库距离远近和芦苇种群的密度与盖度,设置了近水区(500 m)、过渡区(1500 m)、荒漠区(2500 m)3个不同的采样梯度,研究了环境异质条件下芦苇克隆构件空间拓展策略及其对土壤环境因子的响应。结果表明:(1)芦苇克隆构件在异质环境条件下差异显著,初级根茎条数、根茎节间长、间隔子长、分枝角度呈现"同增同涨"的协同进化关系(P0.01),而与分株数呈现"此消彼长"的权衡关系(P0.01)。(2)且随着种群的密度降低,芦苇在空间拓展过程中呈现从"密集型"转"游击型"的生存策略。(3)冗余分析显示土壤水分、pH值、盐分是克隆构件空间拓展的主要驱动力,其中各层土壤水分、深层土壤pH值和盐分是芦苇空间拓展最重要的环境因子。明晰内陆河湿地芦苇克隆构件空间拓展策略及主要的环境驱动力,能为干旱脆弱敏感区湿地保护和生态恢复提供借鉴意义。  相似文献   

17.
Root and soil water distribution was studied in a mature drip-irrigated apricot (Prunus armeniaca L. cv. Búlida) orchard with different soil tillage practices, in a loamy textured soil with a 7% slope, located in Murcia (SE Spain). Three treatments were applied between tree rows:control (no-tillage), whereby, following the common practice in the area, weeds were cut back to ground level by a blade attached to a tractor; perforated treatment, where the soil surface was mechanically perforated with an adapted-plough; and mini-catchment treatment, consisting of mini-catchments with low banks manually raised perpendicular to the line of emitters. Almost all of the apricot root system was located in the first 0.75 m of soil depth, with 91% in the first 0.50 m. More than 75% of the roots corresponded to thin roots, with a diameter less than 0.2 mm. Both tillage treatments decreased runoff compared with the control treatment, while the mini-catchment treatment showed the highest change in soil water content after rainfall events. The mini-catchment treatment was performed in an attempt to reduce the rainwater running down the slope, leaving the accumulated water near plant roots, an effect which was responsible for the higher root length density (RLD) values found in this treatment. In addition, roots were distributed over a wider area, providing higher RLD values up to 1 m from the emitter, meaning that a higher soil volume was explored. For these reasons, the mini-catchment treatment was seen to be the most beneficial soil tillage treatment for optimising water use in semiarid conditions.  相似文献   

18.
生物炭能改良土壤从而促进植物生长和氮素吸收,但其作用效果是否受水氮条件的影响尚不清楚。以湿地植物芦苇为研究对象,在3种氮添加水平(无添加,30 kg hm-2 a-1和60 kg hm-2 a-1)和两种水分(淹水和非淹水)条件下分别进行生物炭添加和不添加处理,结果表明:(1)生物炭添加能促进芦苇根系生长,在非淹水条件下根系生物量增加了40.5%,在淹水条件下根系生物量增加了20.1%。(2)生物炭添加能促进非淹水条件下芦苇的氮素吸收,能提高淹水条件下芦苇的氮素生产力。(3)生物炭添加加剧了土壤氮素损失,且在非淹水高氮条件下作用最强,可能是由于生物炭促进了芦苇的氮素吸收。芦苇氮素吸收速率与土壤氮损失之间存在显著的正相关关系。因此,在添加生物炭时,需要考虑土壤水分状况和氮素富集程度以及植物的氮素吸收偏好。该研究结果可为生物炭在湿地生态系统中的应用提供参考。  相似文献   

19.
The effect of root surface iron plaque formation on the uptake, transfer and accumulation of La and Nd in the rice root system was evaluated by using solution cultures. The results showed that La and Nd pollution stress inhibit formation of rice root surface iron plaques. The amount of La and Nd absorbed by the rice root surface iron plaque rose with the increase of La and Nd solution concentrations. Iron plaque formation on the rice root surface significantly decreases the La and Nd concentrations in rice roots and shoots. At growth solution La concentrations of 0.1, 0.5, and 1.0 mmol.L? 1, concentrations of La in rice roots with induced iron plaques decreased by 17.1%, 37.4%, and 31.2%, respectively, and concentrations of La in rice shoots decreased by 43.9%, 60.6%, and 27.0%, respectively, when compared to plants with non-induced iron plaques. Also, with Nd solution concentrations of 0.1, 0.5, and 1.0 mmol.L? 1, the Nd concentrations in rice roots and shoots of plants with induced iron plaques decreased by 21.0–31.7% and 22.7–47.5%, respectively when compared to plants with non-induced iron plaques. Iron plaque formation on the rice root surface affects the accumulation and transfer of La and Nd in rice roots. Accumulation of La and Nd was greater in rice roots than in rice shoots regardless of whether the plants had induced or non-induced iron plaques. Transfer coefficients of iron plague on rice root surface and root system under La treatments were both higher than those under Nd treatment. For rice roots and iron plaques on the root surface, the enrichment coefficient in the La treatment group was less than that in the Nd treatment group, while for rice shoots, the enrichment coefficient in the La treatment group was greater than that in the Nd treatment group. Clearly, the mechanisms governing the effect of iron plaque on La and Nd uptake and transfer in the rice root system are rather complicated.  相似文献   

20.
采用剖面法对宽窄行栽植模式下三倍体毛白杨(triploid Populus tomentosa)的根系分布特征进行了研究;采用管式TDR系统对土壤剖面含水率变化动态进行了连续观测,并据此计算林木根系吸水速率,以探讨土壤含水率、根系分布和根系吸水分布之间的相关关系。研究结果表明:毛白杨的总平均根长密度在林带两侧和不同径向距离处非常接近(P>0.05);但在不同土层间变化很大(P<0.01),其中0-20和60-150 cm土层为根系主要分布区域,其根系所占比例共达86%;不同径阶间的根长密度差异显著(P<0.01),且其比例关系会随空间位置的改变而发生变化。不同栽植方位下,林带东侧毛白杨根系分布的浅层化程度高于西侧,且在径向240-280 cm内其0-0.5 mm的极细根显著多于西侧(P<0.05)。因此,宽窄行栽植模式下,深度和径阶是毛白杨根系分布的主要影响因子,而栽植方位会对其形态构型产生影响。毛白杨根系吸水模式受细根分布的影响,但会随土壤剖面水分有效性分布的变化而变化:当表土层水分有效性增加时,根系吸水主要集中在表土层;当表土层水分有效性降低时,深层土壤根系的吸水贡献率会逐渐增加;当土壤剖面水分条件异质性较高时,根系吸水主要集中在根系密度与水分有效性均较高的区域;当土壤剖面水分分布均匀且不存在水分胁迫时,根系吸水分布与细根分布最为一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号