共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Recombinant stearoyl-acyl carrier protein desaturase (EC 1.14.99.6) from castor seed has been crystallized with polyethylene glycol 8000 as precipitant. The crystals are orthorhombic, space group P2(1)2(1)2(1) with cell dimensions a = 81.3, b = 146.4 and c = 197.7 A. The observed diffraction pattern extends to at least 2.5 A resolution. Rotation function calculations indicate a non-crystallographic 3-fold rotation axis parallel to the crystallographic a-axis. Perpendicular to this axis, 2-fold rotation axes were found at 30 degrees intervals, i.e. maxima at kappa = 180 degrees, phi = 90 degrees and omega = 30 degrees and 60 degrees, respectively. Together with the packing density of the crystals (Vm = 2.4 A3/Da for n = 6), these results suggest, that the crystal asymmetric unit most likely contains a hexamer of desaturase subunits. 相似文献
5.
Positional isomers of mono-unsaturated 18:1-ACP have been used as substrates for stearoyl-acyl carrier protein delta9 desaturase to test whether a C-H bond abstraction from either the C-9 or C-10 position could lead to rearranged products diagnostic for the production of an allylic radical intermediate. The reconstituted enzyme complex was able to desaturate trans-delta11-18:1-ACP and trans-delta7-18:1-ACP, but not trans-delta9-18:1-ACP, or any of the corresponding cis-isomers. Enzymatic desaturation of trans-delta11-18:1-ACP gave a single product, cis-delta9,trans-delta11-18:2-ACP, as characterized by gas chromatography-electron ionization mass spectrometry of the molecular ions, the fragmentation products of pyrrolidide and 4,4-dimethyloxazoline derivatives, and by comparison of chromatographic retention times with authentic standards. Reaction of trans-delta7-18:1-ACP gave two enzymic products, trans-delta7,cis-delta9-18:2 (approximately 80%) and trans-delta7,cis-delta11-18:2 (approximately 20%). The major product was likely formed in a reaction identical to that of 18:0-ACP desaturation, while the minor product was likely formed by alternative placement of the C-10 and C-11 positions of the substrate analog in a cis configuration relative to the diiron oxidant. Since none of the products observed are indicative of rearrangements originating with an allylic radical, a discussion of the origins and possible implications of these results is presented. 相似文献
6.
7.
8.
Decreased growth temperature increases soybean stearoyl-acyl carrier protein desaturase activity 下载免费PDF全文
Cheesbrough TM 《Plant physiology》1990,93(2):555-559
Developing soybean (Glycine max) seeds respond to a change in growth temperature by changing the level of stearoyl acyl carrier protein desaturase activity in the tissue. After 20 hours in liquid culture, seeds grown at 20°C show an increase in activity while seeds grown at 35°C show a decrease in activity, relative to their preculture levels. Analysis of the enzyme from both growth conditions shows the change not to be due to induction of kinetically distinct iosenzymes; desaturase activities from both 20°C and 35°C have identical behavior with regard to pH, temperature optimum, substrate concentration and cofactor requirements. Experiments with boiled extracts indicate that the modulation is not caused by induction of metabolic effectors. From these data, it appears that stearoyl-acyl carrier protein desaturase responds to changes in growth temperature by altering the level of active enzyme present in the tissue. The magnitude of this response is a function of the developmental stage of the seed and not a function of the growth conditions of the parent plant. Changing the age of the seeds from early late R5 changed the ratio of 20:35°C activity from 3.8:1 to 1.2:1. Changing the temperature at which the parent plants were grown over a range from 20/12°C to 34/28°C (day/night) produced only minor, and inconsistent, changes in the ratio of 20:35°C activities. 相似文献
9.
10.
Rapid-mix and chemical quench studies of ferredoxin-reduced stearoyl-acyl carrier protein desaturase
Stearoyl-ACP Delta9 desaturase (Delta9D) catalyzes the NADPH- and O(2)-dependent insertion of a cis double bond between the C9 and C10 positions of stearoyl-ACP (18:0-ACP) to produce oleoyl-ACP (18:1-ACP). This work revealed the ability of reduced [2Fe-2S] ferredoxin (Fd) to act as a catalytically competent electron donor during the rapid conversion of 18:0-ACP into 18:1-ACP. Experiments on the order of addition for substrate and reduced Fd showed high conversion of 18:0-ACP to 18:1-ACP (approximately 95% per Delta9D active site in a single turnover) when 18:0-ACP was added prior to reduced Fd. Reactions of the prereduced enzyme-substrate complex with O(2) and the oxidized enzyme-substrate complex with reduced Fd were studied by rapid-mix and chemical quench methods. For reaction of the prereduced enzyme-substrate complex, an exponential burst phase (k(burst) = 95 s(-1)) of product formation accounted for approximately 90% of the turnover expected for one subunit in the dimeric protein. This rapid phase was followed by a slower phase (k(linear) = 4.0 s(-1)) of product formation corresponding to the turnover expected from the second subunit. For reaction of the oxidized enzyme-substrate complex with excess reduced Fd, a slower, linear rate (k(obsd) = 3.4 s(-1)) of product formation was observed over approximately 1.5 turnovers per Delta9D active site potentially corresponding to a third phase of reaction. An analysis of the deuterium isotope effect on the two rapid-mix reaction sequences revealed only a modest effect on k(burst) ((D)k(burst) approximately 1.5) and k(linear) (D)k(linear) approximately 1.4), indicating C-H bond cleavage does not contribute significantly to the rate-limiting steps of pre-steady-state catalysis. These results were used to assemble and evaluate a minimal kinetic model for Delta9D catalysis. 相似文献
11.
A new full length cDNA clone encoding stearoyl-ACP desaturase (SAD) was isolated from seeds of Pongamia pinnata, an oil yielding legume plant. The cDNA clone (PpSAD) contained a single open reading frame of 1182-bp coding for 393 amino acids with a predicted molecular mass of 45.04 kDa, and shares similarity with SAD from other plants. Characteristics of the deduced protein were predicted and analyzed using molecular homology modeling; its three dimensional structure strongly resembled the crystal structure of Ricinus communis (RcSAD). Southern blot analysis indicated that ‘sad’ is a multiple copy gene and was a member of a small gene family. Expression analysis using quantitative real-time PCR revealed that the gene showed marked distinct expression during different stages of seed developments. The results of the expression analysis in this study, combined with existing research, suggest that ‘sad’ gene may be involved in the regulation of plant seed growth and development. 相似文献
12.
SAD,a stearoyl-acyl carrier protein desaturase highly expressed in high-oil maize inbred lines 总被引:1,自引:0,他引:1
As special maize with more than 6% oil concentration in the grain, high-oil maize has received increased interest recently.
To date, little is known about the expressions of genes involved in fatty acid metabolism of high-oil maize. Stearoyl-acyl
carrier protein desaturase (SAD) is a key enzyme that converts stearic acid to oleic acid. In this study, two-dimensional
electrophoresis, gas chromatography, and real-time PCR were used to determine the expressions of SAD at three seed development
stages in high-oil and normal maize inbred lines. SAD was significantly more abundantly expressed in high-oil maize than in
normal maize, not only at the protein and mRNA levels, but also at the product level. These results suggested that a high
expression of SAD may play an important role in increasing oil concentration in high-oil maize. 相似文献
13.
14.
15.
16.
17.
18.
Yujin Cao Mo Xian Jianming Yang Xin Xu Wei Liu Liangzhi Li 《Protein expression and purification》2010,69(2):209-214
Fatty acid desaturases are enzymes that introduce double bonds into fatty acyl chains, among which stearoyl-acyl carrier protein desaturase (S-ACP-DES) was widely distributed in the plant kingdom. We cloned the cDNA coding for fab2/ssi2, an S-ACP-DES from Arabidopsis thaliana, into the vector pET30a and heterologously expressed this fatty acid desaturase in Escherichia coli BL21 (DE3). After being induced with IPTG, the fusion protein was efficiently expressed in a soluble form. The SSI2 desaturase was purified by nickel ion affinity chromatography and the product obtained showed a single band by SDS–PAGE analysis. The expression of ssi2 modified the fatty acid composition of the recombinant strain. The ratio of palmitic acid (16:0) decreased from 45.2% (the control strain) to 35.2% while palmitoleate (16:1Δ9) and cis-vaccenate (18:1Δ11) levels were enhanced to some extent. The desaturase enzymatic activity was measured in vivo when the enzyme substrate stearic acid was provided in the culture medium. A new fatty acid, oleic acid (18:1Δ9) was found in the recombinant strain which did not exist in wild-type E. coli. These results demonstrated that the cofactors of the host system can complement the requirement of the SSI2 desaturase. 相似文献
19.
20.