首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phytoplankton community of a eutrophic reservoir   总被引:1,自引:0,他引:1  
The dynamics of the phytoplankton community of a eutrophic reservoir are described for a two year period. Fifty-eight species were recorded, 25 of them common. Bacillariophyta dominated during the winter and early spring and Chlorophyta during late spring, to be replaced by a bloom of Cyanophyta. The mean and peak biomass of phytoplankton was 8.6 mg 1–1 and 40.8 mg 1–1 in 1981, and 8.3 mg 1–1 and 37.6 mg 1–1 in 1982. Temperature accounted for 67.3% and pH for 8% of the variation in total phytoplankton biomass over the two year period, using a multiple regression technique.Both horizontal and vertical patchiness, measured as an index of mean crowding, were recorded in the reservoir. Horizontal aggregations were associated with spring blooms of Chlorophyta and summer blooms of Cyanophyta, while vertical aggregations were most marked during the summer bloom of Cyanophyta. Concentrations of phytoplankton were influenced by wind, the prevailing southwesterly wind accumulating algae in the northeasterly arm of the reservoir during much of the year.  相似文献   

2.
任辉  田恬  杨宇峰  王庆 《生态学报》2017,37(22):7729-7740
随着城市生态健康理念的提出,城市河涌生态健康也受到了前所未有的关注。为更好的了解河涌的水环境和浮游植物现状,于2015年3月至2016年2月对珠江口南沙河涌8个站位水环境和浮游植物群落结构进行调查。结果显示:共发现浮游植物164种(属),隶属7门73属,其中以绿藻种类最多,达33属79种,占48.17%;硅藻次之,17属41种,占25%。优势种为梅尼小环藻(Cyclotella meneghiniana)、假鱼腥藻属(Pseudanabaena sp.)和小球藻(Chlorella vulgaris)。浮游植物细胞密度在0.19×10~6—101.34×10~6个/L内变动,呈现单峰型,在4月发生拟菱形弓形藻(Schroederia nitzschioides)水华,14涌密度高达87.38×10~6个/L,随后因强降雨细胞密度骤降。浮游植物群落的季节演替基本符合PEG(Plankton Ecology Group)模型,从冬季的硅藻,到春夏季的绿藻,再到秋季的蓝藻。One-way ANOVA分析显示,各月份浮游植物细胞密度差异显著(P0.01)。Pearson相关性分析表明绿藻细胞丰度变化主导着浮游植物总丰度的变化(r=0.454,P0.01)。运用Margalef物种丰富度指数、Shannon物种多样性指数、Pielou均匀度指数对水体进行评价表明,调查水体呈中度污染。相关加权营养状态指数表明,河涌全年处于富营养化状态。浮游植物聚类分析表明,时间异质性较高,总体相似性较低;空间上相似性较高,人为活动可能是导致空间差异的关键因子。冗余分析显示,叶绿素a、溶解氧、盐度、水温、总氮和p H与浮游植物群落结构关系最为密切。p H对硅藻门浮游植物影响较大,碱性条件适宜直链藻生长,春季水华形成的驱动因子是盐度、温度和总氮。  相似文献   

3.
A 20 year data set for the northern Adriatic was analyzed and the factors establishing the nutrient environment identified. Concentrations ranged widely (TIN 0.0–78, PO2 0.01–1.1, and SiO4 0.0–59 mmol m−3). In early winter remineralization increased concentrations. Characteristic winter, late spring and fall phytoplankton blooms alternately decreased and increased concentrations, as modified by river input. In summer nutrients were minimal under a semi-closed circulation pattern and high vertical stability, due to closely coupled nitrogen and phosphorus assimilation-regeneration processes and biogenic silica sedimentation. “New” primary production supported mainly by river input of “new” nutrients approximated “regenerated” primary production supported by regenerated nutrients, making the ecosystem especially sensitive to eutrophication pressure from anthropogenic increases in the Po River nutrient load.  相似文献   

4.
利用2009~2010年周年观测数据,结合江苏太湖湖泊生态系统研究站15年监测数据,分析了太湖梅梁湾湖岸带浮游植物群落演替及其与蓝藻水华形成的关系.50次周监测结果表明:蓝藻门(Cyanophyta)、绿藻门(Chlorophyta)、硅藻门(Bacillariophyta)分别占浮游植物总生物量的60%、16%和22%.冬春季绿藻、硅藻为主要优势种,夏秋季蓝藻门的微囊藻占绝对优势.4月下旬~6月初,平均温度低于20℃,蓝藻没有大规模生长,硅藻门、绿藻门生物量急剧降低,总生物量小于1mg·L-1;随后温度超过25℃,蓝藻迅速增长并很快成为绝对优势,蓝藻增加滞后于绿藻、硅藻的减少.在营养盐充足、物理因素合适的条件下,浮游植物群落结构自然演替是蓝藻水华形成的主要原因之一.  相似文献   

5.
The algal flora of the Truckee River below Reno, Washoe County, Nevada was examined during the summer and fall months of 1986. This reach of the lower Truckee River exhibited a substantial gradient in dissolved inorganic nitrogen associated with sources which included treated wastewater from the Reno metropolitan area. The algal communities were similar to those of other river systems of the Great Basin. Cyanophyta and Chlorophyta formed encrusting mats on the substrate, with the nitrogen fixer Calothrix atricha relatively abundant upstream from the nitrogen source. Diatoms were abundant within and upon this mat. A total of 139 diatom taxa and 11 taxa other than diatoms was identified from this flora. Several of the diatom taxa, including Achnanthes minutissima, Diatoma vulgare, Nitzschia dissipata, and Nitzschia palea, demonstrated distinct downriver patterns in relative abundance.  相似文献   

6.
淮南矿区小型煤矿塌陷湖泊浮游植物群落结构特征   总被引:2,自引:0,他引:2  
&#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &# 《水生生物学报》2015,39(4):740-750
在淮南潘谢矿区内设置3个水文生态环境条件差异较大的小型煤矿塌陷湖泊研究站点, 即潘谢潘集站(PXPJ)、潘谢顾桥站 (PXGQ)和潘谢谢桥站(PXXQ), 于20132014年4个季度分别对塌陷湖泊的浮游植物结构组成特征及其水生态环境因子的关系进行了分析。3个小型塌陷湖泊共鉴定出浮游植物7门9纲18目34科70属131种, 浮游植物种类主要由蓝藻、绿藻和硅藻组成。其中绿藻门种类最多, 共59种, 占浮游植物总种数45.0%; 其次是蓝藻, 总共24种, 占浮游植物总种数18.3%; 硅藻22种, 占浮游植物总种数16.8%。从各门类藻细胞密度的百分比看, PXPJ站点以绿藻、硅藻和隐藻为主, 范围77.5%90.5%; PXGQ站点蓝藻在夏秋季数量上均占据绝对优势, 分别占藻类总细胞密度的61.5%和46.2%; PXXQ站点隐藻在春季为绝对优势类群, 在总细胞密度中占的比率为94.6%, 夏秋以蓝藻为主, 分别为74.7%和81.8%。3个湖泊由于水文生态环境条件的不同, 浮游植物丰度、多样性和均匀度体现出了一定的差异。典范对应分析(CCA)表明, 光照、水温和营养盐含量与比率(TN/TP)是影响塌陷湖泊浮游植物群落结构的重要环境因子。    相似文献   

7.
We hypothesised that increasing winter affluence and summer temperatures, anticipated in southern Europe with climate change, will deteriorate the ecological status of lakes, especially in those with shorter retention time. We tested these hypotheses analysing weekly phytoplankton and chemistry data collected over 2 years of contrasting weather from two adjacent stratified lakes in North Italy, differing from each other by trophic state and water retention time. Dissolved oxygen concentrations were higher in colder hypolimnia of both lakes in the second year following the cold winter, despite the second summer was warmer and the lakes more strongly stratified. Higher loading during the rainy winter and spring increased nutrient (N, P, Si) concentrations, and a phytoplankton based trophic state index, whilst the N/P ratio decreased in both lakes. The weakened Si limitation in the second year enabled an increase of diatom biovolumes in spring in both lakes. Chlorophyll a concentration increased in the oligo-mesotrophic lake, but dropped markedly in the eutrophic lake where the series of commonly occurring cyanobacteria blooms was interrupted. The projected increase of winter precipitation in southern Europe is likely to increase the nutrient loadings to lakes and contribute to their eutrophication. The impact is proportional to the runoff/in-lake concentration ratio of nutrients rather than to the retention time, and is more pronounced in lakes with lower trophy.  相似文献   

8.
Phytoplankton samples were collected in Lake Mead 6 times from September 1970 to June 1971 for 8 stations at depths of 0, 3, 5, 10, 20, and 30 m. These samples were processed through a Millipore filter apparatus and 79 planktonic algae were identified. Algal divisions represented were Bacillariophyta, 42 species; Chlorophyta, 18; Cyanophyta, 9; Chrysophyta, 3; Cryptophyta, 3; Pyrrophyta, 2; and Euglenophyta, 2. Blue-green algae were dominant in late summer and fall; green algae, diatoms, and cryptomonads in winter; and green algae in spring. The early summer flora was best represented by the Chlorophyta, Cryptophyta, and Chrysophyta. Palmer's pollution-tolerant algae indices and Nygaard's indices were calculated from, phytoplankton data. These indices suggest eutrophic conditions in Lake Mead, especially for Boulder Basin.  相似文献   

9.
The regulatory roles of temperature, eutrophication and oxygen availability on benthic nitrogen (N) cycling and the stoichiometry of regenerated nitrogen and phosphorus (P) were explored along a Baltic Sea estuary affected by treated sewage discharge. Rates of sediment denitrification, anammox, dissimilatory nitrate reduction to ammonium (DNRA), nutrient exchange, oxygen (O2) uptake and penetration were measured seasonally. Sediments not affected by the nutrient plume released by the sewage treatment plant (STP) showed a strong seasonality in rates of O2 uptake and coupled nitrification–denitrification, with anammox never accounting for more than 20 % of the total dinitrogen (N2) production. N cycling in sediments close to the STP was highly dependent on oxygen availability, which masked temperature-related effects. These sediments switched from low N loss and high ammonium (NH4 +) efflux under hypoxic conditions in the fall, to a major N loss system in the winter when the sediment surface was oxidized. In the fall DNRA outcompeted denitrification as the main nitrate (NO3 ?) reduction pathway, resulting in N recycling and potential spreading of eutrophication. A comparison with historical records of nutrient discharge and denitrification indicated that the total N loss in the estuary has been tightly coupled to the total amount of nutrient discharge from the STP. Changes in dissolved inorganic nitrogen (DIN) released from the STP agreed well with variations in sedimentary N2 removal. This indicates that denitrification and anammox efficiently counterbalance N loading in the estuary across the range of historical and present-day anthropogenic nutrient discharge. Overall low N/P ratios of the regenerated nutrient fluxes impose strong N limitation for the pelagic system and generate a high potential for nuisance cyanobacterial blooms.  相似文献   

10.
Surface seawater was collected in four different seasons in the coastal East China Sea adjacent to the Yangtze River Estuary and phytoplankton community diversity was analysed using rbcL genetic markers. Phytoplankton diversity (Shannon Index) was found to be highest in autumn and lowest in summer, which was mainly controlled by seawater temperature, river runoff, the Taiwan Warm Current and possibly other environmental factors. For taxa characterized by Form IAB rbcL, the abundance of Chlorophyta was much greater than those of Proteobacteria and Cyanobacteria throughout the year with the most dominant taxa being Bathycoccus prasinos (Chlorophyta) in spring and Micromonas sp. (Chlorophyta) in other seasons. For taxa identified by Form ID rbcL, Coscinodiscophyceae (diatoms) constituted the largest group (most clones) in the phylogenetic tree. Dinophysis fortii (a dinoflagellate) was found to be the most abundant species in winter and spring and Skeletonema spp. (a diatom) dominated the phytoplankton community in summer and autumn. The seasonal dominance of Dinophysis fortii agreed well with the recently increasing proportion of dinoflagellates in the phytoplankton community in the coastal East China Sea. The abundance of Dinophysis fortii was negatively correlated with seawater temperature, suggesting that harmful algal blooms caused by this species may primarily occur in spring.  相似文献   

11.
亚热带水库浮游植物季节动态及其与环境因子的关系   总被引:3,自引:0,他引:3  
王远飞  周存通  赵增辉  林植华 《生态学报》2021,41(10):4010-4022
以亚热带黄村水库流域为研究对象,探讨了浮游植物群落的季节变化及其与环境因子的关系。共鉴定出浮游植物51种,种类最多的是绿藻门(18种)(35.29%),其次是硅藻门(15种)(29.41%)和蓝藻门(11种)(21.57%)。从浮游植物群落季节组成差异来看,春季(62.96%)和夏季(71.03%)蓝藻门丰度最高,秋季(56.11%)和冬季(80.74%)硅藻门丰度最高。黄村水库流域优势种尖尾蓝隐藻(Chroomonas acuta)和曲丝藻(Achnanthidium sp.)在春夏秋冬季节均存在。多样性指数表明该流域水体处于中营养状况。温度、电导率和营养盐是影响浮游植物群落组成最主要的环境因素。  相似文献   

12.
Submerged freshwater macrophytes decline with increasing eutrophication. This has consequences for ecosystem processes in shallow lakes and ponds as macrophytes can reduce algal blooms under eutrophic conditions. We hypothesize that the productivity of submerged vegetation, biomass change under eutrophication and the suppression of algal blooms may be affected by macrophyte community composition. To test our hypothesis, we established three macrophyte community types in 36 fishless experimental ponds: one dominated by the oligotrophic species Chara globularis, one dominated by the eutrophic species Potamogeton pectinatus and a diverse vegetation which became co-dominated by Elodea nuttallii and C. globularis, and we fertilized half of the ponds.The macrophyte communities produced different amounts of biomass and they responded differently to fertilization. The community dominated by Potamogeton produced the lowest overall biomass, but was not affected by nutrient addition. The communities dominated by Chara and co-dominated by Elodea and Chara produced more than four-fold the amount of biomass produced in Potamogeton communities under oligotrophic conditions, but were strongly negatively affected by nutrient addition.Phytoplankton abundance did not differ significantly among the plant community types, but showed large variation within community types. There was a significant negative relationship between spring macrophyte biomass and the probability of summer algal blooms. The occurrence of algal blooms coincided with low daphnid densities and high pH (>10).We conclude that the macrophyte community composition, characterized by the dominant species, strongly affected the amount of biomass production as well as the short-term response of the vegetation to nutrient enrichment. Macrophyte community composition had no direct effect on algal blooms, but can affect the occurrence of algal blooms indirectly as these occurred only in ponds with low (<100 g/m2 DW) spring macrophyte biomass.  相似文献   

13.
The dynamics of metazooplankton populations were studied over 3 years at the saline (43 g l–1) Salton Sea, California's largest lake. Total abundance was highest in summer following late winter/early spring phytoplankton blooms. At this time, metazooplankton consisted mostly of the copepod, Apocyclops dengizicus, and the rotifer, Brachionus rotundiformis. In August or September, severe crashes in the metazooplankton populations occurred each year in mid-lake due to strong wind events which increased mixing and caused low oxygen and high sulfide concentrations throughout the water column. Larvae of the polychaete worm, Neanthes succinea and the barnacle, Balanus amphitrite were present mostly in late winter and spring. Their scarcity in summer is due in part to persistent anoxic bottom conditions that decrease adult populations and in part to predation by tilapia, an omnivorous fish that has become abundant in the lake since the 1960s. Two Synchaeta species, rotifers not previously reported from the Sea, were abundant in winter and spring and predation on these may have permitted the copepod to persist at low levels through the winter. There were two major changes in metazooplankton dynamics since 1954–1956 in addition to the appearance of the two synchaetid rotifers in the fauna. First, there are now much lower densities of barnacle and polychaete larvae in the fall, probably due to the invasion of the zooplanktivorous fish, tilapia. Second the precipitous crashes now seen in metazooplankton densities, especially the copepod, in late summer-early fall did not occur in the 1950s possibly because fall overturn events did not result in such high sulfide levels.  相似文献   

14.
In order to predict the distribution of chlorophyll a synoptically in Lake Taihu from 2006 to 2008, a common empirical algorithm was developed to relate time series chlorophyll a concentrations in the lake to reflectance derived as a function of band 2 MODIS data (r 2 = 0.907, n = 145) using time series from 2005. The empirical model was further validated with chlorophyll a data from a 2008 to 2009 dataset, with RMSE < 7.48 μg l−1 and r 2 = 0.978. The seasonal and inter-annual variability of the surface chlorophyll a concentration from 2006 to 2008 was then examined using Empirical Orthogonal Function (EOF) analysis. The results revealed that the first four modes were significant, explaining 54.0% of the total chlorophyll a variance, and indicated that during the summer, algal blooms always occur in the northern bays, Meiliang Bay and Gonghu Bay, while they occur along the southwestern lakeshore during early summer, fall, and even early winter. The inter-annual variance analysis showed that the duration of algal blooms was from April to December of 2007, which was different from the bloom periods in 2006 and 2008. The results of EOF analysis show its potential for long-term integrated lake monitoring, not only in Lake Taihu but also in other large lakes threatened by accelerating eutrophication.  相似文献   

15.
Nixdorf  Brigitte 《Hydrobiologia》1994,(1):173-186
The polymictic properties of Lake Müggelsee, a eutrophic shallow lake in Berlin, are described by the water column stability (N 2) and gradients in saturation of oxygen at the deepest site of the lake (7.5 m). Mixing and stratification changed irregularly up to 7 times during the vegetation season (April to September), as was indicated by all of the stratification parameters. Thermally stable conditions generally lasted 1–2 weeks. A maximum of 5 weeks stratification was observed in 1982.In order to investigate the response of algal development, the internal rates of change of the dominant algal species in the lake during the vegetation period were estimated from weekly measurements of phytoplankton biomass from 1980 to 1990. The necessity taking a mixed sample in a shallow lake is discussed. The polymictic properties favoured the development of specific blue-green algal species; there dominance was also favoured by the trophic conditions. Among the dominant blue-greens the growth of Limnothrix redekei was independent of polymixis whereas stratification supported the starting conditions for the summer blue-greens Aphanizomenon flos-aquae and Planktothrix agardhii. After these algae reached a distinct level of biomass, they grew under mixing as well as under stratified conditions.For the development of solitary centric diatoms during summer regulation by growth restriction through nutrient limitation, esp. dissolved silicon was more important. However, Melosira sp. developed well under stratified conditions but collapsed due to increased sinking losses when the water column became too stable.An attempt is made to apply Reynolds' possibility matrix of the most likely phytoplankton assemblages as a function of nutrients and mixing in the shallow Lake Müggelsee.  相似文献   

16.
Seasonal changes in the quantity and quality of phytoplankton were studied in six channel catfish culture ponds. Chlorophyll a concentrations were generally highest in the summer (averaging >200 g 1–1) but the highest individual chlorophyll a value recorded (910 g 1–1) occurred in the winter during a bloom of Dictyosphaerium pulchellum. On the average, green algae (Chlorophyta) and euglenoids (Euglenophyta) represented relatively constant proportions of the phytoplankton community seasonally (about 35 and 10%, respectively). In the summer and fall, blue-green algae (Cyanophyta) became abundant. Diatoms were relatively abundant at all times and constituted the majority of the community in the winter and spring.  相似文献   

17.
李雪  夏伟  范亚文  杨应增 《生态学报》2023,43(10):4098-4108
为了解扎龙湿地藻类群落结构的季节特征和演替规律,对扎龙湿地藻类群落进行了分析,主要涉及藻类优势度、生态位、MFG功能群划分、生态位重叠值及联结系数分析。结果表明:(1)在检出的8门311种藻类中,夏季种类丰富度最高,全年优势种为狭形纤维藻和啮蚀隐藻。(2)优势种种类和密度季节性差异较大,春季以金藻-绿藻种类为主,夏季以绿藻-隐藻种类为主,秋季以隐藻-绿藻种类为主。(3)生态位宽度值与MFG功能群划分结合分析表明,优势种可分为3个大类别,不同种类对资源利用情况的差异较大,各季节广生态位种能较好的反映扎龙湿地水体环境的季节变化趋势。(4)生态位重叠值在不同季节上有较大差异,Oik>0.6的占比分别为42.86%(春)、28.57%(夏)和25.00%(秋),表明春季优势种种间资源的竞争最为突出,种间竞争强于夏、秋两季。(5)种间联结性检验结果显示,扎龙湿地藻类优势种间总体联结上呈正关联关系,但是种间联结较为松散,种与种之间相对独立。研究表明,扎龙湿地藻类群落结构生态位测度均存在明显的季节波动,较好反映出水环境季节变化特征,可用来指示湿地水体环境的变化。  相似文献   

18.
19.
淀山湖浮游植物群落特征及其演替规律   总被引:12,自引:0,他引:12  
为探明淀山湖浮游植物群落结构演变与富营养化之间的关系,于2004-2006年对上海市最大天然淡水湖泊淀山湖的浮游植物进行逐月采样调查,分析其群落结构特征.共采集到淀山湖浮游植物84属205种,主要由绿藻(种类数占50%)、硅藻(20%)、蓝藻(13%)、裸藻(13%)等组成.相邻两月之间种类相似性系数呈现冬春季高、夏秋季低的趋势:优势种为银灰平裂藻(Merismopedia glauca)、小席藻(Phormidium tenus)、铜绿微囊藻(Microcystis aeruginosa)、具缘微囊藻(M.marginata)、湖泊鞘丝藻(Lyngbya limnetica)、微小色球藻(Chroococcus minutus),颗粒直链藻最窄变种(Melosira granulata var.angustissima )、啮蚀隐藻(Cryptomonas erosa)、小球藻(Chlorella vulgate)和四尾栅藻(Scenedesmus quadricauda)等.浮游植物群落细胞数量主要由蓝藻(42.73%)、绿藻(37.75%)、硅藻(12.67%)和隐藻(6.06%)组成;生物量主要由硅藻(36.75%)、蓝藻(16.78%)、绿藻(16.36%)和隐藻03.53%)等组成.淀山湖浮游植物群落结构季节演替模式不同于PEG(Plankton Ecology Group)模型,其中蓝藻从春末开始大量出现,夏季大量繁殖,一直延续到秋初.综合文献资料看出,淀山湖浮游植物群落已从1959年的硅藻一金藻型、1987-1988年的隐藻-硅藻型演变为2004-2006年的蓝藻-绿藻型;数量由1959年的103 ind./L上升至2004-2006年的1.11×107 cells/L.演替的总体趋势表现为:贫中营养型的金藻、甲藻比例下降,富营养型的蓝藻、隐藻和微型绿藻增加.浮游植物数量和群落结构的演变指示了淀山湖水体的富营养化进程.  相似文献   

20.
With the human intensification of agricultural and industrial activities, large amount of reduced nitrogen enter into the biosphere, which consequently results in the development of global eutrophication and cyanobacterial blooms. However, no research had reported the effect of ammonia toxicity on the algal succession. In this study, we investigated the ammonia toxicity to 19 algal species or strains to test the hypothesis that ammonia may regulate the succession of cyanobacterial blooms and the distribution of common algal species in freshwater lakes. The bloom‐forming cyanobacterium Microcystis aeruginosa PCC 7806 suffered from ammonia toxicity at high pH value and light intensity conditions. Low NH4Cl concentration (0.06 mmol L?1) resulted in the decrease of operational PSII quantum yield by 50% compared with the control exposed to 1000 μmol photons m?2 s?1 for 1 h at pH 9.0 ± 0.2, which can be reached in freshwater lakes. Furthermore, the tolerant abilities to NH3 toxicity of 18 freshwater algal species or strains were as follows: hypertrophication species > eutrophication species > mesotrophication species > oligotrophication species. The different sensitivities of NH3 toxicity in this study could well explain the distributing rule of common algal species in the freshwater lakes of different trophic states. Meanwhile, the cyanobacterial bloom (e.g. M. aeruginosa) always happened at the low concentration of ammonia in summer, and disappeared with the decrease of ammonia. This may be attributed to the toxic effect of ammonia to M. aeruginosa in spring (the average and maximum ammonia concentration were 0.08 and 0.72 mmol L?1 in 33 Chinese lakes), and the low level of NH3‐N in summer and fall in the lakes might be used as preferred nitrogen nutrition by M. aeruginosa, rather than with toxicity. Therefore, ammonia could be a key factor to determine the distribution of common algal species and cyanobacterial bloom in the freshwater systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号