首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetyl-CoA carboxylase of animal tissues is known to be dependent on citrate for its activity. The observation that dephosphorylation abolishes its citrate dependence (Thampy, K. G., and Wakil, S. J. (1985) J. Biol. Chem. 260, 6318-6323) suggested that the citrate-independent form might exist in vivo. We have purified such a form from rapidly freeze-clamped livers of rats. Sodium dodecyl sulfate gel electrophoresis of the enzyme gave one protein band (Mr 250,000). The preparation has high specific activity (3.5 units/mg in the absence of citrate) and low phosphate content (5.0 mol of Pi/mol of subunit). The enzyme isolated from unfrozen liver or liver kept in ice-cold sucrose solution for 10 min and then freeze-clamped has low activity (0.3 unit/mg) and high phosphate content (7-8 mol of Pi/mol of subunit). Citrate activated such preparations with half-maximal activation at greater than 1.6 mM, well above physiological range. The low activity may be due to its high phosphate content because dephosphorylation by [acetyl-CoA carboxylase]-phosphatase 2 activates the enzyme and reduces its dependence on citrate. Since freeze-clamping the liver yields enzyme with lower phosphate content and higher activity, it is suggested that the carboxylase undergoes rapid phosphorylation and consequent inactivation after the excision of the liver. The carboxylase is made up of two polymeric forms of Mr greater than or equal to 10 million and 2 million based on gel filtration on Superose 6. The former, which predominates in preparations from freeze-clamped liver, has higher activity and lower phosphate content (5.3 units/mg and 4.0 mol of Pi/mol of subunit, respectively) than the latter (2.0 units/mg and 6.0 mol of Pi/mol of subunit, respectively). The latter, which predominates in preparations from unfrozen liver, is converted to the active polymer (Mr greater than or equal to 10 million) by dephosphorylation. Thus, the two polymeric forms are interconvertible by phosphorylation/dephosphorylation and may be important in the physiological regulation of acetyl-CoA carboxylase.  相似文献   

2.
The effect of vasopressin on the short-term regulation of fatty acid synthesis was studied in isolated hepatocytes from rats fed ad libitum. Vasopressin stimulates fatty acid synthesis by 30-110%. This increase is comparable with that obtained with insulin. Angiotensin also stimulates fatty acid synthesis, whereas phenylephrine does not. The dose-response curve for vasopressin-stimulated lipogenesis is similar to the dose-response curve for glycogenolysis and release of lactate plus pyruvate. Vasopression also stimulates acetyl-CoA carboxylase activity in a dose-dependent manner. Vasopressin does not relieve glucagon-inhibited lipogenesis, whereas insulin does. The action of vasopressin on hepatic lipogenesis is decreased, but not suppressed, in Ca2+-depleted hepatocytes. The results suggest that vasopressin acts on lipogenesis by increasing availability of lipogenic substrate (lactate + pyruvate) and by activating acetyl-CoA carboxylase.  相似文献   

3.
Rat hindlimb muscle tissue was extracted from male Sprague-Dawley rats exsanguinated under light ether anesthesia. Muscle homogenates (50,000 x g supernatant) were incubated with ATP, bicarbonate, acetyl-CoA, and citrate. The quantity of malonyl-CoA synthesized was determined by malonyl-CoA incorporation into long acyl chains using tritiated acetyl-CoA and fatty acid synthetase. Malonyl-CoA synthesis was found to be dependent on the presence of ATP, bicarbonate, citrate, and acetyl-CoA in the incubation medium. Incubation with avidin showed near complete inhibition of carboxylation that was restored with the addition of biotin. These results represent strong evidence of a biotin containing acetyl-CoA carboxylase in skeletal muscle.  相似文献   

4.
A maize acetyl-coenzyme A carboxylase cDNA sequence.   总被引:5,自引:0,他引:5       下载免费PDF全文
  相似文献   

5.
6.
Molecular cloning of cDNA for acetyl-coenzyme A carboxylase   总被引:4,自引:0,他引:4  
Poly(A)+ RNA from lactating rat mammary glands was size-fractionated to enrich the relative amount of acetyl-CoA carboxylase mRNA. The enriched mRNA was used to generate a lambda gt11 cDNA library. Initial screening with polyclonal antiserum to acetyl-CoA carboxylase produced three positive clones. Western blot analysis revealed that two clones, lambda DH3 and lambda KH18, synthesized 165,000-dalton proteins that were recognized by antibodies to acetyl-CoA carboxylase and beta-galactosidase, indicating that acetyl-CoA carboxylase/beta-galactosidase fusion proteins were produced. Competition experiments with purified acetyl-CoA carboxylase further demonstrated that the fusion proteins contained acetyl-CoA carboxylase protein segments. Antibodies which are specific to the fusion proteins were isolated. These antibodies cross-reacted only with acetyl-CoA carboxylase in a preparation of partially purified acetyl-CoA carboxylase. In addition, the antibodies immunoprecipitated enzyme activity from a crude liver homogenate. Northern blot analysis of total RNA revealed two RNA species: one 10 kilobases and the other 3.0 kilobases. The levels of these RNA species increased when starved animals were fed a fat-free diet, indicating that they are coordinately regulated.  相似文献   

7.
Phosphorylation and inactivation of acetyl-coenzyme A (CoA) carboxylase by acetyl-CoA carboxylase kinase in the presence of ATP and Mg2+ requires coenzyme A. Coenzyme A did not enhance the phosphorylation of alternative substrates of the carboxylase kinase such as protamine or histones. Analogs of coenzyme A were also effective in stimulating the inactivation of carboxylase. The KA of CoA for stimulated carboxylase inactivation was 25 microM. The presence of coenzyme A did not alter the Km of the carboxylase kinase for its substrates, ATP and acetyl-CoA carboxylase. Fluorescence binding studies showed that CoA binds to carboxylase but not to the kinase. The KD of CoA binding to carboxylase is 27 microM. These results indicate that coenzyme A, acting on acetyl-CoA carboxylase, may play an important role in the regulation of the covalent modification mechanism for acetyl-CoA carboxylase.  相似文献   

8.
Intact rat epididymal fat-cells were incubated with 32Pi and the intracellular proteins separated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. One of the phosphorylated proteins has the same RF value as [14C]biotin-labelled acetyl-CoA carboxylase purified from fat-cells and is specifically precipitated after incubation with antiserum raised against acetyl-CoA carboxylase. No significant changes in the extent of phosphorylation of acetyl-CoA carboxylase were detected after exposure of the cells to insulin.  相似文献   

9.
The process leading to the rise of acetyl-CoA carboxylase activity in rat mammary tissue after the onset of lactation was investigated. The kinetics of change in enzyme activity and enzyme immunotitratable with antibody against avian liver acetyl-CoA carboxylase were determined during the course of lactogenic differentiation. The antibody inactivates and specifically precipitates acetyl-CoA carboxylase from rat mammary tissue as well as that from chicken liver cytosol. Characterization of the immunoprecipitate of the mammary tissue carboxylase by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis reveals a single biotin-containing polypeptide of about 230000mol.wt. This molecular weight is approximately twice that reported for the avian liver enzyme. However, chicken liver cytosol prepared in the presence of trypsin inhibitor and subjected to immunoprecipitation gives rise to a biotin-containing subunit of 230000mol.wt. as determined by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis; omission of proteinase inhibitor leads to a subunit(s) approximately one-half this size. Throughout gestation both carboxylase activity and amounts of immunotitratable enzyme remained low; however, after parturition both parameters rose concomitantly to values 30-40 times the initial values. Therefore the elevated concentration of acetyl-CoA carboxylase appears to result from an increased rate of synthesis of enzyme relative to degradation rather than to activation of a pre-existing form of the enzyme.  相似文献   

10.
A gene encoding acetyl-coenzyme A carboxylase from Brassica napus.   总被引:7,自引:5,他引:2       下载免费PDF全文
W Schulte  J Schell    R Tpfer 《Plant physiology》1994,106(2):793-794
  相似文献   

11.
Insulin and the regulation of adipose-tissue acetyl-coenzyme A carboxylase   总被引:3,自引:21,他引:3  
Rat epididymal fat-pads were incubated for 30min with glucose (2mg/ml) in the presence or absence of insulin. A twofold or greater increase in acetyl-CoA carboxylase activity was observed in extracts from insulin-treated tissue provided that assays were performed rapidly after extraction. This effect of insulin was evident whether or not extracts were prepared with albumin, and was not noticeably diminished by the presence of citrate or albumin or both in the assay. Incubation of extracts before assay led to activation of acetyl-CoA carboxylase and a marked diminution in the insulin effect. The enzyme in extracts was very sensitive to reversible inhibition by palmitoyl-CoA even in the presence of albumin (10mg/ml); inhibition persisted on dilution of enzyme and inhibitor. It is suggested that the observed activation of acetyl-CoA carboxylase by insulin may reflect changes in enzyme activity in the fat-cell resulting from the reduction of long-chain fatty-acyl-CoA that occurs in the presence of insulin. Activation of the enzyme with loss of the insulin effect on incubation of the extracts may be due to the slow dissociation of long-chain fatty acyl-CoA from the enzyme.  相似文献   

12.
Summary The genetic relationship between acetyl-coenzyme A carboxylase (ACCase; EC 6.4.1.2.) activity and herbicide tolerance was determined for five maize (Zea mays L.) mutants regenerated from tissue cultures selected for tolerance to the ACCase-inhibiting herbicides, sethoxydim and haloxyfop. Herbicide tolerance in each mutant was inherited as a partially dominant, nuclear mutation. Allelism tests indicated that the five mutations were allelic. Three distinguishable herbicide tolerance phenotypes were differentiated among the five mutants. Seedling tolerance to herbicide treatments cosegregated with reduced inhibition of seedling leaf ACCase activity by sethoxydim and haloxyfop demonstrating that alterations of ACCase conferred herbicide tolerance. Therefore, we propose that at least three, and possible five, new alleles of the maize ACCase structural gene (Acc1) were identified based on their differential response to sethoxydim and haloxyfop. The group represented by Acc1-S1, Acc1-S2 and Acc1-S3 alleles, which had similar phenotypes, exhibited tolerance to high rates of sethoxydim and haloxyfop. The Acc1-H1 allele lacked sethoxydim tolerance but was tolerant to haloxyfop, whereas the Acc1-H2 allele had intermediate tolerance to sethoxydim but was tolerant to haloxyfop. Differences in tolerance to the two herbicides among mutants homozygous for different Acc1 alleles suggested that sites on ACCase that interact with the different herbicides do not completely overlap. These mutations in maize ACCase should prove useful in characterization of the regulatory role of ACCase in fatty acid biosynthesis and in development of herbicide-tolerant maize germplasm.Cooperative investigation of the Minnesota Agriculture Experiment Station and the U.S. Department of Agriculture, Agricultural Research Service. Supported in part by a grant from BASF Corporation and a University of Minnesota Doctoral Dissertation Fellowship to LCM. Minnesota Agricultural Experiment Station Publication No. 19,056Mention of a trademark, vendor, or proprietary product does not constitute a guarantee or warranty of the product by University of Minnesota or the USDA, and does not imply its approval to the exclusion of other products or vendors that may also be suitable  相似文献   

13.
In grasses, residues homologous to residues Ile-1,781 and Ile-2,041 in the carboxyl-transferase (CT) domain of the chloroplastic acetyl-coenzyme A (CoA) carboxylase (ACCase) from the grass weed black-grass (Alopecurus myosuroides [Huds.]) are critical determinants for sensitivity to two classes of ACCase inhibitors, aryloxyphenoxypropionates (APPs) and cyclohexanediones. Using natural mutants of black-grass, we demonstrated through a molecular, biological, and biochemical approach that residues Trp-2,027, Asp-2,078, and Gly-2,096 are also involved in sensitivity to ACCase inhibitors. In addition, residues Trp-2,027 and Asp-2,078 are very likely involved in CT activity. Using three-dimensional modeling, we found that the side chains of the five residues are adjacent, located at the surface of the inside of the cavity of the CT active site, in the vicinity of the binding site for APPs. Residues 1,781 and 2,078 are involved in sensitivity to both APPs and cyclohexanediones, whereas residues 2,027, 2,041, and 2,096 are involved in sensitivity to APPs only. This suggests that the binding sites for these two classes of compounds are overlapping, although distinct. Comparison of three-dimensional models for black-grass wild-type and mutant CTs and for CTs from organisms with contrasted sensitivity to ACCase inhibitors suggested that inhibitors fitting into the cavity of the CT active site of the chloroplastic ACCase from grasses to reach their active sites may be tight. The three-dimensional shape of this cavity is thus likely of high importance for the efficacy of ACCase inhibitors.  相似文献   

14.
Tissue distribution of acetyl-coenzyme a carboxylase in leaves   总被引:1,自引:4,他引:1       下载免费PDF全文
Acetyl-CoA carboxylase [acetyl-CoA—carbon dioxide ligase (ADP forming), EC 6.4.1.2] is a biotin-containing enzyme catalyzing the formation of malonyl-CoA. The tissue distribution of this enzyme was determined for leaves of C3- and C4-plants. The mesophyll tissues of the C3-plants Pisum sativum and Allium porrum contained 90% of the leaf acetyl-CoA carboxylase activity, with the epidermal tissues containing the remainder. Western blotting of proteins fractionated by sodium dodecyl sulfate polyacrylamide gel electrophoresis, using 125I-streptavidin as a probe, revealed biotinyl proteins of molecular weights 62,000, 51,000, and 32,000 in P. sativum and 62,000, 34,000, and 32,000 in A. porrum.

In the C4-plant sorghum, epidermal protoplasts, mesophyll protoplasts and strands of bundle sheath cells contained 35, 47, and 17%, respectively, of the total leaf acetyl-CoA carboxylase activity. In Zea mays leaves the respective figures were 10% for epidermal protoplasts, 56% for mesophyll protoplasts, and 32% for bundle sheath strands. Biotinyl proteins of molecular weights 62,000 and 51,000 were identified in leaves of sorghum and Z. mays.

The results are discussed with respect to each tissue's requirements for malonyl-CoA for various metabolic pathways.

  相似文献   

15.
16.
The effects of vasoactive intestinal peptide (VIP) on fatty acid oxidation in isolated rat enterocytes were investigated. VIP (10(-7) M) increased more than 2-fold the production of 14CO2 from [U-14C]palmitate. This effect was dose-dependent (K0.5 = 5.10(-11) M) and appeared to be related to the stimulation of cAMP production since it was mimicked by forskolin (10(-4) M). VIP also stimulated oxygen consumption of the cells, an effect accounted for by the stimulation of the oxidation of both exogenous added palmitate (0.12 mM) and endogenous fatty acids produced by lipolysis. VIP appeared to specifically enhance the oxidation of long-chain fatty acids since its effects were counteracted by 5.10(-5) M sodium 2-[6-(chlorophenoxy)hexyl]oxirane-2-carboxylate, a potent inhibitor of carnitine palmitoyltransferase 1, and since VIP did not affect cell respiration in the presence of octanoate. These results suggested that VIP stimulated long-chain fatty acid oxidation by increasing their translocation into the mitochondria. Therefore, we examined the effect of VIP on the activity of acetyl-coenzyme A carboxylase, the enzyme responsible for the biosynthesis of malonyl-CoA, a physiological inhibitor of carnitine acyltransferase 1. VIP produced an acute, dose-dependent (Ki = 3.10(-11) M), 90% inhibition of acetyl-coenzyme A carboxylase activity. These results allow us to elucidate the mechanism of the recently reported inhibitory effect of VIP on glucose oxidation (Vidal, H., Comte, B., Beylot, M., and Riou, J. P. (1988) J. Biol. Chem. 263, 9206-9211) and demonstrate for the first time that balance between fatty acids and glucose as energetic fuels is under neurohormonal control in isolated rat enterocytes.  相似文献   

17.
1. Although citrate is known to activate purified preparations of acetyl-CoA carboxylase, it had no stimulatory effect on the incorporation of [14C]acetate into long-chain fatty acids in a whole homogenate of rat liver (S0.7) under conditions in which the activity of acetyl-CoA carboxylase was rate-limiting for fatty acid synthesis. 2. The rate of incorporation of acetyl carbon into fatty acids was estimated in S0.7 preparations incubated with [14C]acetate, by measuring the specific radioactivity of the acetyl carbon of acetyl-CoA and the incorporation of 14C into fatty acids. These estimates were compared with estimates of acetyl-CoA carboxylase activity in the S0.7 preparation obtained by direct assay in conditions in which the enzyme was in the fully activated state. 3. In the absence of citrate, incorporation of acetyl carbon into fatty acids was about 75% of the value expected if the acetyl-CoA carboxylase in the S0.7 preparation were in the fully activated state. 4. Incorporation of acetyl carbon into fatty acids in the S0.7 preparation was stimulated by citrate, but the effect was many times less than the stimulation of [14C]acetate incorporation by citrate in particle-free preparations. 5. When the mitochondria and microsomes were removed from the S0.7 preparation, [14C]acetate incorporation into fatty acids fell to a negligible value and the preparation became highly sensitive to stimulation by citrate. 6. It is suggested that in the presence of mitochondria and microsomes, and in the intact liver cell, the degree of activation of acetyl-CoA carboxylase is such that citrate activation may not be of physiological significance.  相似文献   

18.
Multi‐subunit acetyl‐coenzyme A carboxylase (MS‐ACCase; EC 6.4.1.2) isolated from soybean chloroplasts is a labile enzyme that loses activity during purification. We found that incubating the chloroplast stromal fraction under anaerobic conditions or in the presence of 5 mM FeSO4 stimulated ACCase (acetyl‐CoA→malonyl‐CoA) and carboxyltransferase (malonyl‐CoA→acetyl‐CoA) activity. Fe‐stimulation of activity was associated with 59Fe binding to a stromal protein fraction. ACCase and carboxyltransferase activities measured in the stromal protein fraction containing bound 59Fe were 2‐fold and 6‐fold greater, respectively, than the control (stromal fraction not pretreated with FeSO4). Superose 6 gel filtration chromatography indicated 59Fe comigrated with stromal protein of approximately 180 kDa that exhibited carboxyltransferase activity, but lacked ACCase activity. Anion exchange (Mono‐Q) chromatography of the Superose 6 fraction yielded a protein peak that was enriched in carboxyltransferase activity and contained protein‐bound 59Fe. Denaturing gels of the Mono‐Q fraction indicated that the 180‐kDa protein was composed of a 56‐kDa subunit that was bound by an antibody raised against a synthetic β‐carboxyltransferase (β‐CTase) peptide. Incubation of the Mono‐Q carboxyltransferase fraction with increasing concentrations of iron at a fixed substrate concentration resulted in increased initial velocities that fit well to a single rectangular three parameter hyperbola (v=vo+Vmax[FeSO4]/Km+[FeSO4]) consistent with iron functioning as a bound activator of catalysis. UV/Vis spectroscopy of the partially purified fraction before and after iron incubation yielded spectra consistent with a protein‐bound metal cluster. These results suggest that the β‐CTase subunit of MS‐ACCase in soybean chloroplasts is an iron‐containing enzyme, which may in part explain its labile nature.  相似文献   

19.
1. Highly purified rat mammary-gland acetyl-CoA carboxylase was inhibited by milk obtained from rats 12h after their young were weaned. 2. All the inhibitory activity was found in the particulate fraction (R(105)) obtained on centrifuging the milk. It could be extracted from milk fraction R(105) with acetone and identified as a complex mixture of non-esterified fatty acids, present in high concentration (nearly 10mm) in the milk. 3. Inhibition of acetyl-CoA carboxylase was observed at low concentrations (0.2-20mum) of several of these fatty acids when fresh fully active enzyme was used. Enzyme that had been partly inactivated by aging, or by storing in the absence of citrate, was stimulated by low concentrations but inhibited by high concentrations of fatty acids. 4. Various experiments suggested that fatty acids produce irreversible inactivation of acetyl-CoA carboxylase. 5. The effects of palmitoyl-CoA on mammary-gland acetyl-CoA carboxylase were found to resemble those of fatty acids, except that palmitoyl-CoA was effective at lower concentration. 6. The effect of milk fraction R(105) was tested on six other enzymes previously shown to decline to various extents after weaning. Although several of these enzymes were affected by unfractionated milk fraction R(105), none was significantly inhibited by the acetone extract or by low concentrations of lauric acid. 7. The findings are consistent, both qualitatively and quantitatively, with a regulatory mechanism whereby milk fatty acids shut off fatty acid synthesis in the mammary gland after weaning by inhibiting acetyl-CoA carboxylase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号