首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonimmune activation of the first component of complement (C1) by cardiolipin (CL) vesicles present specific features which were not demonstrated on immune complexes. CL vesicles which activate C1 in the presence of C1-inhibitor (C1-INH) were found to bind C1s in the absence of C1r, and to induce a specific C1r-independent cleavage of C1q-bound C1s. Therefore, several known natural nonimmune activators were analyzed by comparing their ability to activate C1 in the presence of C1-INH and to mediate a C1r-independent cleavage of C1s. Freshly isolated human heart mitochondria (HHM) activated C1 only in the absence of C1-INH. However, mitoplasts derived from HHM (HHMP) activated C1 regardless of the presence of C1-INH, and induced a specific cleavage of C1q-bound C1s. The same pattern was observed in the case of smooth E. coli and a semi-rough E. coli strain. DNA, known to activate C1 only in the absence of C1-INH, does not induce C1s cleavage in the absence of C1r. Thus, nonimmune activators can be classified into two distinct categories. "Strong" activators, such as CL vesicles, HHMP, or the semi-rough E. coli strain J5 can activate C1 in the presence of C1-INH. By using C1qs2 as a probe, they exhibit a specific, C1r-independent cleavage of C1s. C1s-binding to C1q is a critical factor for the activation process in this group. In the case of "weak" activators, such as E. coli smooth strains, DNA, or HHM, no C1s-binding to activator-bound C1q was detected, and C1r-independent C1s cleavage and C1 activation in the presence of C1-INH were not observed. As in the case of immune complexes, C1r activation appears to play a key role in the C1 activation by "weak" activators.  相似文献   

2.
3.
N-(Dicyclohexyl)acetyl-piperidine-4-benzylidene-4-carboxylic acid (1), although a very potent in vitro 5alpha-steroid reductase (5alphaR) type 2 inhibitor, showed only marginal in vivo activity in rats. Since this could be due to hindered cellular uptake of the carboxylic acid, acid (1) and its corresponding methyl ester (1a) were compared with respect to their permeation properties. In the parallel artificial membrane permeation assay (PAMPA), 1a showed a higher %flux of 55 versus 6 for 1. Considering the high potency of 1 and better permeation of 1a, the use of 1a as a prodrug for 1 was explored using the human prostate carcinoma cell line DU145. Esterase activity, a prerequisite for this prodrug concept was detected employing 4-nitrophenyl acetate (4-NPA) as a substrate. After incubation of DU145 cells with 1 and 1a, respectively, permeated 1a and its hydrolysis to 1 were unequivocally observed by MALDI-TOF MS analyses, whereas 1 could not be detected inside the cells above the detection limit. Regarding biological activity, 1a showed a stronger inhibition of 5alphaR in intact DU145 cells than 1 (IC50 values, 4 microM and > 10 microM for 1a and 1, respectively). These results suggest that the in vivo activity of 1 might be increased by the use of its methyl ester prodrug 1a.  相似文献   

4.
5.
LKB1 is an upstream activating kinase for the AMP-activated protein kinase (AMPK) and at least 12 other AMPK-related kinases. LKB1 therefore acts as a master kinase regulating the activity of a wide range of downstream kinases, which themselves have diverse physiological roles. Here we identify a second form of LKB1 generated by alternative splicing of the LKB1 gene. The two LKB1 proteins have different C-terminal sequences generating a 50-kDa form (termed LKB1L) and a 48-kDa form (LKB1S). LKB1L is widely expressed in mouse tissues, whereas LKB1S has a restricted tissue distribution with predominant expression in the testis. LKB1S, like LKB1L, forms a complex with MO25 and STRAD, and phosphorylates and activates AMPK both in vitro and in intact cells. A phosphorylation site (serine 431 in mouse) and a farnesylation site (cysteine 433 in mouse) within LKB1L are not conserved in LKB1S raising the possibility that these sites might be involved in differential regulation and/or localization of the two forms of LKB1. However, we show that phosphorylation of serine 431 has no effect on LKB1L activity and that both LKB1L and LKB1S have similar patterns of subcellular localization. These results indicate that the physiological significance of the different forms of LKB1 is not related directly to differences in the C-terminal sequences but may be due to their differential patterns of tissue distribution.  相似文献   

6.
Autoactivation of the proenzyme form of a subunit of the first component (C1r) was performed in the presence and absence of diisopropyl fluorophosphate (DFP). The time-course of autoactivation of zymogen C1r followed a sigmoidal curve and was accelerated by addition of the enzyme C1r and by increasing the concentration of C1r, suggesting that autoactivation of C1r consists of two intermolecular reactions, i.e. zymogen(C1r)- and enzyme(C1r)-catalyzed reactions. In the presence of 10 mM DFP, the enzyme-catalyzed autoactivation of C1r was completely inhibited, while the zymogen-catalyzed autoactivation still proceeded depending upon C1r concentration. These results suggested that the zymogen-catalyzed autoactivation of C1r is a DFP-insensitive second-order reaction and is mediated by an active site generated in a single chain C1r through a conformational change (Kassahara et al. (1982) FEBS lett. 141, 128-131). Based on these results, a possible reaction process of autoactivation of C1r was proposed, as follows: (formula; see text) where C1r represents a conformational isomer which catalyzes the autoactivation of C1r, and the rate constants, k2 and k3, are of second-order. Utilizing a computer, we simulated the autoactivation of C1r and found the above scheme to be a reasonable model of C1r autoactivation. Evidence which supports the formation of a conformational isomer of C1r, C1r, as an intermediate in its autoactivation was also obtained by a surface radiolabeling method.  相似文献   

7.
Hypothalamic fatty acid metabolism is involved in central nervous system controls of feeding and energy balance. Malonyl-CoA, an intermediate of fatty acid biosynthesis, is emerging as a significant player in these processes. Notably, hypothalamic malonyl-CoA has been implicated in leptin's feeding effect. Leptin treatment increases malonyl-CoA level in the hypothalamic arcuate nucleus (Arc), and this increase is required for leptin-induced decrease in food intake. However, the intracellular downstream mediators of malonyl-CoA's feeding effect have not been identified. A primary biochemical action of malonyl-CoA is the inhibition of the acyltransferase activity of carnitine palmitoyltransferase-1 (CPT-1). In the hypothalamus, the predominant isoform of CPT-1 that possesses the acyltransferase activity is CPT-1 liver type (CPT-1a). To address the role of CPT-1a in malonyl-CoA's anorectic action, we used a recombinant adenovirus expressing a mutant CPT-1a that is insensitive to malonyl-CoA inhibition. We show that Arc overexpression of the mutant CPT-1a blocked the malonyl-CoA-mediated inhibition of CPT-1 activity. However, the overexpression of this mutant did not affect the anorectic actions of leptin or central cerulenin for which an increase in Arc malonyl-CoA level is also required. Thus, CPT-1a does not appear to be involved in the malonyl-CoA's anorectic actions induced by leptin. Furthermore, long-chain fatty acyl-CoAs, substrates of CPT-1a, dissociate from malonyl-CoA's actions in the Arc under different feeding states. Together, our results suggest that Arc intracellular mechanisms of malonyl-CoA's anorectic actions induced by leptin are independent of CPT-1a. The data suggest that target(s), rather than CPT-1a, mediates malonyl-CoA action on feeding.  相似文献   

8.
克里雅人、罗布人、刀郎人是生活在我国西部边疆沙漠腹地、人口稀少的隔离人群。基于对这三个隔离人群179人Y染色体全序列的测序和分型,得到每个个体Y染色体所有突变的SNP位点和隶属的单倍群,并对各单倍群类型和频率进行了分析。以探知三个隔离人群的Y染色体遗传结构和遗传多样性。通过研究结果表明:克里雅人群检出12个单倍群,高频单倍群有J2a1b1(25.64%),R1a1a1b2a(20.51%),R2a(17.95%),R1a1a1b2a2(15.38%);罗布人群检出16个单倍群,高频单倍群有J2a1(43.75%),J2a2(14.06%),R2(9.38%),L1c(7.81%);刀郎人群检出40个单倍群,高频单倍群有R1b1a1a1(9.21%),R1a1a1b2a1a(7.89%),R1a1a1b2a2b(6.58%),C3c1(6.58%).三个隔离人群与维吾尔族、蒙古族、撒拉族亲缘关系较近;在单倍群类型和频率上与维吾尔族最接近且无显著性差异(f=0.833,p=0.367)。此外,三个隔离人群单倍群类型和频率显示明显的亚欧混合现象,经过长期基因融合使其具有中亚人群的典型特征,适用于法医遗传学。  相似文献   

9.
Human (h) DNA topoisomerase I has been identified as a major SUMO1 target in camptothecin-treated cells. In response to TOP1-mediated DNA damage induced by camptothecin, multiple SUMO1 molecules are conjugated to the N-terminal domain of a single TOP1 molecule. To investigate the molecular mechanism of SUMO1 conjugation to TOP1, an in vitro system using purified SAE1/2, Ubc9, SUMO1, and TOP1 peptides was developed. Consistent with results from in vivo studies, multiple SUMO1 molecules were found to be conjugated to the N-terminal domain of a single TOP1 molecule. Systematic analysis has identified a single major SUMO1 conjugation site located between amino acid residues 110 and 125 that contains a single lysine residue at 117 (Lys-117). Using a short peptide spanning this region, we showed that a poly-SUMO1 chain was assembled in this peptide at Lys-117. Interestingly, a Ubc9-poly-SUMO1 intermediate had accumulated to a high level when the sumoylation assay was performed in the absence of hTOP1 substrate, suggesting a possibility that the poly-SUMO1 chain is formed on Ubc9 first and then transferred en bloc onto hTOP1. This is the first definitive demonstration of the assembly of a poly-SUMO1 chain on protein substrate. These results offer new insight into hTOP1 polysumoylation in response to TOP1-mediated DNA damage and may have general implications in protein polysumoylation.  相似文献   

10.
11.
The O polysaccharide (OPS) of the lipopolysaccharide (LPS) of Pseudomonas syringae pv. atrofaciens IMV 7836 and some other strains that are classified in serogroup O1 was shown to be a novel linear alpha-D-rhamnan with the tetrasaccharide O repeat -->3)-alpha-D-Rhap-(1-->3)-alpha-D-Rhap-(1-->2)-alpha-D-R hap-(1-->2)- alpha-D-Rhap-(1--> (chemotype 1A). The same alpha-D-rhamnan serves as the backbone in branched OPSs with lateral (alpha1-->3)-linked D-Rhap, (beta1-->4)-linked D-GlcpNAc, and (alpha1-->4)-linked D-Fucf residues (chemotypes 1B, 1C, and 1D, respectively). Strains of chemotype 1C demonstrated variations resulting in a decrease of the degree of substitution of the backbone 1A with the lateral D-GlcNAc residue (chemotype 1C-1A), which may be described as branched regular left arrow over right arrow branched irregular --> linear OPS structure alterations (1Cleft arrow over right arrow 1C-1A --> 1A). Based on serological data, chemotype 1D was suggested to undergo a 1D left arrow over right arrow 1D-1A alteration, whereas chemotype 1B showed no alteration. A number of OPS backbone-specific monoclonal antibodies (MAbs), Ps(1-2)a, Ps(1-2)a(1), Ps1a, Ps1a(1), and Ps1a(2), as well as MAbs Ps1b, Ps1c, Ps1c(1), Ps1d, Ps(1-2)d, and Ps(1-2)d(1) specific to epitopes related to the lateral sugar substituents of the OPSs, were produced against P. syringae serogroup O1 strains. By using MAbs, some specific epitopes were inferred, serogroup O1 strains were serotyped in more detail, and thus, the serological classification scheme of P. syringae was improved. Screening with MAbs of about 800 strains representing all 56 known P. syringae pathovars showed that the strains classified in serogroup O1 were found among 15 pathovars and the strains with the linear OPSs of chemotype 1A were found among 9 of the 15 pathovars. A possible role for the LPS of P. syringae and related pseudomonads as a phylogenetic marker is discussed.  相似文献   

12.
Hirasawa A  Awaji T  Xu Z  Shinoura H  Tsujimoto G 《Life sciences》2001,68(19-20):2259-2267
Alpha1-adrenergic receptors (AR) are members of the superfamily of G protein-coupled receptors (GPCRs) which mediate the effects of the sympathetic nervous system. Alpha1-AR comprise a heterogeneous family of three distinct isoforms of alpha1A, alpha1B and alpha1D; however, very little is known about their difference in physiological role or regulation. We have recently observed a subtype-specific differences in subcellular localization of alpha1-ARs; thus, alpha1A-AR predominantly localize intracellularly, while alpha1B-AR on the cell surface. To examine the molecular mechanism for the subtype-specific differences in subcellular localization, we conducted a search for novel proteins that interact with the alpha1B-AR, specifically focusing on the carboxyl-terminal cytoplasmic domain. Using interaction cloning and biochemical techniques, we demonstrate that gC1q-R interacts with alpha1B-AR in vitro and in vivo through the specific site, and that in cells which co-express alpha1B-AR and gC1q-R, the subcellular localization of alpha1B-AR is markedly altered and its expression is down-regulated. These results suggest that gC1q-R plays a role in the regulation of the subcellular localization as well as the function of alpha1B-ARs.  相似文献   

13.
Identified in Arabidopsis as a repressor of light-regulated development, the COP1 (constitutively photomorphogenic 1) protein is characterized by a RING-finger motif and a WD40 repeat domain [1]. The subcellular localization of COP1 is light-dependent. COP1 acts within the nucleus to repress photomorphogenic development, but light inactivates COP1 and diminishes its nuclear abundance [2]. Here, we report the identification of a mammalian COP1 homologue that contains all the structural features present in Arabidopsis COP1 (AtCOP1). When expressed in plant cells, a fusion protein comprising mammalian COP1 and beta-glucuronidase (GUS) responded to light by changing its subcellular localization pattern in a manner similar to AtCOP1. Whereas the mammalian COP1 was unable to rescue the defects of Arabidopsis cop1 mutants, expression of the amino-terminal half of mammalian COP1 in Arabidopsis interfered with endogenous COP1 function, resulting in a hyperphotomorphogenic phenotype. Therefore, the regulatory modules in COP1 proteins that are responsible for the signal-dependent subcellular localization are functionally conserved between higher plants and mammals, suggesting that mammalian COP1 may share a common mode of action with its plant counterpart in regulating development and cellular signaling.  相似文献   

14.
The periplasmic molecular chaperone Caf1M of Yersinia pestis is a typical representative of a subfamily of specific chaperones involved in assembly of surface adhesins with a very simple structure. One characteristic feature of this Caf1M-like subfamily is possession of an extended, variable sequence (termed FGL) between the F1 and subunit binding G1 beta-strands. In contrast, FGS subfamily members, characterized by PapD, have a short F1-G1 loop and are involved in assembly of complex pili. To elucidate the structural and functional significance of the FGL sequence, a mutant Caf1M molecule (dCaf1M), in which the 27 amino acid residues between the F1 and G1 beta-strands had been deleted, was constructed. Expression of the mutated caf1M in Escherichia coli resulted in accumulation of high levels of dCaf1M. The far-UV circular dichroism spectra of the mutant and wild-type proteins were indistinguishable and exhibited practically the same temperature and pH dependencies. Thus, the FGL sequence of Caf1M clearly does not contribute significantly to the stability of the protein conformation. Preferential cleavage of Caf1M by trypsin at Lys-119 confirmed surface exposure of this part of the FGL sequence in the isolated chaperone and periplasmic chaperone-subunit complex. There was no evidence of surface-localized Caf1 subunit in the presence of the Caf1A outer membrane protein and dCaf1M. In contrast to Caf1M, dCaf1M was not able to form a stable complex with Caf1 nor could it protect the subunit from proteolytic degradation in vivo. This demonstration that the FGL sequence is required for stable chaperone-subunit interaction, but not for folding of a stable chaperone, provides a sound basis for future detailed molecular analyses of the FGL subfamily of chaperones.  相似文献   

15.
16.
Mao X  Li Y  Wang H  Cao F  Chen J 《FEMS microbiology letters》2008,285(2):233-241
Candida albicans is a polymorphic human opportunistic pathogen in which the Swi-Snf complex functions as an activator whereas Tup1 acts as a general repressor during the yeast-hyphae transition. In Saccharomyces cerevisiae, the interplay between the Swi-Snf complex and the Tup1-Ssn6 repressive complex regulates the balance between active and repressed chromatin structures of a number of genes. To study the interplay between Candida albicans Swi1 and Tup1 and their effects on morphogenesis, we analyzed phenotypes of swi1/swi1, tup1/tup1 and swi1/swi1 tup1/tup1 mutants under various growth conditions. The swi1/swi1 mutant failed to form true hyphae, whereas the tup1/tup1 mutant exhibited constitutive filamentous growth. Deletion of SWI1 in the tup1/tup1 mutant completely blocked hyphal growth under all the conditions examined. Under aerobic conditions, the swi1/swi1 tup1/tup1 mutant most resembled the swi1/swi1 mutant in phenotype, actin polarization and gene expression pattern. In invaded agar, the double mutant showed similar phenotypes as the swi1/swi1 mutant, while under embedded conditions, it grew as a pseudohypha-like form different from that of the wild-type strain, swi1/swi1 or tup1/tup1 mutants. These results suggest that Swi1 may play a dominant role by antagonizing the repressive effect of the Tup1 on hyphal development in C. albicans.  相似文献   

17.
朱智慧  胡敏杰  常长青  彭金荣 《遗传》2012,34(9):1174-1180
基因leg1(liver-enriched gene 1)首先在斑马鱼中作为肝脏富集表达基因被鉴定。进一步的研究揭示leg1编码的Leg1蛋白代表一类新型外分泌蛋白, 它在斑马鱼胚期肝脏生长发育过程中起关键作用。小鼠leg1(mu-leg1)是斑马鱼leg1(zb-leg1)的直系同源基因, 二者编码的蛋白氨基酸序列相似性为31%。文章通过巢式PCR从成年小鼠肝脏中成功克隆了mu-leg1的cDNA序列, 并对该基因在成年小鼠不同组织中的表达特征进行分析和鉴定。Northern印迹杂交和半定量RT-PCR分析结果显示, mu-leg1在成年小鼠小肠中而非肝脏中富集表达。此外, 用制备的mu-Leg1多克隆抗体进行Western印迹杂交, 结果显示mu-Leg1也是一个分泌蛋白。同时, 还建立了mu-leg1基因条件性剔除杂合子小鼠。这些材料为今后深入研究和探讨mu-Leg1蛋白的生化功能奠定了基础。  相似文献   

18.
Identification of intrinsic determinants of midbrain dopamine neurons   总被引:24,自引:0,他引:24  
The prospect of using cell replacement therapies has raised the key issue of whether elucidation of developmental pathways can facilitate the generation of therapeutically important cell types from stem cells. Here we show that the homeodomain proteins Lmx1a and Msx1 function as determinants of midbrain dopamine neurons, cells that degenerate in patients with Parkinson's disease. Lmx1a is sufficient and required to trigger dopamine cell differentiation. An early activity of Lmx1a is to induce the expression of Msx1, which complements Lmx1a by inducing the proneural protein Ngn2 and neuronal differentiation. Importantly, expression of Lmx1a in embryonic stem cells results in a robust generation of dopamine neurons with a "correct" midbrain identity. These data establish that Lmx1a and Msx1 are critical intrinsic dopamine-neuron determinants in vivo and suggest that they may be essential tools in cell replacement strategies in Parkinson's disease.  相似文献   

19.
Two neuregulin-1 isoforms highly expressed in the nervous system are the type III neuregulin III-beta1a and the type I neuregulin I-beta1a. The sequence of these two isoforms differs only in the region that is N-terminal of the bioactive epidermal growth factor-like domain. While the biosynthetic processing of the I-beta1a isoform has been well characterized, the processing of III-beta1a has not been reported. In this study, we compared III-beta1a and I-beta1a processing. Both III-beta1a and I-beta1a were synthesized as transmembrane proproteins that were proteolytically cleaved to produce an N-terminal fragment containing the bioactive epidermal growth factor-like domain. For I-beta1a, this product was released into the medium. However, for III-beta1a, this product was a transmembrane protein. In cultures of cells expressing III-beta1a, the amount of neuregulin at the cell surface was much greater, and the amount in the medium was much less than in cultures expressing I-beta1a. Phorbol ester treatment and truncation of the cytoplasmic tail had markedly different effects on III-beta1a and I-beta1a processing. These results demonstrate an important role for the N-terminal region in determining neuregulin biosynthetic processing and show that a major product of III-beta1a processing is a tethered ligand that may act as a cell surface signaling molecule.  相似文献   

20.
Activation of the non-phagocytic superoxide-producing NADPH oxidase Nox1, complexed with p22(phox) at the membrane, requires its regulatory soluble proteins Noxo1 and Noxa1. However, the role of the small GTPase Rac remained to be clarified. Here we show that Rac directly participates in Nox1 activation via interacting with Noxa1. Electropermeabilized HeLa cells, ectopically expressing Nox1, Noxo1, and Noxa1, produce superoxide in a GTP-dependent manner, which is abrogated by expression of a mutant Noxa1(R103E), defective in Rac binding. Superoxide production in Nox1-expressing HeLa and Caco-2 cells is decreased by depletion or sequestration of Rac; on the other hand, it is enhanced by expression of the constitutively active Rac1(Q61L), but not by that of a mutant Rac1 with the A27K substitution, deficient in binding to Noxa1. We also demonstrate that Nox1 activation requires membrane recruitment of Noxa1, which is normally mediated via Noxa1 binding to Noxo1, a protein tethered to the Nox1 partner p22(phox): the Noxa1-Noxo1 and Noxo1-p22(phox) interactions are both essential for Nox1 activity. Rac likely facilitates the membrane localization of Noxa1: although Noxa1(W436R), defective in Noxo1 binding, neither associates with the membrane nor activates Nox1, the effects of the W436R substitution are restored by expression of Rac1(Q61L). The Rac-Noxa1 interaction also serves at a step different from the Noxa1 localization, because the binding-defective Noxa1(R103E), albeit targeted to the membrane, does not support superoxide production by Nox1. Furthermore, a mutant Noxa1 carrying the substitution of Ala for Val-205 in the activation domain, which is expected to undergo a conformational change upon Rac binding, fully localizes to the membrane but fails to activate Nox1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号