首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
J W Wang  C F Wu 《Biophysical journal》1996,71(6):3167-3176
The physiological roles of the beta, or auxiliary, subunits of voltage-gated ion channels, including Na+, Ca2+, and K+ channels, have not been demonstrated directly in vivo. Drosophila Hyperkinetic (Hk) mutations alter a gene encoding a homolog of the mammalian K+ channel beta subunit, providing a unique opportunity to delineate the in vivo function of auxiliary subunits in K+ channels. We found that the Hk beta subunit modulates a wide range of the Shaker (Sh) K+ current properties, including its amplitude, activation and inactivation, temperature dependence, and drug sensitivity. Characterizations of the existing mutants in identified muscle cells enabled an analysis of potential mechanisms of subunit interactions and their functional consequences. The results are consistent with the idea that via hydrophobic interaction, Hk beta subunits modulate Sh channel conformation in the cytoplasmic pore region. The modulatory effects of the Hk beta subunit appeared to be specific to the Sh alpha subunit because other voltage- and Ca(2+)-activated K+ currents were not affected by Hk mutations. The mutant effects were especially pronounced near the voltage threshold of IA activation, which can disrupt the maintenance of the quiescent state and lead to the striking neuromuscular and behavioral hyperexcitability previously reported.  相似文献   

3.
The model proposed for external TEA block of Shaker K+ channels predicts a proportional relationship between TEA sensitivity and calculated electrical distance derived from measurements of voltage dependence of TEA block. In the present study, we examined this relationship for the A-type K+ current (IA) of Helix aspersa in neuronal somata using the whole-cell patch-clamp technique. External TEA inhibited IA with strong voltage dependence, such that the TEA dissociation constant was increased at depolarized test potentials. The half-inhibition constant (V0.5) for TEA block was approximately 21 mM at 0 mV, and V0.5 increased to approximately 67 mM at 50 mV. The calculated electrical distance for TEA block suggested that TEA traversed 65% of the way into the membrane electrical field. TEA also caused significant shifts in the voltage-dependence of A-type K+ channel gating. For example, at TEA concentrations below that required to fully suppress delayed outward currents, TEA caused depolarizing shifts in the voltage-dependence of A-type channel activation, steady-state inactivation, time for removal of inactivation, and slowed channel activation kinetics. Taken together, these observations suggest that TEA biased the local field potential near voltage-sensing domains of A-type K+ channels, causing the transmembrane electrical field to be relatively hyperpolarized in the presence of TEA. In summary, the calculated electrical distance of TEA block of A-type K+ channels in H. aspersa neurons is unprecedented among other K+ channels. This raises concerns about the conventional interpretation of this value. Furthermore, the voltage-dependent properties of IA are modified by TEA at concentrations previously used to isolate delayed rectifier potassium channels (IKDR) selectively. This lack of specificity has important implications for recent, as well as future studies of IA in H. aspersa and possibly other snail neurons.  相似文献   

4.
N-type inactivation in voltage-gated K+ (Kv) channels is a widespread means to modulate neuronal excitability and signaling. Here we have shown a novel mechanism of N-type inactivation in a Caenorhabditis elegans Kv channel. The N-terminal sequence of KVS-1 contains a domain of 22 amino acids that resembles the inactivation ball in A-type channels, which is preceded by a domain of eighteen amino acids. Wild type KVS-1 currents can be described as A-type; however, their kinetics are significantly (approximately 5-fold) slower. When the putative inactivation ball is deleted, the current becomes non-inactivating. Inactivation is restored in non-inactivating channels by diffusion of the missing inactivation domain in the cytoplasm. Deletion of the domain in front of the ball speeds inactivation kinetics approximately 5-fold. We conclude that KVS-1 is the first example of a novel type of Kv channel simultaneously possessing an N-inactivating ball preceded by an N inactivation regulatory domain (NIRD) that acts to slow down inactivation through steric mechanisms.  相似文献   

5.
M. Stern  R. Kreber    B. Ganetzky 《Genetics》1990,124(1):133-143
The effects of para mutations on behavior and axonal excitability in Drosophila suggested that para specifically affects sodium channels. This hypothesis was confirmed by molecular analysis of the para locus, which demonstrates that the encoded para product is a sodium channel polypeptide. Here we characterize the effects of altered para+ dosage on behavior and axonal excitability, both in an otherwise wild-type background and in combination with two other mutations: napts, which also affects sodium channels, and ShKS133, which specifically affects potassium channels. Whereas it was previously shown that decreased dosage of para+ is unconditionally lethal in a napts background, we find that increased dosage of para+ suppresses napts. Similarly, we find that para hypomorphs or decreased dosage of para+ suppresses ShKS133, whereas increased dosage of para+ enhances ShKS133). The electrophysiological basis for these effects is investigated. Other genes in Drosophila that have sequence homology to sodium channels do not show such dosage effects, which suggests that the para+ product has a function distinct from that of other putative Drosophila sodium channel genes. We conclude that the number of sodium channels present in at least some Drosophila neurons can be affected by changes in para+ gene dosage, and that the level of para+ expression can strongly influence neuronal excitability.  相似文献   

6.
Slow inactivation occurs in voltage-gated Na+ channels when the membrane is depolarized for several seconds, whereas fast inactivation takes place rapidly within a few milliseconds. Unlike fast inactivation, the molecular entity that governs the slow inactivation of Na+ channels has not been as well defined. Some regions of Na+ channels, such as mu1-W402C and mu1-T698M, have been reported to affect slow inactivation. A mutation in segment I-S6 of mu1 Na+ channels, N434A, shifts the voltage dependence of activation and fast inactivation toward the depolarizing direction. The mutant Na+ current at +50 mV is diminished by 60-80% during repetitive stimulation at 5 Hz, resulting in a profound use-dependent phenomenon. This mutant phenotype is due to the enhancement of slow inactivation, which develops faster than that of wild-type channels (tau = 0.46 +/- 0.01 s versus 2.11 +/- 0.10 s at +30 mV, n = 9). An oxidant, chloramine-T, abolishes fast inactivation and yet greatly accelerates slow inactivation in both mutant and wild-type channels (tau = 0.21 +/- 0.02 s and 0.67 +/- 0.05 s, respectively, n = 6). These findings together demonstrate that N434 of mu1 Na+ channels is also critical for slow inactivation. We propose that this slow form of Na+ channel inactivation is analogous to the "C-type" inactivation in Shaker K+ channels.  相似文献   

7.
Apart from their primary function as balance sensors, Hermissenda hair cells are presynaptic neurons involved in the Ca(2+)-dependent neuronal plasticity in postsynaptic B photoreceptors that accompanies classical conditioning. With a view to beginning to understand presynaptic mechanisms of plasticity in the vestibulo-visual system, a locus for conditioning-induced neuronal plasticity, outward currents that may govern the excitability of hair cells were recorded by means of a whole-cell patch-clamp technique. Three K+ currents were characterized: a 4-aminopyridine-sensitive transient outward K+ current (IA), a tetraethyl ammonium-sensitive delayed rectifier K+ current (IK,V), and a Ca(2+)-activated K+ current (IK,Ca). IA activates and decays rapidly; the steady-state activation and inactivation curves of the current reveal a window current close to the apparent resting voltage of the hair cells, suggesting that the current is partially activated at rest. By modulating firing frequency and perhaps damping membrane oscillations, IA may regulate synaptic release at baseline. In contrast, IK,V and IK,Ca have slow onset and exhibit little or no inactivation. These two K+ currents may determine the duration of the repolarization phase of hair-cell action potentials and hence synaptic release via Ca2+ influx through voltage-gated Ca2+ channels. In addition, IK,Ca may be responsible for the afterhyperpolarization of hair cell membrane voltage following prolonged stimulation.  相似文献   

8.
Current through voltage-gated K+ channels underlies the action potential encoding the electrical signal in excitable cells. The four subunits of a voltage-gated K+ channel each have six transmembrane segments (S1-S6), whereas some other K+ channels, such as eukaryotic inward rectifier K+ channels and the prokaryotic KcsA channel, have only two transmembrane segments (M1 and M2). A voltage-gated K+ channel is formed by an ion-pore module (S5-S6, equivalent to M1-M2) and the surrounding voltage-sensing modules. The S4 segments are the primary voltage sensors while the intracellular activation gate is located near the COOH-terminal end of S6, although the coupling mechanism between them remains unknown. In the present study, we found that two short, complementary sequences in voltage-gated K+ channels are essential for coupling the voltage sensors to the intracellular activation gate. One sequence is the so called S4-S5 linker distal to the voltage-sensing S4, while the other is around the COOH-terminal end of S6, a region containing the actual gate-forming residues.  相似文献   

9.
Voltage-gated Na+ and K+ channels play key roles in the excitability of skeletal muscle fibers. In this study we investigated the steady-state and kinetic properties of voltage-gated Na+ and K+ currents of slow and fast skeletal muscle fibers in zebrafish ranging in age from 1 day postfertilization (dpf) to 4-6 dpf. The inner white (fast) fibers possess an A-type inactivating K+ current that increases in peak current density and accelerates its rise and decay times during development. As the muscle matured, the V50s of activation and inactivation of the A-type current became more depolarized, and then hyperpolarized again in older animals. The activation kinetics of the delayed outward K+ current in red (slow) fibers accelerated within the first week of development. The tail currents of the outward K+ currents were too small to allow an accurate determination of the V50s of activation. Red fibers did not show any evidence of inward Na+ currents; however, white fibers expressed Na+ currents that increased their peak current density, accelerated their inactivation kinetics, and hyperpolarized their V50 of inactivation during development. The action potentials of white fibers exhibited significant changes in the threshold voltage and the half width. These findings indicate that there are significant differences in the ionic current profiles between the red and white fibers and that a number of changes occur in the steady-state and kinetic properties of Na+ and K+ currents of developing zebrafish skeletal muscle fibers, with the most dramatic changes occurring around the end of the first day following egg fertilization.  相似文献   

10.
Transient outward currents in rat saphenous arterial myocytes were studied using the perforated configuration of the patch-clamp method. When myocytes were bathed in a Na-gluconate solution containing TEA to block large-conductance Ca2+-activated K+ (BK) currents, depolarizing pulses positive to +20 mV from a holding potential of -100 mV induced fast transient outward currents. The activation and inactivation time constants of the current were voltage dependent, and at +40 mV were 3.6 +/- 0.8 ms and 23.9 +/- 6.4 ms (n = 4), respectively. The steady-state inactivation of the transient outward current was steeply voltage dependent (z = 1.7), with 50% of the current inactivated at -55 mV. The current was insensitive to the A-type K+ channel blocker 4-AP (1-5 mM), and was modulated by external Ca, decreasing to approximately 0.85 of control values upon raising Ca2+ from 1 to 10 mM, and increasing approximately 3-fold upon lowering it to 0.1 mM. Transient outward currents were also recorded following replacement of internal K+ with either Na+ or Cs+, raising the possibility that the current was carried by monovalent ions passing through voltage-gated Ca2+ channels. This hypothesis was supported by the finding that the transient outward current had the same inactivation rate as the inward Ba2+ current, and that both currents were effectively blocked by the L-type Ca2+ channel blocker, nifedipine and enhanced by the agonist BAYK8644.  相似文献   

11.
In some A-type voltage-gated K channels, rapid inactivation is achieved through the binding of an N-terminal domain of the pore-forming alpha-subunit or an associated beta-subunit to a cytoplasmic acceptor located at or near the channel pore using the ball-and-chain machinery (1-5). This inactivation involving the N terminus is known as N-type inactivation. Here, we describe an erbstatin (Erb) analogue as a small molecule inhibitor of the N-type inactivation in channels of Kv1.4 and Kv1.1+Kvbeta1. We show that this inhibition of inactivation (designated as "disinactivation") is potent and selective for N-type inactivation in heterologous cells (Chinese hamster ovary and Xenopus oocytes) expressing these A-type channels. In Chinese hamster ovary cells, Erb increased the inactivation time constant of Kv1.4 from 86.5 +/- 9.5 to 150 +/- 10 ms (n = 6, p < 0.0 1). Similarly, Erb increased the inactivation time constant of Kv1.1+Kvbeta1 from 10 +/- 0.9 to 49.3 +/- 7 ms (n = 7, p < 0.01). The EC(50) for disinactivating Kv1.1+Kvbeta1 was 10.4 +/- 0.9 microm (n = 2-9). Erb had no effect upon another A-channel, Kv4.3, which does not utilize the ball-and-chain mechanism. The mechanism of Erb-induced disinactivation was also investigated. Neither cysteine oxidation nor tyrosine kinase inhibition was involved. The results demonstrate that Erb can be used as a base structure to identify potent, selective small molecule inhibitors of intracellular protein-protein interactions, and that these disinactivators may offer another therapeutic approach to the treatment of seizure disorders.  相似文献   

12.
The gating modifier toxins are a large family of protein toxins that modify either activation or inactivation of voltage-gated ion channels. omega-Aga-IVA is a gating modifier toxin from spider venom that inhibits voltage-gated Ca(2+) channels by shifting activation to more depolarized voltages. We identified two Glu residues near the COOH-terminal edge of S3 in the alpha(1A) Ca(2+) channel (one in repeat I and the other in repeat IV) that align with Glu residues previously implicated in forming the binding sites for gating modifier toxins on K(+) and Na(+) channels. We found that mutation of the Glu residue in repeat I of the Ca(2+) channel had no significant effect on inhibition by omega-Aga-IVA, whereas the equivalent mutation of the Glu in repeat IV disrupted inhibition by the toxin. These results suggest that the COOH-terminal end of S3 within repeat IV contributes to forming a receptor for omega-Aga-IVA. The strong predictive value of previous mapping studies for K(+) and Na(+) channel toxins argues for a conserved binding motif for gating modifier toxins within the voltage-sensing domains of voltage-gated ion channels.  相似文献   

13.
Kv4 channels mediate the somatodendritic A-type K+ current (I(SA)) in neurons. The availability of functional Kv4 channels is dynamically regulated by the membrane potential such that subthreshold depolarizations render Kv4 channels unavailable. The underlying process involves inactivation from closed states along the main activation pathway. Although classical inactivation mechanisms such as N- and P/C-type inactivation have been excluded, a clear understanding of closed-state inactivation in Kv4 channels has remained elusive. This is in part due to the lack of crucial information about the interactions between gating charge (Q) movement, activation, and inactivation. To overcome this limitation, we engineered a charybdotoxin (CTX)-sensitive Kv4.2 channel, which enabled us to obtain the first measurements of Kv4.2 gating currents after blocking K+ conduction with CTX (Dougherty and Covarrubias. 2006J. Gen. Physiol. 128:745-753). Here, we exploited this approach further to investigate the mechanism that links closed-state inactivation to slow Q-immobilization in Kv4 channels. The main observations revealed profound Q-immobilization at steady-state over a range of hyperpolarized voltages (-110 to -75 mV). Depolarization in this range moves <5% of the observable Q associated with activation and is insufficient to open the channels significantly. The kinetics and voltage dependence of Q-immobilization and ionic current inactivation between -153 and -47 mV are similar and independent of the channel's proximal N-terminal region (residues 2-40). A coupled state diagram of closed-state inactivation with a quasi-absorbing inactivated state explained the results from ionic and gating current experiments globally. We conclude that Q-immobilization and closed-state inactivation at hyperpolarized voltages are two manifestations of the same process in Kv4.2 channels, and propose that inactivation in the absence of N- and P/C-type mechanisms involves desensitization to voltage resulting from a slow conformational change of the voltage sensors, which renders the channel's main activation gate reluctant to open.  相似文献   

14.
Kourie JI 《FEBS letters》1999,445(1):57-62
We report the first evidence that synthetic human C-type natriuretic peptide-22 and the OaC-type natriuretic peptide-39(18-39), a 22 amino acid fragment of the OaC-type natriuretic peptide-39 from platypus venom, can function directly by forming a novel voltage-gated weakly cation-selective channel in negatively charged artificial lipid bilayer membranes. The channel activity is characterized by a tendency for inactivation at negative voltages, e.g. -60 and -70 mV, whereas at positive voltages the channel is fully open. The channel has a maximal cord conductance of 546+/-23 pS (n = 16) and shows weak outward rectification. The sequence and the permeability ratios were P(K)+: P(Cs)+: P(Na)+: P(choline)+ 1:0.88:0.76:0.13, respectively. The addition of 50 mM TEA+ cis (a blocker of outwardly rectifying K+ channels), 20 mM Cs+ cis (a blocker of inwardly rectifying K+ channels) or 0.5 mM glibenclamide cis (a blocker of ATP-sensitive K+ channels) to the cis chamber did not affect the conductance or the kinetics of the OaC-type natriuretic peptide-39(18-39)-formed channels (n = 2-5). It is concluded that the weak cation selectivity, large conductance and high open probability as well as their voltage dependency are consistent with the ability of these peptides to cause that loss of compartmentation of the membrane, which is a characteristic feature of adverse conditions that cause C-type natriuretic peptide-related pathologies.  相似文献   

15.
Voltage-gated K+ channels play important roles in shaping the characteristics of action potentials and electrical activity. In a previous study, we isolated cDNAs encoding several distinct K+ channel isoforms, including a novel isoform (XKv1.10) expressed in Xenopus laevis spinal cord neurons and myocytes. Here, we report the biophysical characterization of XKv1.10 expressed in transiently transfected HEK293 cells. Whole cell patch clamp recordings revealed a voltage-gated, rapidly activating and inactivating K+ current. Interestingly, the rate of inactivation of XKv1.10 channels showed apparent voltage dependence, with time constants between 77.7-213.3 ms. The predicted protein sequence of XKv1.10 does not appear to encode an N-terminal inactivating "ball and chain" domain, and instead these channels may inactivate via a C/P-type mechanism. Consistent with this, either increasing the external concentration of K+ or external application of tetraethylammonium caused a decrease in the rate of inactivation. Pharmacologically, XKv1.10 K+ channels were sensitive to 4-aminopyridine and tetraethylammonium with apparent IC50 values of 68.5 microM and 17.1 mM, respectively. When simulated action potentials were used as a voltage command, XKv1.10 was similar to XKv1.4 in that it carried more repolarizing current during the action potential than XKv1.2. However, while XKv1.4 was active during the interspike interval, XKv1.10 and XKv1.2 were not. Overall, the data suggest that XKv1.10 channels make a unique contribution to the developmental maturation of electrical signaling in Xenopus laevis.  相似文献   

16.
Redox modulation of fast inactivation has been described in certain cloned A-type voltage-gated K+ (Kv) channels in expressing systems, but the effects remain to be demonstrated in native neurons. In this study, we examined the effects of cysteine-specific redox agents on the A-type K+ currents in acutely dissociated small diameter dorsal root ganglion (DRG) neurons from rats. The fast inactivation of most A-type currents was markedly removed or slowed by the oxidizing agents 2,2′-dithio-bis(5-nitropyridine) (DTBNP) and chloramine-T. Dithiothreitol, a reducing agent for the disulfide bond, restored the inactivation. These results demonstrated that native A-type K+ channels, probably Kv1.4, could switch the roles between inactivating and non-inactivating K+ channels via redox regulation in pain-sensing DRG neurons. The A-type channels may play a role in adjusting pain sensitivity in response to peripheral redox conditions.  相似文献   

17.
A cDNA clone encoding a K+ channel polypeptide with 72% amino acid sequence identity to Drosophila Shal was isolated from rat hippocampus. Functional expression of the cDNA in Xenopus oocytes generated 4-amino-pyridine-sensitive K+ channels displaying rapid inactivation kinetics. The fastest component of inactivation was slowed by the deletion of 3 basic residues in the amino-terminal region. Northern blots revealed that the mRNA encoding this K+ channel polypeptide was expressed at a similar level in the brain and in the heart. In situ hybridization revealed that the mRNA encoding this K+ channel appeared concentrated in the hippocampus, dentate gyrus, and habenular nucleus in the brain. Thus, this K+ channel polypeptide is likely to form some of the A-type K+ channels expressed in the mammalian nervous system and heart.  相似文献   

18.
In whole cell patch clamp recordings on enzymatically dissociated adrenal zona fasciculata (AZF) cells, a rapidly inactivating A-type K+ current was observed in each of more than 150 cells. Activation of IA was steeply voltage dependent and could be described by a Boltzmann function raised to an integer power of 4, with a midpoint of -28.3 mV. Using the "limiting logarithmic potential sensitivity," the single channel gating charge was estimated to be 7.2 e. Voltage-dependent inactivation could also be described by a Boltzmann function with a midpoint of -58.7 mV and a slope factor of 5.92 mV. Gating kinetics of IA included both voltage-dependent and -independent transitions in pathways between closed, open, and inactivated states. IA activated with voltage-dependent sigmoidal kinetics that could be fit with an n4h formalism. The activation time constant, tau a, reached a voltage- independent minimum at potentials positive to 0 mV. IA currents inactivated with two time constants that were voltage independent at potentials ranging from -30 to +45 mV. At +20 mV, tau i(fast) and tau i(slow) were 13.16 +/- 0.64 and 62.26 +/- 5.35 ms (n = 34), respectively. In some cells, IA inactivation kinetics slowed dramatically after many minutes of whole cell recording. Once activated by depolarization, IA channels returned to the closed state along pathways with two voltage-dependent time constants which were 0.208 s, tau rec-f and 10.02 s, tau rec-s at -80 mV. Approximately 90% of IA current recovered with slow kinetics at potentials between -60 and -100 mV. IA was blocked by 4-aminopyridine (IC50 = 629 microM) through a mechanism that was strongly promoted by channel activation. Divalent and trivalent cations including Ni2+ and La3+ also blocked IA with IC50's of 467 and 26.4 microM, respectively. With respect to biophysical properties and pharmacology, IA in AZF cells resembles to some extent transient K+ currents in neurons and muscle, where they function to regulate action potential frequency and duration. The function of this prominent current in steroid hormone secretion by endocrine cells that may not generate action potentials is not yet clear.  相似文献   

19.
Contributions of the C-terminal domain of Kv4.3 to the voltage-dependent gating of A-type K+ current (IA) were examined by (i) making mutations in this region, (ii) heterologous expression in HEK293 cells, and (iii) detailed voltage clamp analyses. Progressive deletions of the C terminus of rat Kv4.3M (to amino acid 429 from the N terminus) did not markedly change the inactivation time course of IA but shifted the voltage dependence of steady state inactivation in the negative direction to a maximum of -17 mV. Further deletions (to amino acid 420) shifted this parameter in the positive direction, suggesting a critical role for the domain 429-420 in the voltage-dependent regulation of IA. There are four positively charged amino acids in this domain: Lys423, Lys424, Arg426, and Arg429. The replacement of the two arginines with alanines (R2A) resulted in -23 and -13 mV shifts of inactivation and activation, respectively. Additional replacement of the two lysines with alanines did not result in further shifts. Single replacements of R426A or R429A induced -15 and -10 mV shifts of inactivation, respectively. R2A did not significantly change the inactivation rate but did markedly change the voltage dependence of recovery from inactivation. These two arginines are conserved in Kv4 subfamily, and alanine replacement of Arg429 and Arg432 in Kv4.2 gave essentially the same results. These effects of R2A were not modulated by co-expression of the K+ channel beta subunit, KChIPs. In conclusion, the two arginines in the cytosolic C-terminal domain of alpha-subunits of Kv4 subfamily strongly regulate the voltage dependence of channel activation, inactivation, and recovery.  相似文献   

20.
Chen L  Liu J  Xu C  Keblesh J  Zang W  Xiong H 《PloS one》2011,6(10):e25994
Human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) usually occurs late in the course of HIV-1 infection and the mechanisms underlying HAD pathogenesis are not well understood. Accumulating evidence indicates that neuronal voltage-gated potassium (Kv) channels play an important role in memory processes and acquired neuronal channelopathies in HAD. To examine whether Kv channels are involved in HIV-1-associated neuronal injury, we studied the effects of HIV-1 glycoprotein 120 (gp120) on outward K+ currents in rat cortical neuronal cultures using whole-cell patch techniques. Exposure of cortical neurons to gp120 produced a dose-dependent enhancement of A-type transient outward K+ currents (IA). The gp120-induced increase of IA was attenuated by T140, a specific antagonist for chemokine receptor CXCR4, suggesting gp120 enhancement of neuronal IA via CXCR4. Pretreatment of neuronal cultures with a protein kinase C (PKC) inhibitor, GF109203X, inhibited the gp120-induced increase of IA. Biological significance of gp120 enhancement of IA was demonstrated by experimental results showing that gp120-induced neuronal apoptosis, as detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and caspase-3 staining, was attenuated by either an IA blocker 4-aminopyridine or a specific CXCR4 antagonist T140. Taken together, these results suggest that gp120 may induce caspase-3 dependent neuronal apoptosis by enhancing IA via CXCR4-PKC signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号